Diseño in-silico y sintesis de posibles candidatos para el tratamiento de leucemia linfoblástica aguda apartir de diseños qsar y modelos de acoplamiento molecular
dc.contributor.advisor | James Oswaldo, Guevara Pulido | |
dc.contributor.author | Cristhian Camilo, Alvarez Gómez | |
dc.contributor.orcid | Cristhian Camilo, Alvarez Gómez [0009-0007-5059-3392] | |
dc.date.accessioned | 2024-11-27T00:23:52Z | |
dc.date.available | 2024-11-27T00:23:52Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | La leucemia linfoblástica aguda (LLA) es altamente prevalente tanto en poblaciones pediátricas como en adultas. Aunque existen 156 tratamientos contra el cáncer basados en pequeñas moléculas aprobados, solo cinco están dirigidos a todos los tipos de leucemia. Sin embargo, estos tratamientos presentan una baja adherencia debido a los efectos secundarios. Es urgente encontrar mejores opciones terapéuticas para la LLA. Nuestro estudio ofrece una solución potencial. Diseñamos más de 50 análogos de carbamazepina mediante una combinación de métodos de diseño de fármacos basados en ligandos y en estructura. Entre estos análogos, seleccionamos el análogo CR80, que mostró valores predichos de -8,66 kcal/mol frente a la beta-tubulina y un IC50 estimado de ± 800 nM. Además, presentó valores seguros de LogP y toxicidad para su evaluación in vitro. El compuesto CR80 fue sintetizado con un rendimiento del 50% y evaluado in vitro contra la línea celular U-937, donde mostró un índice de selectividad de dos, lo que lo convierte en un candidato prometedor para evaluaciones in vivo. | |
dc.description.abstractenglish | Acute lymphoblastic leukemia (ALL) is highly prevalent in both pediatric and adult populations. Although 156 approved cancer treatments are based on small molecules, only five are for all leukemia types. However, these treatments have low adherence due to side effects. It is urgent to find better treatments for ALL. Our study offers a potential solution. We designed more than 50 analogs to carbamazepine using a combination of ligand-based and structure-based drug design. Among these analogs, we selected the CR80 analog, which had predicted values of -8.66 kcal/mol against beta-tubulin and an expected +- 800 nM of IC50. It also exhibited safe LogP and toxicity values for in vitro evaluation. CR80 was synthesized with a yield of 50% and was evaluated in vitro against the U-937 cell line. It showed a selectivity index of two, which makes it a promising candidate for in vivo evaluations. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13377 | |
dc.language.iso | en | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | 1. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J [Internet]. 2017;7(6):e577–e577. Disponible en: http://dx.doi.org/10.1038/bcj.2017.53 | |
dc.relation.references | 2. Manuals MSD. Acute Lymphoblastic Leukemia (ALL) - acute Lymphoblastic Leukemia (ALL) - MSD manual professional edition. 2016. | |
dc.relation.references | 3. Li R, Ma X-L, Gou C, Tse WKF. Editorial: Novel small molecules in targeted cancer therapy. Front Pharmacol [Internet]. 2023;14:1272523. Disponible en: http://dx.doi.org/10.3389/fphar.2023.1272523 | |
dc.relation.references | 4. Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, et al. Cancer chemotherapy and beyond Current status, drug candidates, associated risks and pro-gress in targeted therapeutics. Genes Dis [Internet]. 2023;10(4):1367–401. Disponible en: http://dx.doi.org/10.1016/j.gendis.2022.02.007 | |
dc.relation.references | 6. Schmiegelow K, Attarbaschi A, Barzilai S, Escherich G, Frandsen TL, Halsey C, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol [Internet]. 2016;17(6):e231–9. Disponible en: http://dx.doi.org/10.1016/S1470-2045(16)30035-3 | |
