Análisis del riesgo en la seguridad transfusional debido a la circulación de arbovirus en Colombia
dc.contributor.advisor | Delgado Tiria, Félix Giovanni | |
dc.contributor.advisor | Castellanos Parra, Jaime Eduardo | |
dc.contributor.advisor | Urbina Bonilla, Adriana Del Pilar | |
dc.contributor.author | Cáceres Munar, Brian Alejandro | |
dc.contributor.orcid | Cáceres Munar, Brian Alejandro [https://orcid.org/0000-0003-2961-6856] | |
dc.date.accessioned | 2024-08-06T15:33:26Z | |
dc.date.available | 2024-08-06T15:33:26Z | |
dc.date.issued | 2024-01 | |
dc.description.abstract | En la actualidad, es claro que el principal mecanismo de transmisión arbovirus como dengue (DENV), Zika (ZIKV) y chikungunya (CHIKV) ocurre a través de la picadura de mosquitos hematófagos del género Aedes infectados, sin embargo, los altos porcentajes de infecciones asintomáticas y las elevadas viremias que éstas pueden desarrollar son factores que pueden contribuir a que estos virus se transmitan a través de otras vías alternativas, entre estas, la transmisión por transfusión sanguínea. En este sentido, el presente estudio tuvo por objetivo evaluar el riesgo en la seguridad transfusional que representan los arbovirus en donantes de sangre (DS) en Colombia, para esto, en el marco de un estudio analítico transversal se compararon las prevalencias, tasas de incidencia y riesgos residuales de infecciones por DENV ZIKV, CHIKV y coinfecciones en DS, obtenidas durante un periodo endémico (2021-2022, n=1.119) y un brote de dengue (2018-2019, n=462), adicionalmente, se evaluó la estabilidad de DENV, ZIKV y CHIKV en plaquetas y glóbulos rojos almacenados bajo condiciones estándar de banco de sangre. Las prevalencias de arbovirus en DS, representaron el 25,1% y el 5,3% en el brote y el periodo endémico de dengue respectivamente (p <0,05), en el brote la prevalencia más alta se observó en DENV (14,5%) mientras que el periodo endémico, la prevalencia más alta se observó en CHIKV (3,3%), las tasas de incidencia de arbovirus representaron hasta 104,4 y 6,4 donantes positivos por cada mil donantes-mes en brotes y periodos endémicos de dengue respectivamente, mientras que el riesgo residual de arbovirus representó hasta 24,3 y 1,5 donaciones positivas por cada mil donaciones en brotes y periodos endémicos de dengue respectivamente. Por otro lado, se confirmó la estabilidad del genoma viral de DENV, ZIKV y CHIKV, además de la capacidad infecciosa de CHIKV en plaquetas almacenadas bajo condiciones estándar de banco de sangre durante 6 días. En conclusión, estos resultados sugieren que los arbovirus pueden respetar un riesgo para la seguridad transfusional en el país, especialmente en periodos de brote de estos virus, sin embargo, se necesitan más estudios dirigidos no solo al estudio de los DS, también al estudio de los receptores de estas transfusiones potencialmente infecciosas para comprender con más detalle el impacto que pueden generar las infecciones arbovirales en la seguridad transfusional del país. | |
dc.description.abstractenglish | Currently, it is well-established that the primary mode of transmission for these viruses is through the bite of infected hematophagous mosquitoes of the genus Aedes. However, the high rates of asymptomatic infections and the substantial viremias that they can develop are factors that may contribute to the transmission of these viruses through other alternative routes, including blood transfusions. The Aedes aegypti and Aedes albopictus mosquitoes are the main vectors for these viruses, and they are known to be highly effective at transmitting them. After feeding on a person infected with the virus, the mosquito can transmit the virus for the rest of its life. Therefore, it is important to consider the potential for virus transmission through blood transfusions, especially in areas where these viruses are endemic. The present study aimed to evaluate the risk of arbovirus transmission through blood transfusions in Colombia. A cross-sectional analytical study was conducted to compare the prevalences, incidence rates, and residual risks of infections by DENV, ZIKV, CHIKV, and co-infections in blood donors obtained during an endemic period (2021-2022, n=1,119) and a dengue outbreak (2018-2019, n=462). Additionally, the stability of DENV, ZIKV, and CHIKV in platelets and red blood cells stored under standard blood bank conditions was evaluated. The prevalences of arboviruses in blood donors were compared between an endemic period (2021-2022, n=1,119) and a dengue outbreak (2018-2019, n=462) in Colombia. The prevalences of arboviruses (DS positive for at least one study virus) were 25.1% and 5.3% in the outbreak and endemic period of dengue, respectively (p <0.05). In the outbreak, the highest prevalence was observed in DENV (14.5%), while in the endemic period, the highest prevalence was observed in CHIKV (3.3%). The incidence rates of arboviruses represented up to 104.4 and 6.4 positive donors per thousand donor-months in outbreaks and endemic periods of dengue, respectively, while the residual risk of arboviruses represented up to 24.3 and 1.5 positive donations per thousand donations in outbreaks and endemic periods of dengue, respectively. The stability of the viral genome of DENV and ZIKV was confirmed, as well as the infectious capacity of CHIKV in platelets stored under standard blood bank conditions for 6 days. These results suggest that arboviruses may pose a risk to transfusion safety in the country, especially during outbreaks of these viruses. However, further studies are needed not only to study the DS but also to study the recipients of these potentially infectious transfusions to understand in more detail the impact that arboviral infections can have on transfusion safety in the country. | |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.description.sponsorship | Cruz Roja Colombiana | |
dc.description.sponsorship | Red Nacional de Bancos de Sangre | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12838 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Busch MP, Linnen JM, Vinelli E, Sabino EC, Tobler LH, Hyland C, Lee TH, Kolk DP, Broulik AS, Collins CS, et al. Dengue viremia in blood donors from Honduras, Brazil, and Australia. Transfusion (Paris) (2008) 48:1355–1362. doi: 10.1111/J.1537-2995.2008.01772.X | |
