SYNAP

dc.contributor.advisorTsukamoto Uchida, Beatriz
dc.contributor.authorCastaño Tavera, Juan David
dc.date.accessioned2024-05-30T22:04:53Z
dc.date.available2024-05-30T22:04:53Z
dc.date.issued2024-05-12
dc.description.abstractNumerosas metodologías de diseño ampliamente utilizadas y reconocidas incorporan una fase de verificación y evaluación. Esta etapa reviste una importancia crucial, ya que permite validar las intenciones del diseño ante los usuarios finales, siendo fundamental para garantizar el funcionamiento óptimo de un proyecto. La rigurosidad en la ejecución de esta fase es imperativa. Las pruebas de usabilidad llevadas a cabo por diseñadores se basan en la recopilación de información percibida y datos cualitativos, observando la interacción del usuario con los productos, espacios o servicios a evaluar. Sin embargo, los resultados de estas pruebas no siempre son completamente fiables, debido a la influencia significativa del individuo encargado de recopilar la información, su relación con los participantes y su disposición. La toma de decisiones de diseño basada únicamente en entrevistas puede resultar ineficaz, ya que las palabras de los participantes pueden ser malinterpretadas o poco claras. Conscientes de esta limitación, el Laboratorio de Ergonomía Cognitiva (ErgoLab) de la Universidad El Bosque llevó a cabo una investigación utilizando tecnologías BCI (Brain Computer Interfaces). De esta investigación surgió SYNAP, una herramienta que emplea tecnologías BCI para ofrecer validación de usabilidad a proyectos, obteniendo datos cuantitativos confiables a partir de los bio-datos cerebrales. SYNAP combina estos datos con pruebas clásicas, fortaleciendo así los proyectos de diseño mediante conclusiones sólidas y respaldadas.
dc.description.abstractenglishNumerous widely used and renowned design methodologies incorporate a verification and evaluation phase. This stage is of crucial importance as it validates the design intentions with end users, being essential to ensure the optimal functioning of a project. Rigorous execution of this phase is imperative. Usability tests conducted by designers are based on the collection of perceptual information and qualitative data, observing the user's interaction with the products, spaces, or services being evaluated. However, the results of these tests are not always entirely reliable due to the significant influence of the individual collecting the information, their relationship with the participants, and their disposition. Design decision-making based solely on interviews can be ineffective, as participants' words may be misinterpreted or unclear. Aware of this limitation, the Cognitive Ergonomics Laboratory (ErgoLab) at El Bosque University conducted research using Brain-Computer Interface (BCI) technologies. From this research emerged SYNAP, a tool that utilizes BCI technologies to provide usability validation for projects, obtaining reliable quantitative data from brain bio-signals. SYNAP combines these data with classical tests, thus strengthening design projects through solid and supported conclusions.
dc.description.degreelevelPregradospa
dc.description.degreenameDiseñador Industrialspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12230
dc.language.isoes
dc.publisher.facultyFacultad de Creación y Comunicaciónspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programDiseño Industrialspa
dc.relation.referencesAhn, Joong Woo; Ku, Yunseo; Kim, Hee Chan. (2019). A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors, 19(9), 1991.
dc.relation.referencesAntonietti, A., & Balachandran, P. (2021). The BCI Glossary: a first proposal for a community review. BRAIN-COMPUTER INTERFACES.
dc.relation.referencesBalamurugan, B., Mullai, M., Soundararajan, S., Selvakanmani, S., & Arun, D. (2020). Brain–computer interface for assessment of mental efforts in e-learning using the nonmarkovian queueing model. Computer Applications in Engineering Education.
dc.relation.referencesChi Hong Leung & Pang, Elvy. (2021). Improved Electroencephalogram Measurement for Neuromarketing Research. International Journal of Technology, Knowledge and Society; Champaign.
dc.relation.referencesChing-Yi, Wang. (2021). Differences in perception, understanding, and responsiveness of product design between experts and students: an early event-related potentials study. International Journal of Technology and Design Education; Dordrecht.
dc.relation.referencesEnergies; Basel. (2021). Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment.
dc.relation.referencesFabi, S., & Leuthold, H. (2018). Racial bias in empathy: Do we process dark- and fair-colored hands in pain differently? An EEG study. NEUROPSYCHOLOGIA.
dc.relation.referencesFeuerriegel, D. C., Jiwa, M., Turner, W. F., Andrejevic, M., & Hester, R. (2021). Tracking dynamic adjustments to decision making and performance monitoring processes in conflict tasks. Cold Spring Harbor.