dc.relation.references | 6. Schmiegelow K, Attarbaschi A, Barzilai S, Escherich G, Frandsen TL, Halsey C, et 396 al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leu-397 kaemia treatment: a Delphi consensus. Lancet Oncol [Internet]. 2016;17(6):e231–9. Dis-398 ponible en: http://dx.doi.org/10.1016/S1470-2045(16)30035-3 | |
dc.relation.references | 7. Kuhlen M, Kunstreich M, Gökbuget N, Escherich G. Osteonekrosen – gravie-rende Therapiefolge bei akuter lymphoblastischer Leukämie. Orthopadie (Heidelb) [Internet]. 2022;51(10):792–9. Disponible en: http://dx.doi.org/10.1007/s00132-022-04301-1 | |
dc.relation.references | 8. Aytaç S, Gümrük F, Cetin M, Tuncer M, Yetgin S. Acral erythema with bullous formation: a side effect of chemotherapy in a child with acute lymphoblastic leukemia. Turk J Pediatr. 2010;52(2):211–4. | |
dc.relation.references | 9. Yu W, MacKerell AD Jr. Computer-aided drug design methods. En: Methods in Molecular Biology. New York, NY: Springer New York; 2017. p. 85–106. | |
dc.relation.references | 10. Vemula D, Jayasurya P, Sushmitha V, Kumar YN, Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur J Pharm Sci [Internet]. 2023;181(106324):106324. Disponible en: http://dx.doi.org/10.1016/j.ejps.2022.106324 | |
dc.relation.references | 11. Niazi SK, Mariam Z. Computer-Aided Drug Design and drug discovery: A prospective analysis. Pharmaceuticals (Basel) [Internet]. 2023;17(1):22. Disponible en: http://dx.doi.org/10.3390/ph17010022 | |
dc.relation.references | 12. Silverman DA, Chapron DJ. Lymphopenic effect of carbamazepine in a patient with chronic lymphocytic leukemia. Ann Pharmacother [Internet]. 1995;29(9):865–7. Disponible en: http://dx.doi.org/10.1177/106002809502900906 | |
dc.relation.references | 13. Meng Q, Chen X, Sun L, Zhao C, Sui G, Cai L. Carbamazepine promotes Her-2 protein degradation in breast cancer cells by modulating HDAC6 activity and acetyla-tion of Hsp90. Mol Cell Biochem [Internet]. 2011;348(1– 2):165–71. Disponible en: http://dx.doi.org/10.1007/s11010-010-0651-y | |
dc.relation.references | 14. Zhao reported that CBZ has an affinity for the Frizzled FZD8 receptor (via Wnt); inhibiting this receptor decreases bone remodeling and promotes the apoptosis of bone cells, which are the origin of some types of leukemia. 2020. | |
dc.relation.references | 15. Fonseca-Benítez V, Acosta-Guzmán P, Sánchez JE, Alarcón Z, Jiménez RA, Guevara-Pulido J. Design and evaluation of NSAID derivatives as AKR1C3 inhibitors for breast cancer treatment through computer-aided drug design and in vitro analysis. Molecules [Internet]. 2024;29(8). Disponible en: http://dx.doi.org/10.3390/molecules29081802 | |
dc.relation.references | 16. Jaramillo DN, Millán D, Guevara-Pulido J. Design, synthesis and cytotoxic evaluation of a selective serotonin reuptake inhibitor (SSRI) by virtual screening. Eur J Pharm Sci [Internet]. 2023;183(106403):106403. Disponible en: http://dx.doi.org/10.1016/j.ejps.2023.106403 | |
dc.relation.references | 17. Prieto M, Niño A, Acosta-Guzmán P, Guevara-Pulido J. Design and synthesis of a potential selective JAK-3 inhibitor for the treatment of rheumatoid arthritis using predictive QSAR models. Inform Med Unlocked [Internet]. 2024;45(101464):101464. Disponible en: http://dx.doi.org/10.1016/j.imu.2024.101464 | |
dc.relation.references | 18. Atherton J, Luo Y, Xiang S, Yang C, Rai A, Jiang K, et al. Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nat Commun [In-ternet]. 2019;10(1). Disponible en: http://dx.doi.org/10.1038/s41467-019-13247-6 | |
dc.relation.references | 19. Huey R, Morris GM, Forli S. The Scripps Research Institute Molecular Graphics Laboratory; 2012. Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tu-torial. | |
dc.relation.references | 20. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform [Internet]. 2012;4(1):17. Disponible en: http://dx.doi.org/10.1186/1758-2946-4-17 | |