dc.relation.references | Khetarpal N, Khanna I. DFaye O, Freire CCM, Iamarino A, Faye O, de Oliveira JVC, Diallo M, Zanotto PMA, Sall AA. Molecular Evolution of Zika Virus during Its Emergence in the 20th Century. PLoS Negl Trop Dis (2014) 8:36. doi: 10.1371/JOURNAL.PNTD.0002636engue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res (2016) 2016: doi: 10.1155/2016/6803098 | |
dc.relation.references | Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nature Reviews Microbiology 2010 8:7 (2010) 8:491–500. doi: 10.1038/nrmicro2368 | |
dc.relation.references | Grange L, Simon-Loriere E, Sakuntabhai A, Gresh L, Paul R, Harris E. Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front Immunol (2014) 5: doi: 10.3389/FIMMU.2014.00280/ABSTRACT | |
dc.relation.references | Petersen LR, Busch MP. Transfusion-transmitted arboviruses. Vox Sang (2010) 98:495–503. doi: 10.1111/J.1423-0410.2009.01286.X | |
dc.relation.references | Barreto FK de A, Alencar CH, Araújo FM de C, Oliveira R de MAB, Cavalcante JW, Lemos DRQ, Farias LABG, Boriz ILF, Medeiros LQ, Melo MNP, et al. Seroprevalence, spatial dispersion and factors associated with flavivirus and chikungunha infection in a risk area: a population-based seroprevalence study in Brazil. BMC Infect Dis (2020) 20:1–14. doi: 10.1186/S12879-020-05611-5/TABLES/4 | |
dc.relation.references | Pealer LN, Marfin AA, Petersen LR, Lanciotti RS, Page PL, Stramer SL, Stobierski MG, Signs K, Newman B, Kapoor H, et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med (2003) 349:1236–1245. doi: 10.1056/NEJMOA030969 | |
dc.relation.references | Biggerstaff BJ, Petersen LR. Estimated risk of West Nile virus transmission through blood transfusion during an epidemic in Queens, New York City. Transfusion (Paris) (2002) 42:1019–1026. doi: 10.1046/J.1537-2995.2002.00167.X | |
dc.relation.references | Stramer SL, Hollinger FB, Katz LM, Kleinman S, Metzel PS, Gregory KR, Dodd RY. Emerging infectious disease agents and their potential threat to transfusion safety. Transfusion (Paris) (2009) 49:1S-29S. doi: 10.1111/J.1537-2995.2009.02279.X | |
dc.relation.references | Morrison AC, Minnick SL, Rocha C, Forshey BM, Stoddard ST, Getis A, Focks DA, Russell KL, Olson JG, Blair PJ, et al. Epidemiology of Dengue Virus in Iquitos, Peru 1999 to 2005: Interepidemic and Epidemic Patterns of Transmission. PLoS Negl Trop Dis (2010) 4:e670. doi: 10.1371/JOURNAL.PNTD.0000670 | |
dc.relation.references | Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med (2009) 360:2536–2543. doi: 10.1056/NEJMOA0805715 | |
dc.relation.references | Mascarenhas M, Garasia S, Berthiaume P, Corrin T, Greig J, Ng V, Young I, Waddell L. A scoping review of published literature on chikungunya virus. PLoS One (2018) 13: doi: 10.1371/JOURNAL.PONE.0207554 | |
dc.relation.references | Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, Sahoo MK, Nuñez A, Balmaseda A, Harris E, et al. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. Clin Infect Dis (2016) 63:1584–1590. doi: 10.1093/CID/CIW589 | |
dc.relation.references | De La Cruz-Hernández SI, Flores-Aguilar H, González-Mateos S, López-Martinez I, Alpuche-Aranda C, Ludert JE, Del Angel RM. Determination of viremia and concentration of circulating nonstructural protein 1 in patients infected with dengue virus in Mexico. Am J Trop Med Hyg (2013) 88:446–454. doi: 10.4269/AJTMH.12-0023 | |
dc.relation.references | Busch MP, Linnen JM, Vinelli E, Sabino EC, Tobler LH, Hyland C, Lee TH, Kolk DP, Broulik AS, Collins CS, et al. Dengue viremia in blood donors from Honduras, Brazil, and Australia. Transfusion (Paris) (2008) 48:1355–1362. doi: 10.1111/J.1537-2995.2008.01772.X | |
dc.relation.references | Corman VM, Rasche A, Baronti C, Aldabbagh S, Cadar D, Reusken CBEM, Pas SD, Goorhuis A, Schinkel J, Molenkamp R, et al. Assay optimization for molecular detection of Zika virus. Bull World Health Organ (2016) 94:880. doi: 10.2471/BLT.16.175950 | |
dc.relation.references | Mansuy JM, Mengelle C, Pasquier C, Chapuy-Regaud S, Delobel P, Martin-Blondel G, Izopet J. Zika Virus Infection and Prolonged Viremia in Whole-Blood Specimens. Emerg Infect Dis (2017) 23:863–865. doi: 10.3201/EID2305.161631 | |
dc.relation.references | Riswari SF, Ma’roef CN, Djauhari H, Kosasih H, Perkasa A, Yudhaputri FA, Artika IM, Williams M, van der Ven A, Myint KS, et al. Study of viremic profile in febrile specimens of chikungunya in Bandung, Indonesia. J Clin Virol (2016) 74:61–65. doi: 10.1016/J.JCV.2015.11.017 | |
dc.relation.references | Simmons G, Brès V, Lu K, Liss NM, Brambilla DJ, Ryff KR, Bruhn R, Velez E, Ocampo D, Linnen JM, et al. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014. Emerg Infect Dis (2016) 22:1221–1228. doi: 10.3201/EID2207.160116 | |
dc.relation.references | Regan DM, Markowitz MA. Updated Recommendations for Zika, Dengue, and Chikungunya Viruses. (2016). 2–11 p. | |
dc.relation.references | Musso D, Nhan T, Robin E, Roche C, Bierlaire D, Zisou K, Shan Yan A, Cao-Lormeau VM, Broult J. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill (2014) 19: doi: 10.2807/1560-7917.ES2014.19.14.20761 | |
dc.relation.references | Motta IJF, Spencer BR, Cordeiro da Silva SG, Arruda MB, Dobbin JA, Gonzaga YBM, Arcuri IP, Tavares RCBS, Atta EH, Fernandes RFM, et al. Evidence for Transmission of Zika Virus by Platelet Transfusion. N Engl J Med (2016) 375:1101–1103. doi: 10.1056/NEJMC1607262 | |
dc.relation.references | Barjas-Castro ML, Angerami RN, Cunha MS, Suzuki A, Nogueira JS, Rocco IM, Maeda AY, Vasami FGS, Katz G, Boin IFSF, et al. Probable transfusion-transmitted Zika virus in Brazil. Transfusion (Paris) (2016) 56:1684–1688. doi: 10.1111/TRF.13681 | |
dc.relation.references | Saá P, Proctor M, Foster G, Krysztof D, Winton C, Linnen JM, Gao K, Brodsky JP, Limberger RJ, Dodd RY, et al. Investigational Testing for Zika Virus among U.S. Blood Donors. New England Journal of Medicine (2018) 378:1778–1788. doi: 10.1056/NEJMOA1714977/SUPPL_FILE/NEJMOA1714977_DISCLOSURES.PDF | |
dc.relation.references | Ashshi AM. The prevalence of dengue virus serotypes in asymptomatic blood donors reveals the emergence of serotype 4 in Saudi Arabia. Virol J (2017) 14: doi: 10.1186/S12985-017-0768-7 | |
dc.relation.references | Beau F, Lastère S, Mallet HP, Mauguin S, Broult J, Laperche S. Impact on blood safety of the last arboviruses outbreaks in French Polynesia (2012–2018). Transfusion Clinique et Biologique (2020) 27:4–9. doi: 10.1016/J.TRACLI.2019.12.001 | |