dc.relation.referencesFernández Fraga, Santiago Miguel, & Rangel Mondragón, Jaime. (2014). VIII Congreso Internacional de Ingeniería Mecánica y Mecatrónica.
dc.relation.referencesFaulkner, L. (2003). Beyond the five-user assumption: Benefits of increased simple sizes in usability testing. Behavior Research Methods, Instruments and Computers, 35(3), 379-383.
dc.relation.referencesLin, Chiuhsiang Joe, & Jia, Huiqiao. (2023). Time Pressure Affects the Risk Preference and Outcome Evaluation. International Journal of Environmental Research and Public Health; Basel.
dc.relation.referencesModesti, M., Tonacci, A., Sansone, F., Billeci, L., & Bellincontro, A. (2022). E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices.
dc.relation.referencesNielsen, Jakob. (2012). Usability 101: Introduction to Usability. Nielsen Norman Group.
dc.relation.referencesOrganización Internacional de Normalización (ISO). (2019). Ergonomía del diseño para el trabajo con sistemas informáticos. Parte 210: Directrices para la interacción persona-sistema (ISO 9241-210:2019). International Organization for Standardization. https://www.iso.org/standard/77520.html.
dc.relation.referencesPoveda, R., Barberà, R., Cort, J. M., Sánchez, J., Prat, J. M., López, A., Andreu, I., & Ramiro, P. (2003). Datus ¿Cómo obtener productos con alta usabilidad? Guía práctica para fabricantes de productos de la vida diaria y ayudas técnicas. Instituto de Biomecánica de Valencia.
dc.relation.referencesSaffari, F., Kakaria, S., & Bigné, E. (2023). Motivation in the metaverse: A dual-process approach to consumer choices in a virtual reality supermarket. FRONTIERS IN NEUROSCIENCE. 58 24. Brain-computer interface for Second Life. (2007).
dc.relation.referencesSung, B., Hatton-Jones, S., Teah, M., Cheah, I., & Phau, I. (2021). Shelf-based scarcity as a cue of luxuriousness: an application of psychophysiology. European Journal of Marketing; Bradford.
dc.relation.referencesYang, Y. S., Lin, J., He, X. Y., & Yin, J. (2020). Contextual modulation of action interpretation: Automatic integration of situational contexts during action understanding. Acta Psychologica Sinica.
dc.relation.referencesYu, X., Xu, B., & Zhang, E. (2023). Others’ Facial Expressions Influence Individuals Making Choices and Processing Feedback: The Event-Related Potential and Behavioral Evidence. International Journal of Environmental Research and Public Health; Basel.
dc.relation.referencesZhang, M., Gong, X., Jia, J., & Wang, X. (2021). Unpleasant Odors Affect Alerting Attention in Young Men: An Event-Related Potential Study Using the Attention Network Test. Frontiers in Neuroscience; Lausanne.
dc.relation.referencesZhang, S. Q., Tan, Y. M., & Zhong, Y. D. (2023). Psychological recovery effects of 3D virtual tourism with real scenes -- a comparative study. INFORMATION TECHNOLOGY & TOURISM.
dc.relation.referencesZhao, G., Zhang, LN., & Chu, J. (2022). An Augmented Reality Based Mobile Photography Application to Improve Learning Gain, Decrease Cognitive Load, and Achieve Better Emotional State. International Journal of Human–Computer Interaction.
dc.relation.referencesBrain-computer interface for Second Life. (2007). https://nextnature.net/story/2007/brain-computer-interface-for-secon d-life
dc.relation.referencesAbout EMOTIV (2024). https://www.emotiv.com/about-emotiv
dc.relation.referencesEpoc X (2024). https://www.emotiv.com/epoc-x
dc.relation.referencesInsight (2024). https://www.emotiv.com/insight
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_14cb
dc.rights.localAcceso cerradospa
dc.subjectUsabilidad
dc.subjectValidacion
dc.subjectICC
dc.subjectInterfaz cerebro computador
dc.subjectDiseño Industrial
dc.subjectErgonomía
dc.subjectNeurociencias
dc.subject.ddc745.2
dc.subject.keywordsUsability
dc.subject.keywordsValidation
dc.subject.keywordsBCI
dc.subject.keywordsBrain computer interfaces
dc.subject.keywordsIndustruial design
dc.subject.keywordsErgonomics
dc.subject.keywordsNeuroscience
dc.titleSYNAP
dc.title.translatedSYNAP
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
283.84 MB
Formato:
Adobe Portable Document Format