Matemáticas
URI permanente para esta colección
Examinar
Examinando Matemáticas por Autor "Montenegro Barón, Jaime Esteban"
Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
Ítem Un estudio de las propiedades de las funciones continuas en un intervalo cerrado desde las ideas peirceanas del continuo(2021) Montenegro Barón, Jaime Esteban; Vargas Mancera, Francisco JavierCon la aritmetización del análisis predomina en la academia la enseñanza del cálculo desde la noción de límite y las concepciones del continuo de Cantor y Dedekind; incluso cuando Abraham Robinson formuló el análisis no estándar en 1966, este no predominó tanto como el “análisis estándar“ Si bien es cierto que el análisis que conocemos hoy en día se puede estudiar desde las concepciones del continuo de Cantor y Dedekind, existen distintas formas de abordarlo; por ejemplo, se pueden considerar las características que Charles S. Pierce atribuía al continuo como lo son la inextensibilidad (no se reduce a puntos), la potencialidad (El continuo no está completamente determinado y dado), la reflexividad (’toda parte es semejante al todo’) y la supermultitud (el continuo no es capturable por ningún cardinal Cantoriano). Este trabajo tiene como fin explorar el modelo C_Ord que reúne las ideas de Peirce mencionadas anteriormente junto con algunos conceptos básicos del análisis infinitesimal suave(SIA) y el análisis no estándar. Se explora en particular el concepto de función continua y algunos de los teoremas clásicos de estas funciones tales como el teorema del valor intermedio y el teorema de Rolle.