dc.relation.references | Tambyah PA, Koay ESC, Poon MLM, Lin RVTP, Ong BKC. Dengue hemorrhagic fever transmitted by blood transfusion. N Engl J Med (2008) 359:1526–1527. doi: 10.1056/NEJMC0708673 | |
dc.relation.references | Review of dengue fever cases in Hong Kong during 1998 to 2005 | HKMJ. https://www.hkmj.org/abstracts/v14n3/170.htm [Accessed December 3, 2023] | |
dc.relation.references | Magnus MM, Espósito DLA, Costa VA da, Melo PS de, Costa-Lima C, Fonseca BAL da, Addas-Carvalho M. Risk of Zika virus transmission by blood donations in Brazil. Hematol Transfus Cell Ther (2018) 40:250–254. doi: 10.1016/J.HTCT.2018.01.011 | |
dc.relation.references | Frieden TR, Harold Jaffe DW, Kent CK, Leahy MA, Martinroe JC, Spriggs SR, Starr TM, Doan QM, King PH, Roper WL, et al. Chikungunya Cases Identified Through Passive Surveillance and Household Investigations — Puerto Rico, May 5–August 12, 2014. Morbidity and Mortality Weekly Report (2014) 63:1121. doi: 10.1097/inf.0000000000000648 | |
dc.relation.references | Rico-Mendoza A, Porras-Ramírez A, Chang A, Encinales L, Lynch R. Co-circulation of dengue, chikungunya, and Zika viruses in Colombia from 2008 to 2018. Revista Panamericana de Salud Pública (2019) 43: doi: 10.26633/RPSP.2019.49 | |
dc.relation.references | Padilla JC, Lizarazo FE, Murillo OL, Mendigaña FA, Pachón E, Vera MJ. Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990-2016. Biomédica (2017) 37:27–40. doi: 10.7705/BIOMEDICA.V37I0.3769 | |
dc.relation.references | Castrillón JC, Castaño JC, Urcuqui S. Dengue en Colombia: diez años de evolución. Revista chilena de infectología (2015) 32:142–149. doi: 10.4067/S0716-10182015000300002 | |
dc.relation.references | Gutierrez-Barbosa H, Medina-Moreno S, Zapata JC, Chua J V. Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country. Trop Med Infect Dis (2020) 5: doi: 10.3390/TROPICALMED5040156 | |
dc.relation.references | Ospina ML, Tong VT, Gonzalez M, Valencia D, Mercado M, Gilboa SM, Rodriguez AJ, Tinker SC, Rico A, Winfield CM, et al. Zika Virus Disease and Pregnancy Outcomes in Colombia. N Engl J Med (2020) 383:537. doi: 10.1056/NEJMOA1911023 | |
dc.relation.references | Vidal OM, Acosta-Reyes J, Padilla J, Navarro-Lechuga E, Bravo E, Viasus D, Arcos-Burgos M, Vélez JI. Chikungunya outbreak (2015) in the Colombian Caribbean: Latent classes and gender differences in virus infection. PLoS Negl Trop Dis (2020) 14:1–18. doi: 10.1371/JOURNAL.PNTD.0008281 | |
dc.relation.references | Young PR, Ng LFP, Hall RA, Smith DW, Johansen CA. Arbovirus Infections. Manson’s Tropical Diseases: Twenty-Third Edition (2014)129-161.e3. doi: 10.1016/B978-0-7020-5101-2.00015-7 | |
dc.relation.references | Young PR. Arboviruses: A Family on the Move. Adv Exp Med Biol (2018) 1062:1–10. doi: 10.1007/978-981-10-8727-1_1 | |
dc.relation.references | Anez G, Chancey C, Grinev A, Rios M. Dengue virus and other arboviruses: a global view of risks. ISBT Sci Ser (2012) 7:274–282. doi: 10.1111/J.1751-2824.2012.01602.X | |
dc.relation.references | Figueiredo LTM. Large outbreaks of Chikungunya virus in Brazil reveal uncommon clinical features and fatalities. Rev Soc Bras Med Trop (2017) 50:583–584. doi: 10.1590/0037-8682-0397-2017 | |
dc.relation.references | Donalisio MR, Freitas ARR, Zuben APB Von. Arboviruses emerging in Brazil: challenges for clinic and implications for public health. Rev Saude Publica (2017) 51: doi: 10.1590/S1518-8787.2017051006889 | |
dc.relation.references | Torres JR, Orduna TA, Piña-Pozas M, Vázquez-Vega D, Sarti E. Epidemiological Characteristics of Dengue Disease in Latin America and in the Caribbean: A Systematic Review of the Literature. J Trop Med (2017) 2017: doi: 10.1155/2017/8045435 | |
dc.relation.references | Slavov SN, Otaguiri KK, Kashima S, Covas DT. Overview of Zika virus (ZIKV) infection in regards to the Brazilian epidemic. Braz J Med Biol Res (2016) 49: doi: 10.1590/1414-431X20165420 | |
dc.relation.references | Jansen CC, Beebe NW. The dengue vector Aedes aegypti: what comes next. Microbes Infect (2010) 12:272–279. doi: 10.1016/J.MICINF.2009.12.011 | |
dc.relation.references | Rosen L, Shroyer DA, Tesh RB, Freier JE, Lien JC. Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am J Trop Med Hyg (1983) 32:1108–1119. doi: 10.4269/AJTMH.1983.32.1108 | |
dc.relation.references | Thangamani S, Huang J, Hart CE, Guzman H, Tesh RB. Vertical Transmission of Zika Virus in Aedes aegypti Mosquitoes. Am J Trop Med Hyg (2016) 95:1169–1173. doi: 10.4269/AJTMH.16-0448 | |
dc.relation.references | Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect Dis (2016) 16:522–523. doi: 10.1016/S1473-3099(16)00176-6 | |
dc.relation.references | Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, Hervé JP, Leroy E, Simard F. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector Borne Zoonotic Dis (2010) 10:259–266. doi: 10.1089/VBZ.2009.0005 | |
dc.relation.references | Mayer S V., Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop (2017) 166:155. doi: 10.1016/J.ACTATROPICA.2016.11.020 | |
dc.relation.references | Chang HH, Huber RG, Bond PJ, Grad YH, Camerini D, Maurer-Stroh S, Lipsitch M. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses. Bull World Health Organ (2017) 95:517. doi: 10.2471/BLT.16.182105 | |
dc.relation.references | Thurner C, Witwer C, Hofacker IL, Stadler PF. Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol (2004) 85:1113–1124. doi: 10.1099/VIR.0.19462-0 | |
dc.relation.references | Coldbeck-Shackley RC, Eyre NS, Beard MR. The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response. Vaccines (Basel) (2020) 8:1–21. doi: 10.3390/VACCINES8030530 | |
dc.relation.references | Guzman MG, Harris E. Dengue. Lancet (2015) 385:453–465. doi: 10.1016/S0140-6736(14)60572-9 | |
dc.relation.references | Hasan S, Jamdar SF, Alalowi M, Al Ageel Al Beaiji SM. Dengue virus: A global human threat: Review of literature. J Int Soc Prev Community Dent (2016) 6:1. doi: 10.4103/2231-0762.175416 | |
dc.relation.references | Salud OM de LE para I y C en ET. Dengue-Guias para el tratamiento, prevención y control. Journal of Psychosomatic Obstetrics and Gynecology (2002) 23:109–115. https://apps.who.int/iris/bitstream/handle/10665/44504/9789995479213_spa.pdf [Accessed May 11, 2022] | |