dc.relation.references | 21. Guevara-Pulido J, Jiménez RA, Morantes SJ, Jaramillo DN, Acosta-Guzmán P. Design, synthesis, and development of 4‐[(7‐chloroquinoline‐4‐yl)amino]phenol as a potential SARS‐CoV‐2 Mpro inhibitor. ChemistrySelect [Internet]. 2022;7(15). Dis-ponible en: http://dx.doi.org/10.1002/slct.202200125 | |
dc.relation.references | 22. Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem [Internet]. 2011;32(7):1466–74. Disponible en: http://dx.doi.org/10.1002/jcc.21707 | |
dc.relation.references | 23. Alexander DLJ, Tropsha A, Winkler DA. Beware of R2: Simple, Unambiguous Assessment of the Prediction Environmental Science: Water Research & Technology Paper Accuracy of QSAR and QSPR Models. J Chem Inf Model. 2015;(7):1316–22. | |
dc.relation.references | 24. Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model [Internet]. 2002;20(4):269–76. Disponible en: http://dx.doi.org/10.1016/s1093-3263(01)00123-1 | |
dc.relation.references | 25. Buncherd H, Hongmanee S, Saechan C, Tansila N, Thanapongpichat S, Wanichsuwan W, et al. Latex C-serum from Hevea brasiliensis induces apoptotic cell death in a leukemic cell line. Mol Biol Rep [Internet]. 2023;50(9):7515–25. Disponible en: http://dx.doi.org/10.1007/s11033-023-08687-9 | |
dc.relation.references | 26. Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, et al. ADMETlab 3.0: an updated com-prehensive online ADMET prediction platform enhanced with broader coverage, im-proved performance, API functionality and decision support. Nucleic Acids Res [In-ternet]. 2024;52(W1):W422–31. Disponible en: http://dx.doi.org/10.1093/nar/gkae236 | |
dc.relation.references | 27. Majcher U, Klejborowska G, Moshari M, Maj E, Wietrzyk J, Bartl F, et al. Anti-proliferative activity and molecular docking of novel double-modified colchicine de-rivatives. Cells [Internet]. 2018;7(11):192. Disponible en: http://dx.doi.org/10.3390/cells7110192 | |
dc.relation.references | 28. Ni H, Li C, Shi X, Hu X, Mao H. Visible-light-promoted Fe(III)-catalyzed N-H alkylation of amides and Nheterocycles. J Org Chem [Internet]. 2022;87(15):9797–805. Disponible en: http://dx.doi.org/10.1021/acs.joc.2c00854 | |
dc.relation.references | 29. Sugiura M, Hagio H, Hirabayashi R, Kobayashi S. Lewis acid-catalyzed ring-opening reactions of semicyclic N,O-acetals possessing an exocyclic nitrogen atom: mechanistic aspect and application to piperidine alkaloid synthesis. J Am Chem Soc [Internet]. 2001;123(50):12510–7. Disponible en: http://dx.doi.org/10.1021/ja0170448 | |
dc.relation.references | 30. Deng Y, Hu Z, Xue J, Yin J, Zhu T, Liu S. Visible-Light-Promoted α-C (sp3)-H Ami-nation of Ethers with Azoles and Amides. Organic Letters. 2024;26(4):933–8. | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.accessrights | http://purl.org/coar/access_right/c_14cb | |
dc.rights.local | Acceso cerrado | spa |
dc.subject | Antitumoral | |
dc.subject | LLA (Leucemia Linfoblástica Aguda) | |
dc.subject | CADD (Diseño de Fármacos Asistido por Computadora) | |
dc.subject | Carbamazepina | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | Antitumoral | |
dc.subject.keywords | ALL | |
dc.subject.keywords | CADD (Computer-Aided Drug Design) | |
dc.subject.keywords | Carbamazepine | |
dc.title | Diseño in-silico y sintesis de posibles candidatos para el tratamiento de leucemia linfoblástica aguda apartir de diseños qsar y modelos de acoplamiento molecular | |
dc.title.translated | Design, synthesis, and in vitro evaluation of a carbamazepine 2 derivative with antitumor potential in a model of acute lym-3 phoblastic leukemia | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.92 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 369.85 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 173.47 KB
- Formato:
- Adobe Portable Document Format
- Descripción: