Obtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador

dc.contributor.advisorCortes Ortiz, William Giovanni
dc.contributor.authorTinoco Quitian, Sebastian Felipe
dc.contributor.authorGuerrero Fajardo, Carlos
dc.contributor.authorSuarez , Kevin Rene
dc.date.accessioned2024-05-18T02:41:28Z
dc.date.available2024-05-18T02:41:28Z
dc.date.issued2024-04
dc.description.abstractEl 5-Hidorximetilfurfural o 5-HMF, es un compuesto que ha adquirido un gran valor para la industria sostenible en general, teniendo un gran impacto en la industria energética y farmacéutica, con una gran cantidad de aplicaciones. El siguiente trabajo evalúa la obtención del 5-HMF a partir de glucosa usando el ácido acético (10,0% v/v) como catalizador, evaluando las mejores condiciones encontradas en la búsqueda bibliográfica para los catalizadores ácidos, generando un sistema factorial 22 donde se evalúa el impacto de dos variables de reacción como son: la Temperatura (170 – 200°C) y el tiempo de reacción (60 – 120 min) sobre el Rendimiento. Se obtienen mediante el uso de un reactor tipo Batch y los resultados se cuantifican por HPLC y el uso de un patrón interno (Alcohol furfurílico). Los resultados generan valores de rendimiento de reacción, de 6,9%; 30,5%; 11,7% y 18,9%, siendo el mejor rendimiento el Ensayo 2 (200°C; 60 min). Confirmando que se obtiene 5-HMF y evidenciando la influencia de las variables de reacción sobre el ensayo, alterando la cantidad generada de 5-HMF y de otras sustancias relacionadas con la reacción, también se genera un análisis estadístico que confirma que las variables tienen gran influencia en el rendimiento de reacción
dc.description.abstractenglish5-Hydorxymethylfurfural or 5-HMF, is a compound that has acquired great value for the sustainable industry in general, having a great impact on the energy and pharmaceutical industries, with a large number of applications. The following work evaluates the obtaining of 5-HMF from glucose using acetic acid (10.0% v/v) as a catalyst, evaluating the best conditions found in the biobibliographic search for acid catalysts, generating a 22 factorial system where The impact of two reaction variables such as: Temperature (170 – 200°C) and reaction time (60 – 120 min) on the Yield is evaluated. They are obtained by using a Batch type reactor and the results are quantified by HPLC and the use of an internal standard (furfuryl alcohol). The results generate reaction yield values ​​of 6.9%; 30.5%; 11.7% and 18.9%, with the best performance being Test 2 (200°C; 60 min). Confirming that 5-HMF is obtained and evidencing the influence of the reaction variables on the test, altering the generated amount of 5-HMF and other substances related to the reaction, a statistical analysis is also generated that confirms that the variables have great influence on the reaction yield
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12148
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.referencesZ. Zhou, M. Zhu, G. Zhang, X. Hu, and J. Pan, ‘Novel insights into the interaction mechanism of 5-hydroxymethyl-2-furaldehyde with β-casein and its effects on the structure and function of β-casein’, LWT, vol. 152, Dec. 2021, doi: 10.1016/j.lwt.2021.112360
dc.relation.referencesM. Bachar et al., ‘Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles’, Journal of Controlled Release, vol. 160, no. 2, pp. 164–171, Jun. 2012, doi: 10.1016/J.JCONREL.2012.01.004
dc.relation.referencesA. A. Rosatella, S. P. Simeonov, R. F. M. Frade, and C. A. M. Afonso, ‘5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications’, Green Chemistry, vol. 13, no. 4, pp. 754–793, Apr. 2011, doi: 10.1039/c0gc00401d.
dc.relation.referencesT. N. Gevrek and A. Sanyal, ‘Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomedical applications’, European Polymer Journal, vol. 153. Elsevier Ltd, Jun. 15, 2021. doi: 10.1016/j.eurpolymj.2021.110514
dc.relation.referencesK. Abdollahi, S. Hamidi, F. Monajjemzadeh, M. Zamani-Kalajahi, M. Nemati, and S. Sheykhizadeh, ‘Efficient and straightforward spectrophotometric analysis of 5-hydroxymethylfurfural (HMF) using citrate@Fe3O4 nanoparticles as an adsorbent’, J Pharm Biomed Anal, vol. 241, p. 115963, Apr. 2024, doi: 10.1016/J.JPBA.2024.115963
dc.relation.referencesW. Sailer-Kronlachner et al., ‘Sulfuric Acid-Catalyzed Dehydratization of Carbohydrates for the Production of Adhesive Precursors’, ACS Omega, 2021, doi: 10.1021/acsomega.1c02075
dc.relation.referencesK. T. T. Amesho, S.-C. Chen, T.-Y. Wu, V. K. Ponnusamy, and Y.-C. Lin, ‘Green synthesis of 5-hydroxymethylfurfural from biomass-derived carbohydrates using deep eutectic solvents as environmen-tally benign catalyst’, Environ Technol Innov, vol. 29, 2023, doi: 10.1016/j.eti.2022.102982
dc.relation.referencesT. Tongtummachat, A. Jaree, and N. Akkarawatkhoosith, ‘Green synthesis of 5-hydroxymethylfurfural through non-catalytic conversion of glucose in a microreactor’, Energy Conversion and Management: X, vol. 12, p. 100141, Dec. 2021, doi: 10.1016/J.ECMX.2021.100141
dc.relation.referencesZ. Wu, Y. Yu, and H. Wu, ‘Hydrothermal Reactions of Biomass-Derived Platform Molecules: Mechanistic In-sights into 5-Hydroxymethylfurfural (5-HMF) Formation during Glucose and Fructose Decomposition’, Energy and Fuels, vol. 37, no. 3, pp. 2115–2126, 2023, doi: 10.1021/acs.energyfuels.2c03462
dc.relation.referencesZhao Zongbao and Changzhi Li, ‘Method for preparing 5-hydroxymethyl-furfural by microwave promotion Espacenet – search results’. Accessed: Apr. 26, 2023. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/040768002/publication/CN101456851A?q=CN101456851A
dc.relation.referencesGruter Gerardus J M and Dautzenberg F, ‘Method for the synthesis of organic acid esters of 5-hydroxymethylfurfural and their use Espacenet – search results’. Accessed: Apr. 26, 2023. [Online]. Avai-lable: https://worldwide.espacenet.com/patent/search/family/036956006/publication/EP1834951A1?q=EP1834951A1
dc.relation.referencesL. Hu et al., ‘Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic al-dehydes’, RSC Adv, vol. 2, no. 30, pp. 11184–11206, Oct. 2012, doi: 10.1039/C2RA21811A
dc.relation.referencesH. Zheng et al., ‘A water-tolerant C16H3PW11CrO39 catalyst for the efficient conversion of monosacchari-des into 5-hydroxymethylfurfural in a micellar system’, RSC Adv, vol. 3, no. 45, pp. 23051–23056, Oct. 2013, doi: 10.1039/C3RA43408G
dc.relation.referencesL. Hu et al., ‘Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural’, Renewable and Sustainable Energy Reviews, vol. 134. Elsevier Ltd, Dec. 01, 2020. doi: 10.1016/j.rser.2020.110317
dc.relation.referencesJ. Wang, J. Xi, Q. Xia, X. Liu, and Y. Wang, ‘Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes’, Science China Chemistry, vol. 60, no. 7. Science in China Press, pp. 870–886, Jul. 01, 2017. doi: 10.1007/s11426-016-9035-1
dc.relation.referencesC. Lu, Y. Zhou, L. Li, H. Chen, and L. Yan, ‘Conversion of glucose into 5-hydroxymethylfurfural catalyzed by Cr-and Fe-containing mixed-metal metal–organic frameworks’, Fuel, vol. 333, 2023, doi: 10.1016/j.fuel.2022.126415
dc.relation.referencesS. Wang, T. L. Eberhardt, D. Guo, J. Feng, and H. Pan, ‘Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system’, Renew Energy, vol. 190, pp. 1–10, May 2022, doi: 10.1016/J.RENENE.2022.03.021
dc.relation.referencesV. Kumar Vaidyanathan, K. Saikia, P. Senthil Kumar, A. Karanam Rathankumar, G. Rangasamy, and G. Da-ttatraya Saratale, ‘Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents’, Bioresour Technol, vol. 378, p. 128975, Jun. 2023, doi: 10.1016/J.BIORTECH.2023.128975
dc.relation.referencesB. L. S. Santiago and R. Guirardello, ‘5-hydroxymethylfurfural production in a lignocellulosic biorefinery: Techno-economic analysis’, Chem Eng Trans, vol. 80, pp. 139–144, 2020, doi: 10.3303/CET2080024
dc.relation.referencesL. Yang, G. Tsilomelekis, S. Caratzoulas, and D. G. Vlachos, ‘Mechanism of Brønsted Acid-Catalyzed Glucose Dehydration’, ChemSusChem, vol. 8, no. 8, pp. 1334–1341, Apr. 2015, doi: 10.1002/CSSC.201403264
dc.relation.referencesG. Portillo Perez, A. Mukherjee, and M. J. Dumont, ‘Insights into HMF catalysis’, Journal of Industrial and En-gineering Chemistry, vol. 70. Korean Society of Industrial Engineering Chemistry, pp. 1–34, Feb. 25, 2019. doi: 10.1016/j.jiec.2018.10.002
dc.relation.referencesD. C. Harris, ‘Análisis químico cuantitativo (3a. ed.)’, p. 942, 2016, doi: 10.0/CSS/ALL.MIN.D74D1A5D029B.CSS
dc.relation.referencesL. G. Wade Jr., Organic Chemistry, Sixth edtion. Pearson education, 2006
dc.relation.referencesFrancis A. Carey, ORGANIC CHEMISTRY, 4th ed. The McGraw-Hill, 2000
dc.relation.referencesP. Sykes, D. Mauleón Casellas, and P. Translation of: Sykes, ‘Mecanismos de reacción en química orgánica’, Editorial Reverté, 2020, doi: 10.0/CSS/ALL.MIN.D74D1A5D029B.CSS
dc.relation.referencesX. Qian, ‘Mechanisms and energetics for brønsted acid-catalyzed glucose condensation, dehydration and isomerization reactions’, Top Catal, vol. 55, no. 3–4, pp. 218–226, May 2012, doi: 10.1007/S11244-012-9790-6/METRICS
dc.relation.referencesG. Yang, E. A. Pidko, and E. J. M. Hensen, ‘Mechanism of Bronsted acid-catalyzed conversion of carbohydra-tes’, J Catal, vol. 295, pp. 122–132, Nov. 2012, doi: 10.1016/J.JCAT.2012.08.002
dc.relation.referencesN. Jiang, W. Qi, Z. Wu, R. Su, and Z. He, ‘“One-pot” conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid’, Catal Today, vol. 302, pp. 94–99, Mar. 2018, doi: 10.1016/j.cattod.2017.05.081
dc.relation.referencesH. Li, Z. Xia, P. Yan, and Z. C. Zhang, ‘Production of crude 5-hydroxymethylfurfural from glucose by dual catalysts with functional promoters in low-boiling hybrid solvent’, Catal Today, vol. 402, pp. 10–16, Sep. 2022, doi: 10.1016/J.CATTOD.2022.01.017
dc.relation.referencesH. L. Solano, Estadística Inferencial. Area metropolitana de Barranquilla, Colombia: Universidad del Norte, 2017. [Online]. Available: https://login.ezproxy.unbosque.edu.co/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e086sww&AN=1800044&lang=es&site=eds-live&scope=site
dc.relation.referencesQ. Qing et al., ‘One-pot synthesis of 5-Hydroxymethylfurfural from glucose and corn stover in an aqueous choline chloride/ acetone ternary solvent’, Ind Crops Prod, vol. 188, 2022, doi: 10.1016/j.indcrop.2022.115681
dc.relation.referencesB. Das and K. Mohanty, ‘Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation’, Appl Catal A Gen, vol. 622, p. 118237, 2021, doi: https://doi.org/10.1016/j.apcata.2021.118237
dc.relation.referencesS. Fernández, ‘Diseño de experimentos: Diseño factorial’, 2020
dc.relation.referencesA. A. Marianou, C. M. Michailof, A. Pineda, E. F. Iliopoulou, K. S. Triantafyllidis, and A. A. Lappas, ‘Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media’, Appl Catal A Gen, vol. 555, pp. 75–87, Apr. 2018, doi: 10.1016/J.APCATA.2018.01.029
dc.relation.referencesY. J. Pagán-Torres, T. Wang, J. M. R. Gallo, B. H. Shanks, and J. A. Dumesic, ‘Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent’, ACS Catal, vol. 2, no. 6, pp. 930–934, Jun. 2012, doi: 10.1021/cs300192z
dc.relation.referencesJ. Zhao et al., ‘Design and synthesis of Brønsted-Lewis acidic tetraimidazolyl ionic liquids for efficient cataly-tic conversion of glucose to 5-hydroxymethylfurfural in water/1-octanol’, Appl Catal A Gen, vol. 649, Jan. 2023, doi: 10.1016/J.APCATA.2022.118981
dc.relation.referencesA. J. Kunov-Kruse, A. Riisager, S. Saravanamurugan, R. W. Berg, S. B. Kristensen, and R. Fehrmann, ‘Revisi-ting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy’, Green Chem., vol. 15, no. 10, pp. 2843–2848, 2013, doi: 10.1039/C3GC41174E
dc.relation.referencesP. Atkins, Fisicoquímica. 1999
dc.relation.referencesH. Zhang et al., ‘Continuous synthesis of 5-hydroxymethylfurfural using deep eutectic solvents and its kine-tic study in microreactors’, Chemical Engineering Journal, vol. 391, Jul. 2020, doi: 10.1016/J.CEJ.2019.123580
dc.relation.referencesT. Rosenau et al., ‘Chromophores from hexeneuronic acids: identification of HexA-derived chromophores’, Cellulose, vol. 24, no. 9, pp. 3671–3687, Sep. 2017, doi: 10.1007/s10570-017-1397-4
dc.relation.referencesR. Tomer and P. Biswas, ‘Dehydration of glucose over sulfate impregnated ZnO (hexagonal-monoclinic) ca-talyst in dimethyl sulfoxide (DMSO) medium: Production, separation, and purification of 5-hydroxymethylfurfural (5-HMF) with high purity’, Catal Today, vol. 404, pp. 219–228, Nov. 2022, doi: 10.1016/J.CATTOD.2022.02.009
dc.relation.referencesD. Chen et al., ‘An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts’, Chemical Engineering Journal, vol. 300, pp. 177–184, Sep. 2016, doi: 10.1016/J.CEJ.2016.04.039
dc.relation.referencesR. Huang, W. Qi, R. Su, and Z. He, ‘Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural’, Chemical Communications, vol. 46, no. 7, pp. 1115–1117, 2010, doi: 10.1039/B921306F
dc.relation.referencesIgnacio Jiménez-Morales, Mercedes Moreno-Recio, José Santamaría-González, and Pedro Maireles-Torres, ‘Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid ca-talyst’, Appl Catal B, vol. 164, pp. 70–76, 2015, doi: 10.1016/j.apcatb.2014.09.002
dc.relation.referencesI. Jiménez-Morales, A. Teckchandani-Ortiz, J. Santamaría-González, P. Maireles-Torres, and A. Jimé-nez-López, ‘Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate’, Appl Catal B, vol. 144, no. 1, pp. 22–28, Jan. 2014, doi: 10.1016/J.APCATB.2013.07.002
dc.relation.referencesL. Li, J. Ding, J. G. Jiang, Z. Zhu, and P. Wu, ‘One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts’, Cuihua Xuebao/Chinese Journal of Catalysis, vol. 36, no. 6, pp. 820–828, Jun. 2015, doi: 10.1016/S1872-2067(14)60287-4
dc.relation.referencesM. Nayebi et al., ‘TiO<inf>2</inf>/g-C<inf>3</inf>N<inf>4</inf>/SO<inf>3</inf>H(IL): Unique Usage of Ionic Liquid-Based Sulfonic Acid as an Efficient Photocatalyst for Visible-Light-Driven Preparation of 5-HMF from Cellulose and Glucose’, ACS Appl Mater Interfaces, vol. 15, no. 6, pp. 8054–8065, 2023, doi: 10.1021/acsami.2c20480
dc.relation.referencesN. Panjiar, A. J. Mattam, S. Jose, S. Gandham, and H. R. Velankar, ‘Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodip-hila’, Science of the Total Environment, vol. 729, Aug. 2020, doi: 10.1016/j.scitotenv.2020.138933
dc.relation.referencesE. M. Ranzi, R. M. Filho, B. L. S. Santiago, and R. Guirardello, ‘5-Hydroxymethylfurfural Production in a Lignocellulosic Biorefinery: Techno-economic Analysis’, Chem Eng Trans, vol. 80, p. 2020, 2020, doi: 10.3303/CET2080024
dc.relation.referencesT. Ståhlberg, W. Fu, J. M. Woodley, and A. Riisager, ‘Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: Paving the way to renewable chemicals’, ChemSusChem, vol. 4, no. 4. Wiley-VCH Verlag, pp. 451–458, Apr. 18, 2011. doi: 10.1002/cssc.201000374
dc.relation.referencesN. I. Villanueva Martínez, ‘Obtención de 5-hidroxmetilfurfural a partir de glucosa proveniente de licores de corteza de pino y eucaliptu, utilizando catalizadores sólidos en medio acuoso’, 2017
dc.relation.referencesX. Yang et al., ‘A new method for conversion of fructose and glucose to 5-hydroxymethylfurfural by magnetic mesoporous of SBA-16 was modified to sulfonic acid as Lewis’s acid catalysts’, Renew Energy, vol. 209, pp. 145–156, Jun. 2023, doi: 10.1016/J.RENENE.2023.03.102
dc.relation.referencesW. Zhang et al., ‘Sn doping on partially dealuminated Beta zeolite by solid state ion exchange for 5-hydroxymethylfurfural (5-HMF) production from glucose’, Journal of Chemical Technology and Biotechnology, vol. 98, no. 3, pp. 773–781, 2023, doi: 10.1002/jctb.7282
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject5-hidroximetilfurfural (5-hmf)
dc.subjectÁcido acético
dc.subjectGlucosa
dc.subjectTemperatura
dc.subjectTiempo
dc.subjectVariables de reacción
dc.subject.ddc615.19
dc.subject.keywords5-hydroxymethylfurfural (5-hmf)
dc.subject.keywordsAcetic acid
dc.subject.keywordsGlucose
dc.subject.keywordsTemperature
dc.subject.keywordsTime
dc.subject.keywordsReaction variables
dc.titleObtención de 5-Hidroximetilfurfural (5-HMF), compuesto usado como excipiente en formulaciones líquidas o semisólidas, usando ácido acético como catalizador
dc.title.translatedObtaining 5-Hydroxymethylfurfural (5-HMF), a compound used as an excipient in liquid or semi-solid formulations, using acetic acid as a catalyst
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
1.59 MB
Formato:
Adobe Portable Document Format