dc.relation.references | Gupta V, Yadav TP, Pandey RM, Singh A, Gupta M, Kanaujiya P, Sharma A, Dewan V. Risk factors of dengue shock syndrome in children. J Trop Pediatr (2011) 57:451–456. doi: 10.1093/tropej/fmr020 | |
dc.relation.references | Modhiran N, Kalayanarooj S, Ubol S. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. PLoS Negl Trop Dis (2010) 4:1–12. doi: 10.1371/JOURNAL.PNTD.0000924 | |
dc.relation.references | Kou Z, Lim JYH, Beltramello M, Quinn M, Chen H, Liu S ng, Martnez-Sobrido L, Diamond MS, Schlesinger JJ, de Silva A, et al. Human antibodies against dengue enhance dengue viral infectivity without suppressing type I interferon secretion in primary human monocytes. Virology (2011) 410:240–247. doi: 10.1016/J.VIROL.2010.11.007 | |
dc.relation.references | Song BH, Yun SI, Woolley M, Lee YM. Zika virus: History, epidemiology, transmission, and clinical presentation. J Neuroimmunol (2017) 308:50–64. doi: 10.1016/J.JNEUROIM.2017.03.001 | |
dc.relation.references | Sirohi D, Kuhn RJ. Zika Virus Structure, Maturation, and Receptors. J Infect Dis (2017) 216:S935. doi: 10.1093/INFDIS/JIX515 | |
dc.relation.references | Lazear HM, Diamond MS. Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere. J Virol (2016) 90:4864–4875. doi: 10.1128/JVI.00252-16 | |
dc.relation.references | Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, Rabello RS, Valderramos SG, Halai U-A, Salles TS, et al. Zika Virus Infection in Pregnant Women in Rio de Janeiro. New England Journal of Medicine (2016) 375:2321–2334. doi: 10.1056/NEJMOA1602412/SUPPL_FILE/NEJMOA1602412_DISCLOSURES.PDF | |
dc.relation.references | Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. The Lancet (2016) 387:1531–1539. doi: 10.1016/S0140-6736(16)00562-6/ATTACHMENT/B981E8B6-F663-4C9C-B3D3-489FCD33A843/MMC1.PDF | |
dc.relation.references | Lowe R, Barcellos C, Brasil P, Cruz OG, Honório NA, Kuper H, Carvalho MS. The Zika Virus Epidemic in Brazil: From Discovery to Future Implications. Int J Environ Res Public Health (2018) 15:96. doi: 10.3390/IJERPH15010096 | |
dc.relation.references | Priyamvada L, Hudson W, Ahmed R, Wrammert J. Humoral cross-reactivity between Zika and dengue viruses: implications for protection and pathology. Emerg Microbes Infect (2017) 6: doi: 10.1038/EMI.2017.42 | |
dc.relation.references | Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ, Gorman MJ, Govero J, Nelson CA, Pierson TC, Diamond MS, et al. Structural Basis of Zika Virus-Specific Antibody Protection. Cell (2016) 166:1016–1027. doi: 10.1016/J.CELL.2016.07.020 | |
dc.relation.references | Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau VM, Malasit P, Rey FA, et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nature Immunology 2016 17:9 (2016) 17:1102–1108. doi: 10.1038/ni.3515 | |
dc.relation.references | Liu Y, Yuan Y, Zhang L. Innate immune evasion by alphaviruses. Front Immunol (2022) 13: doi: 10.3389/FIMMU.2022.1005586 | |
dc.relation.references | Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev (1994) 58:491–562. doi: 10.1128/MR.58.3.491-562.1994 | |
dc.relation.references | Moizéis RNC, Fernandes TAA de M, Guedes PM da M, Pereira HWB, Lanza DCF, Azevedo JWV de, Galvão JM de A, Fernandes JV. Chikungunya fever: a threat to global public health. Pathog Glob Health (2018) 112:182–194. doi: 10.1080/20477724.2018.1478777 | |
dc.relation.references | Law YS, Utt A, Tan YB, Zheng J, Wang S, Chen MW, Griffin PR, Merits A, Luo D. Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase. Proc Natl Acad Sci U S A (2019) 116:9558–9567. doi: 10.1073/PNAS.1900656116 | |
dc.relation.references | Liu Y, Yuan Y, Zhang L. Innate immune evasion by alphaviruses. Front Immunol (2022) 13: doi: 10.3389/FIMMU.2022.1005586 | |
dc.relation.references | Ahola T, McInerney G, Merits A. Alphavirus RNA replication in vertebrate cells. Adv Virus Res (2021) 111:111–156. doi: 10.1016/BS.AIVIR.2021.07.003 | |
dc.relation.references | Ramsey J, Mukhopadhyay S. Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins. Viruses (2017) 9: doi: 10.3390/V9080228 | |
dc.relation.references | Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med Hyg (1955) 49:28–32. doi: 10.1016/0035-9203(55)90080-8 | |
dc.relation.references | Ayu SM, Lai LR, Chan YF, Hatim A, Hairi NN, Ayob A, Sam IC. Seroprevalence survey of Chikungunya virus in Bagan Panchor, Malaysia. Am J Trop Med Hyg (2010) 83:1245–1248. doi: 10.4269/AJTMH.2010.10-0279 | |
dc.relation.references | Dupuis-Maguiraga L, Noret M, Brun S, Le Grand R, Gras G, Roques P. Chikungunya disease: infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl Trop Dis (2012) 6: doi: 10.1371/JOURNAL.PNTD.0001446 | |
dc.relation.references | AbuBakar S, Sam IC, Wong PF, MatRahim NA, Hooi PS, Roslan N. Reemergence of endemic Chikungunya, Malaysia. Emerg Infect Dis (2007) 13:147–149. doi: 10.3201/eid1301.060617 | |
dc.relation.references | Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest (2017) 127:737. doi: 10.1172/JCI84417 | |
dc.relation.references | Rodriguez-Morales AJ, Cardona-Ospina JA, Villamil-Gómez W, Paniz-Mondolfi AE. How many patients with post-chikungunya chronic inflammatory rheumatism can we expect in the new endemic areas of Latin America? Rheumatol Int (2015) 35:2091–2094. doi: 10.1007/S00296-015-3302-5 | |
dc.relation.references | Javelle E, Ribera A, Degasne I, Gaüzère BA, Marimoutou C, Simon F. Specific management of post-chikungunya rheumatic disorders: a retrospective study of 159 cases in Reunion Island from 2006-2012. PLoS Negl Trop Dis (2015) 9: doi: 10.1371/JOURNAL.PNTD.0003603 | |
dc.relation.references | Labadie K, Larcher T, Joubert C, Mannioui A, Delache B, Brochard P, Guigand L, Dubreil L, Lebon P, Verrier B, et al. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest (2010) 120:894–906. doi: 10.1172/JCI40104 | |
dc.relation.references | Lum FM, Couderc T, Chia BS, Ong RY, Her Z, Chow A, Leo YS, Kam YW, Rénia L, Lecuit M, et al. Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci Rep (2018) 8: doi: 10.1038/S41598-018-20305-4 | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, dengue, Colombia 2023, periodo epidemiológico XI. https://www.ins.gov.co/Paginas/Inicio.aspx (2023) | |
dc.relation.references | GW D, SF K, AJ H. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg (1952) 46:509–520. doi: 10.1016/0035-9203(52)90042-4 | |
dc.relation.references | MacNamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg (1954) 48:139–145. doi: 10.1016/0035-9203(54)90006-1 | |
dc.relation.references | Hayes EB. Zika virus outside Africa. Emerg Infect Dis (2009) 15:1347–1350. doi: 10.3201/EID1509.090442 | |
dc.relation.references | Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis (2008) 14:1232–1239. doi: 10.3201/EID1408.080287 | |
dc.relation.references | Cao-Lormeau VM, Musso D. Emerging arboviruses in the Pacific. Lancet (2014) 384:1571–1572. doi: 10.1016/S0140-6736(14)61977-2 | |
dc.relation.references | Musso D, Nilles EJ, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect (2014) 20:O595–O596. doi: 10.1111/1469-0691.12707 | |
dc.relation.references | Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastãre S, Valour F, Baudouin L, Mallet HP, Musso D, Ghawche F. Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro Surveill (2014) 19: doi: 10.2807/1560-7917.ES2014.19.9.20720 | |
dc.relation.references | Dupont-Rouzeyrol M, O’Connor O, Calvez E, Daures M, John M, Grangeon JP, Gourinat AC. Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014. Emerg Infect Dis (2015) 21:381–382. doi: 10.3201/EID2102.141553 | |
dc.relation.references | Roth A, Mercier A, Lepers C, Hoy D, Duituturaga S, Benyon E, Guillaumot L, Souarès Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections - an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012-2014. Euro Surveill (2014) 19: doi: 10.2807/1560-7917.ES2014.19.41.20929 | |
dc.relation.references | Pyke AT, Daly MT, Cameron JN, Moore PR, Taylor CT, Hewitson GR, Humphreys JL, Gair R. Imported zika virus infection from the cook islands into australia, 2014. PLoS Curr (2014) 6: doi: 10.1371/CURRENTS.OUTBREAKS.4635A54DBFFBA2156FB2FD76DC49F65E | |
dc.relation.references | Zammarchi L, Stella G, Mantella A, Bartolozzi D, Tappe D, Günther S, Oestereich L, Cadar D, Muñoz-Fontela C, Bartoloni A, et al. Zika virus infections imported to Italy: clinical, immunological and virological findings, and public health implications. J Clin Virol (2015) 63:32–35. doi: 10.1016/J.JCV.2014.12.005 | |
dc.relation.references | Kutsuna S, Kato Y, Takasaki T, Moi ML, Kotaki A, Uemura H, Matono T, Fujiya Y, Mawatari M, Takeshita N, et al. Two cases of Zika fever imported from French Polynesia to Japan, December 2013 to January 2014 [corrected]. Euro Surveill (2014) 19: doi: 10.2807/1560-7917.ES2014.19.4.20683 | |
dc.relation.references | Campos GS, Bandeira AC, Sardi SI. Zika Virus Outbreak, Bahia, Brazil. Emerg Infect Dis (2015) 21:1885–1886. doi: 10.3201/EID2110.150847 | |
dc.relation.references | Hennessey M, Fischer M, Staples JE. Zika Virus Spreads to New Areas - Region of the Americas, May 2015-January 2016. MMWR Morb Mortal Wkly Rep (2016) 65:55–58. doi: 10.15585/MMWR.MM6503E1 | |
dc.relation.references | Victora CG, Schuler-Faccini L, Matijasevich A, Ribeiro E, Pessoa A, Barros FC. Microcephaly in Brazil: how to interpret reported numbers? Lancet (2016) 387:621–624. doi: 10.1016/S0140-6736(16)00273-7 | |
dc.relation.references | Pan American Health Organization and World Health Organization. Zika-Epidemiological Update. (2016) | |
dc.relation.references | Instituo Nacional de Salud. Boletín epidemiológico semanal, número 30 de 2016. https://www.ins.gov.co/Paginas/Inicio.aspx (2016) | |
dc.relation.references | Cuevas EL, Tong VT, Rozo N, Valencia D, Pacheco O, Gilboa SM, Mercado M, Renquist CM, González M, Ailes EC, et al. Preliminary Report of Microcephaly Potentially Associated with Zika Virus Infection During Pregnancy - Colombia, January-November 2016. MMWR Morb Mortal Wkly Rep (2016) 65:1409–1413. doi: 10.15585/MMWR.MM6549E1 | |
dc.relation.references | Instituto Nacional de Salud. Informe evento, Zika, Colombia 2023, periodo epidemiológico IX. https://www.ins.gov.co/Paginas/Inicio.aspx | |
dc.relation.references | Ross RW. The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg (Lond) (1956) 54:177–191. doi: 10.1017/S0022172400044442 | |
dc.relation.references | de Lima Cavalcanti TYV, Pereira MR, de Paula SO, Franca RF de O. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses (2022) 14: doi: 10.3390/V14050969 | |
dc.relation.references | Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli A, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet (2007) 370:1840–1846. doi: 10.1016/S0140-6736(07)61779-6 | |
dc.relation.references | Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, De Lamballerie X. Chikungunya in the Americas. Lancet (2014) 383:514. doi: 10.1016/S0140-6736(14)60185-9 | |
dc.relation.references | Mehta R, Soares CN, Medialdea-Carrera R, Ellul M, da Silva MTT, Rosala-Hallas A, Jardim MR, Burnside G, Pamplona L, Bhojak M, et al. The spectrum of neurological disease associated with Zika and chikungunya viruses in adults in Rio de Janeiro, Brazil: A case series. PLoS Negl Trop Dis (2018) 12: doi: 10.1371/JOURNAL.PNTD.0006212 | |
dc.relation.references | Castellanos JE, Jaimes N, Coronel-Ruiz C, Rojas JP, Mejía LF, Villarreal VH, Maya LE, Claros LM, Orjuela C, Calvo E, et al. Dengue-chikungunya coinfection outbreak in children from Cali, Colombia in 2018-2019. Int J Infect Dis (2021) 102:97–102. doi: 10.1016/J.IJID.2020.10.022 | |
dc.relation.references | Vista de Estimación del subregistro de casos de enfermedad por el virus del chikungunya en Girardot, Colombia, noviembre de 2014 a mayo de 2015. https://revistabiomedica.org/index.php/biomedica/article/view/3370/3765 [Accessed October 31, 2023] | |
dc.relation.references | Franklin IM. Blood transfusion safety: a new philosophy. Transfus Med (2012) 22:377–382. doi: 10.1111/J.1365-3148.2012.01200.X | |
dc.relation.references | Instituo Nacional de Salud. Red Nacional de Sangre, Boletín Informativo No.2 “SALUD TRNASFUSIONAL.” https://www.ins.gov.co/Paginas/Inicio.aspx (2010) | |
dc.relation.references | Association for the Advancement of Blood and Biotherapies. Donor Safety, Screening and Testing . https://www.aabb.org/home | |
dc.relation.references | Medicines Agency E. Committee for Medicinal Products for Human Use (CHMP) Guideline on epidemiological data on blood transmissible infections. (2016) www.ema.europa.eu/contact [Accessed May 11, 2022] | |
dc.relation.references | Association for the Advancement of Blood & Biotherapies. DONOR SAFETY, SCREENING AND TESTING. https://www.aabb.org/ | |
dc.relation.references | Levi JE, Nishiya A, Félix AC, Salles NA, Sampaio LR, Hangai F, Sabino EC, Mendrone A. Real-time symptomatic case of transfusion-transmitted dengue. Transfusion (Paris) (2015) 55:961–964. doi: 10.1111/TRF.12944 | |
dc.relation.references | Oh HB, Muthu V, Daruwalla ZJ, Lee SY, Koay ES, Tambyah PA. Bitten by a bug or a bag? Transfusion-transmitted dengue: a rare complication in the bleeding surgical patient. Transfusion (Paris) (2015) 55:1655–1661. doi: 10.1111/TRF.13054 | |
dc.relation.references | Appassakij H, Promwong C, Rujirojindakul P, Khuntikij P, Silpapojakul K. Risk of transfusion-transmitted chikungunya infection and efficacy of blood safety implementation measures: experience from the 2009 epidemic in Songkhla Province, Thailand. Transfusion (Paris) (2016) 56:2100–2107. doi: 10.1111/TRF.13675 | |
dc.relation.references | Liao Q, Shan Z, Wang M, Huang J, Xu R, Huang K, Tang X, Zhang W, Nelson K, Li C, et al. An evaluation of asymptomatic Dengue infections among blood donors during the 2014 Dengue outbreak in Guangzhou, China. J Med Virol (2017) 89:2037–2040. doi: 10.1002/JMV.24883 | |
dc.relation.references | Zeng P, Liao Q, Gao Z, He M, Rong X. Sero-prevalence and viremia status of dengue virus among asymptomatic blood donors post epidemic outbreak in Chinese Guangzhou in 2015. Transfus Med (2018) 28:468–469. doi: 10.1111/TME.12551 | |
dc.relation.references | Ho TS, Lin CF, Liu CC, Yeh TM, Anderson R, Lin YS. Lessons learned from dengue: Focus on Taiwan. Clinical Insights: Dengue: Transmission, Diagnosis & Surveillance (2014)49–64. doi: 10.2217/EBO.14.7 | |
dc.relation.references | Ranjan P, Natarajan V, Bajpai M, Gupta E. High Seroprevalence of Dengue Virus Infection in Blood Donors From Delhi: A Single Centre Study. J Clin Diagn Res (2016) 10:DC08-DC10. doi: 10.7860/JCDR/2016/21262.8711 | |
dc.relation.references | Busch MP, Sabino EC, Brambilla D, Lopes ME, Capuani L, Chowdhury D, McClure C, Linnen JM, Prince H, Simmons G, et al. Duration of Dengue Viremia in Blood Donors and Relationships Between Donor Viremia, Infection Incidence and Clinical Case Reports During a Large Epidemic. J Infect Dis (2016) 214:49–54. doi: 10.1093/INFDIS/JIW122 | |
dc.relation.references | Saa P, Chiu C, Grimm K, Yu G, Benjamin RJ, Corash L, Stramer SL. Acute Zika virus infection in an asymptomatic blood donor at the onset of the Puerto Rico epidemic. Transfusion (Paris) (2019) 59:3164–3170. doi: 10.1111/TRF.15484 | |
dc.relation.references | Stramer SL, Stanley J, Nguyen ML, Bertuzis R, Huynh N, Duncan JR, Albrecht P, Pate LL, Galel SA. Duplex nucleic acid test for the detection of chikungunya and dengue RNA viruses in blood donations. Transfusion (Paris) (2019) 59:1283–1290. doi: 10.1111/TRF.15128 | |
dc.relation.references | Beau F, Lastère S, Mallet HP, Mauguin S, Broult J, Laperche S. Impact on blood safety of the last arboviruses outbreaks in French Polynesia (2012-2018). Transfus Clin Biol (2020) 27:4–9. doi: 10.1016/J.TRACLI.2019.12.001 | |
dc.relation.references | Zheng X, Zeng J, Xu X, Liu Y, Heng L, Wen X, Li S, Xu M, Wu S, Chen Y, et al. A preliminary survey of Zika virus infection by nucleic acid test in the volunteer blood donor samples in Shenzhen China. J Med Virol (2020) 92:1326–1329. doi: 10.1002/JMV.25654 | |
dc.relation.references | Slavov SN, Gonzaga FAC, Pimentel BMS, Ramos D do AR, de Araújo WN, Covas DT, Kashima S, Haddad R. Zika virus RNA surveillance in blood donors in the Federal District of Brazil during the 2016 outbreak. Hematol Transfus Cell Ther (2020) 42:394–396. doi: 10.1016/J.HTCT.2019.08.006 | |
dc.relation.references | Slavov SN, Hespanhol MR, Rodrigues ES, Levi JE, Ubiali EMA, Covas DT, Kashima S. Zika virus RNA detection in asymptomatic blood donors during an outbreak in the northeast region of São Paulo State, Brazil, 2016. Transfusion (Paris) (2017) 57:2897–2901. doi: 10.1111/TRF.14322 | |
dc.relation.references | Fedyk CG, Shahin GM, Hill R, Cap AP. Screening for Zika virus in US armed services blood program donors: An opportunity to compare emerging infectious disease risk between the general US population and military donors. Transfusion (Paris) (2023) 63 Suppl 3:S249–S255. doi: 10.1111/TRF.17375 | |
dc.relation.references | Chiu CY, Bres V, Yu G, Krysztof D, Naccache SN, Lee D, Pfeil J, Linnen JM, Stramer SL. Genomic Assays for Identification of Chikungunya Virus in Blood Donors, Puerto Rico, 2014. Emerg Infect Dis (2015) 21:1409–1413. doi: 10.3201/EID2108.150458 | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, dengue, Colombia 2021, periodo epidemiológico XIII. https://www.ins.gov.co/Paginas/Inicio.aspx (2021) | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, dengue, Colombia 2022, periodo epidemiológico XIII. https://www.ins.gov.co/Paginas/Inicio.aspx (2022) | |
dc.relation.references | Calvo EP, Sánchez-Quete F, Durán S, Sandoval I, Castellanos JE. Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients. Acta Trop (2016) 163:32–37. doi: 10.1016/J.ACTATROPICA.2016.07.021 | |
dc.relation.references | Ruiz-López F, González-Mazo A, Vélez-Mira A, Gómez GF, Zuleta L, Uribe S, Vélez-Bernal ID. Presence of Aedes (Stegomyia) aegypti (Linnaeus, 1762) and its natural infection with dengue virus at unrecorded heights in Colombia. Biomedica (2016) 36:303–308. doi: 10.7705/BIOMEDICA.V36I2.3301 | |
dc.relation.references | Sahai H, Khurshid A. Statistics in epidemiology : methods, techniques, and applications. Boca Raton: CRC Press. (1996). | |
dc.relation.references | Gimenez-Richarte A, De Salazar MO, Arbona C, Gimenez-Richarte MP, Collado M, Fernandez PL, Quiles F, Clavijo C, Marco P, Ramos-Rincon JM. Prevalence of Chikungunya, Dengue and Zika viruses in blood donors: a systematic literature review and meta-analysis. Blood Transfusion (2022) 20:267. doi: 10.2450/2021.0106-21 | |
dc.relation.references | Slavov SN, Hespanhol MR, Ferreira AR, Rodrigues ES, Covas DT, Kashima S. Silent dengue virus circulation among asymptomatic blood donors from a hyperendemic Brazilian region. Transfus Med (2018) 28:465–467. doi: 10.1111/TME.12521 | |
dc.relation.references | Slavov SN, Cilião-Alves DC, Gonzaga FAC, Moura DR, de Moura ACAM, de Noronha LAG, Cassemiro ÉM, Pimentel BMS, Costa FJQ, Silva GA da, et al. Dengue seroprevalence among asymptomatic blood donors during an epidemic outbreak in Central-West Brazil. PLoS One (2019) 14: doi: 10.1371/JOURNAL.PONE.0213793 | |
dc.relation.references | Sharma R, Costa Santos L, da Silva RA, Gonçalves C V., de Melo Calado S, Santos DP, de Andrade de Melo JP, de Cássia Pontello Rampazzo R, Requião L, Krieger MA, et al. Surveillance of donated blood during the 2016 arbovirus outbreak in Brazil. J Med Virol (2018) 90:1406–1410. doi: 10.1002/JMV.25193 | |
dc.relation.references | Schmid P, Tong M, Conrad A, McHutchison J, Blatt LM. Analysis of the viability of freezer stored serum samples for hepatitis C virus RNA analysis by the SUPERQUANT® method: results of a 16 year retrospective study. J Virol Methods (1999) 82:201–206. doi: 10.1016/S0166-0934(99)00094-4 | |
dc.relation.references | Halfon P, Khiri H, Gerolami V, Bourliere M, Feryn JM, Reynier P, Gauthier A, Cartouzou G. Impact of various handling and storage conditions on quantitative detection of hepatitis C virus RNA. J Hepatol (1996) 25:307–311. doi: 10.1016/S0168-8278(96)80116-4 | |
dc.relation.references | Sharifdini M, Mirhendi H, Ashrafi K, Hosseini M, Mohebali M, Khodadadi H, Kia EB. Comparison of Nested Polymerase Chain Reaction and Real-Time Polymerase Chain Reaction with Parasitological Methods for Detection of Strongyloides stercoralis in Human Fecal Samples. Am J Trop Med Hyg (2015) 93:1285. doi: 10.4269/AJTMH.15-0309 | |
dc.relation.references | Comparison of the Specificity and Sensitivity of PCR, Nested PCR, and Real-Time PCR for the Diagnosis of Histomoniasis on JSTOR. https://www.jstor.org/stable/4099101 [Accessed October 25, 2023] | |
dc.relation.references | Manuel CS, Suther C, Moore MD, Jaykus LA. Comparison of a one-step real-time RT-PCR and a nested real-time RT-PCR for a genogroup II norovirus reveals differences in sensitivity depending upon assay design and visualization. PLoS One (2021) 16:e0248581. doi: 10.1371/JOURNAL.PONE.0248581 | |
dc.relation.references | Jalal S, Hwang SY, Kim CM, Kim DM, Yun NR, Seo JW, Young Kim D, Jung SI, Kim UJ, Kim SE, et al. Comparison of RT-PCR, RT-nested PCRs, and real-time PCR for diagnosis of severe fever with thrombocytopenia syndrome: a prospective study. Sci Rep (2021) 11:1–8. doi: 10.1038/s41598-021-96066-4 | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, chikungunya, Colombia 2021, periodo epidemiológico XIII. https://www.ins.gov.co/Paginas/Inicio.aspx (2021) | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, chikungunya, Colombia 2022, periodo epidemiológico XIII. https://www.ins.gov.co/Paginas/Inicio.aspx (2022) | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, Zika, Colombia 2021, periodo epidemiológico XIII. https://www.ins.gov.co/Paginas/Inicio.aspx (2021) | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, Zika, Colombia 2022, periodo epidemiológico XIII. https://www.ins.gov.co/Paginas/Inicio.aspx (2022) | |
dc.relation.references | Martinez JD, Garza JAC de la, Cuellar-Barboza A. Going Viral 2019: Zika, Chikungunya, and Dengue. Dermatol Clin (2019) 37:95–105. doi: 10.1016/J.DET.2018.07.008 | |
dc.relation.references | Gurevitz JM, Antman JG, Laneri K, Morales JM. Temperature, traveling, slums, and housing drive dengue transmission in a non-endemic metropolis. PLoS Negl Trop Dis (2021) 15: doi: 10.1371/JOURNAL.PNTD.0009465 | |
dc.relation.references | Rueda JC, Santos AM, Angarita JI, Giraldo RB, Saldarriaga EL, Ballesteros Muñoz JG, Forero E, Valencia H, Somoza F, Martin-Arsanios D, et al. Demographic and clinical characteristics of chikungunya patients from six Colombian cities, 2014–2015. Emerg Microbes Infect (2019) 8:1490. doi: 10.1080/22221751.2019.1678366 | |
dc.relation.references | Cáceres M BA. ANÁLISIS DE LA PREVALENCIA DE DENGUE, ZIKA Y CHIKUNGUNYA EN DONANTES PROVENIENTES DE LA RED NACIONAL DE BANCOS DE SANGRE DE LA CRUZ ROJA COLOMBIANA. Bogotá: Universidad Colegio Mayor de Cundinamarca . (2020). | |
dc.relation.references | Simmons G, Brès V, Lu K, Liss NM, Brambilla DJ, Ryff KR, Bruhn R, Velez E, Ocampo D, Linnen JM, et al. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014. Emerg Infect Dis (2016) 22:1221–1228. doi: 10.3201/EID2207.160116 | |
dc.relation.references | Chevalier MS, Biggerstaff BJ, Basavaraju S V., Bañez Ocfemia MC, Alsina JO, Climent-Peris C, Moseley RR, Chung KW, Rivera-García B, Bello-Pagán M, et al. Use of Blood Donor Screening Data to Estimate Zika Virus Incidence, Puerto Rico, April-August 2016. Emerg Infect Dis (2017) 23:790–795. doi: 10.3201/EID2305.161873 | |
dc.relation.references | Busch MP, Sabino EC, Brambilla D, Lopes ME, Capuani L, Chowdhury D, McClure C, Linnen JM, Prince H, Simmons G, et al. Duration of Dengue Viremia in Blood Donors and Relationships Between Donor Viremia, Infection Incidence and Clinical Case Reports During a Large Epidemic. J Infect Dis (2016) 214:49–54. doi: 10.1093/INFDIS/JIW122 | |
dc.relation.references | Sabino E, Loureiro P, Lopes M, Capuani L, Oliveira C, Oliveira L, Linnen J, Lee T, Prince H, McClure C, et al. Dengue RNA Among Blood Donors and Recipients During Large Epidemics of Denv-4 in Rio de Janeiro and Recife, Brazil. Vox Sang (2013) 105:39–39. https://www.rti.org/publication/dengue-rna-among-blood-donors-and-recipients-during-large-epidemics-denv-4-rio-de-0 [Accessed August 19, 2023] | |
dc.relation.references | Mohammed H, Linnen JM, Muhoz-Jorddn JL, Tomashek K, Foster G, Broulik AS, Petersen L, Stramer SL. Dengue virus in blood donations, Puerto Rico, 2005. Transfusion (Paris) (2008) 48:1348–1354. doi: 10.1111/J.1537-2995.2008.01771.X | |
dc.relation.references | Dias LL, Amarilla AA, Poloni TR, Covas DT, Aquino VH, Figueiredo LTM. Detection of dengue virus in sera of Brazilian blood donors. Transfusion (Paris) (2012) 52:1667–1671. doi: 10.1111/J.1537-2995.2012.03729.X | |
dc.relation.references | Tsai JJ, Lin PC, Tsai CY, Wang YH, Liu LT. Low frequency of asymptomatic dengue virus-infected donors in blood donor centers during the largest dengue outbreak in Taiwan. PLoS One (2018) 13: doi: 10.1371/JOURNAL.PONE.0205248 | |
dc.relation.references | Escoval, et al. Dengue outbreak in Madeira Island (Portugal). Blood safety measures. Vox Sang (2013) 105:192–193. | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, dengue, Colombia 2019 . https://www.ins.gov.co/Paginas/Inicio.aspx (2019) | |
dc.relation.references | Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis (2018) 18:1–12. doi: 10.1186/S12879-018-2976-1/TABLES/3 | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, Zika y chikungunya, Colombia 2019 . https://www.ins.gov.co/Paginas/Inicio.aspx (2019) | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, Zika, Colombia 2020. https://www.ins.gov.co/Paginas/Inicio.aspx (2020) | |
dc.relation.references | Instituo Nacional de Salud. Informe evento, chikungunya, Colombia 2020 . https://www.ins.gov.co/Paginas/Inicio.aspx (2020) | |
dc.relation.references | Frota CC, Correia FGS, Alves Vasconcelos LR, de Sousa PRC, Ferreira ML da S, Saraiva SP, Mota Ferreira R, Romcy KAM, Pinheiro RF, de Oliveira RTG, et al. Positivity of dengue, chikungunya, and Zika infections in women in Northeast Brazil post-Zika epidemic. Pathog Glob Health (2023) 117:485–492. doi: 10.1080/20477724.2022.2142187 | |
dc.relation.references | More MDPM, Castañeda C, Suyón M. [New altitudinal registration of Aedes aegypti in the region of Piura, Peru]. Rev Peru Med Exp Salud Publica (2018) 35:536–537. doi: 10.17843/RPMESP.2018.353.3791 | |
dc.relation.references | Mercier A, Obadia T, Carraretto D, Velo E, Gabiane G, Bino S, Vazeille M, Gasperi G, Dauga C, Malacrida AR, et al. Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus. Sci Rep (2022) 12:1–13. doi: 10.1038/s41598-022-10977-4 | |
dc.relation.references | Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis (2008) 14:1232–1239. doi: 10.3201/EID1408.080287 | |
dc.relation.references | Pastorino B, Bessaud M, Grandadam M, Murri S, Tolou HJ, Peyrefitte CN. Development of a TaqMan RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J Virol Methods (2005) 124:65–71. doi: 10.1016/J.JVIROMET.2004.11.002 | |
dc.relation.references | Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J, Medina JF, Medina F, Colón C, Margolis H, Muñoz-Jordán JL. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis (2013) 7: doi: 10.1371/JOURNAL.PNTD.0002311 | |
dc.relation.references | Instituo de Medicina Tropical “Pedro Kourí.” Técnicas de laboratorio para el diagnóstico y la caracterización de los virus del dengue . Habana, Cuba. (2011). 30–34 p. | |
dc.relation.references | Simmons G, Brès V, Lu K, Liss NM, Brambilla DJ, Ryff KR, Bruhn R, Velez E, Ocampo D, Linnen JM, et al. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014. Emerg Infect Dis (2016) 22:1221. doi: 10.3201/EID2207.160116 | |
dc.relation.references | Liu R, Wang X, Ma Y, Wu J, Mao C, Yuan L, Lu J. Prevalence of Zika virus in blood donations: a systematic review and meta-analysis. BMC Infect Dis (2019) 19: doi: 10.1186/S12879-019-4226-6 | |
dc.relation.references | dos Anjos Souza AB, Thomazelli V, Figueiredo LTM. Chikungunya and Mayaro infective viruses in components of blood. Transfus Med (2022) 32:252–255. doi: 10.1111/TME.12855 | |
dc.relation.references | Roth H, Schneider L, Eberle R, Lausen J, Modlich U, Blümel J, Baylis SA. Zika virus infection studies with CD34+ hematopoietic and megakaryocyte-erythroid progenitors, red blood cells and platelets. Transfusion (Paris) (2020) 60:561–574. doi: 10.1111/TRF.15692 | |
dc.relation.references | Sutherland MR, Simon AY, Serrano K, Schubert P, Acker JP, Pryzdial ELG. Dengue virus persists and replicates during storage of platelet and red blood cell units. Transfusion (Paris) (2016) 56:1129–1137. doi: 10.1111/TRF.13454 | |
dc.relation.references | Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J (2022) 20:4415. doi: 10.1016/J.CSBJ.2022.08.001 | |
dc.relation.references | Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Commun (2002) 293:1364–1369. doi: 10.1016/S0006-291X(02)00380-7 | |
dc.relation.references | Michlmayr D, Andrade P, Gonzalez K, Balmaseda A, Harris E. CD14+CD16+ monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua. Nat Microbiol (2017) 2:1462. doi: 10.1038/S41564-017-0035-0 | |
dc.relation.references | Vielle NJ, Zumkehr B, García-Nicolás O, Blank F, Stojanov M, Musso D, Baud D, Summerfield A, Alves MP. Silent infection of human dendritic cells by African and Asian strains of Zika virus. Scientific Reports 2018 8:1 (2018) 8:1–12. doi: 10.1038/s41598-018-23734-3 | |
dc.relation.references | Felipe VLJ, Paula A V, Silvio UI. Chikungunya virus infection induces differential inflammatory and antiviral responses in human monocytes and monocyte-derived macrophages. Acta Trop (2020) 211:105619. doi: 10.1016/J.ACTATROPICA.2020.105619 | |
dc.relation.references | Fernandes-Santos C, de Azeredo EL. Innate Immune Response to Dengue Virus: Toll-like Receptors and Antiviral Response. Viruses (2022) 14: doi: 10.3390/V14050992 | |
dc.relation.references | Sabino EC, Loureiro P, Esther Lopes M, Capuani L, McClure C, Chowdhury D, Di-Lorenzo-Oliveira C, Oliveira LC, Linnen JM, Lee TH, et al. Editor’s choice: Transfusion-Transmitted Dengue and Associated Clinical Symptoms During the 2012 Epidemic in Brazil. J Infect Dis (2016) 213:694. doi: 10.1093/INFDIS/JIV326 | |
dc.relation.references | Liu CC, Huang KJ, Huang MC, Lin JJ, Wang SM, Liu JJ, Tsai JJ, Huang JH, Lin YS, Liu HS, et al. High Case-Fatality Rate of Adults With Dengue Hemorrhagic Fever During An Outbreak In Non-Endemic Taiwan: Risk Factors For Dengue-Infected Elders. Am J Infect Dis (2008) 4:10–17. doi: 10.3844/AJIDSP.2008.10.17 | |
dc.relation.references | Oliveros J. DISPONIBILIDAD Y USO DE SANGRE Y SUS HEMOCOMPONENTES EN LA CIUDAD DE VALLEDUPAR . Bucaramanga : Universidad de Santander, UDES. (2017). | |
dc.relation.references | Tsetsarkin KA, Sampson-Johannes A, Sawyer L, Kinsey J, Higgs S, Vanlandingham DL. Photochemical Inactivation of Chikungunya Virus in Human Apheresis Platelet Components by Amotosalen and UVA Light. Am J Trop Med Hyg (2013) 88:1163. doi: 10.4269/AJTMH.12-0603 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.subject | Arbovirus | |
dc.subject | Donantes de sangre | |
dc.subject | Seguridad transfusional | |
dc.subject | Riesgo residual | |
dc.subject.keywords | Arboviru | |
dc.subject.keywords | Blood donors | |
dc.subject.keywords | Transfusion safety | |
dc.subject.keywords | Residual risk | |
dc.subject.nlm | W 50 | |
dc.title | Análisis del riesgo en la seguridad transfusional debido a la circulación de arbovirus en Colombia | |
dc.title.translated | Analysis of the risk in transfusion safety due to the circulation of arbovirus in Colombia | |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.49 MB
- Formato:
- Adobe Portable Document Format