Evaluación del potencial antiviral de dos extractos derivados de subproductos del cacao en un modelo de infección in vitro con virus chikungunya
dc.contributor.advisor | Delgado Tiria, Félix Giovanni | |
dc.contributor.advisor | Morantes Medina, Sandra Johanna | |
dc.contributor.author | Daza Guzmán, Luisa Fernanda | |
dc.contributor.author | Guitiérrez Álvarez, Luis Felipe | |
dc.date.accessioned | 2024-11-20T00:44:21Z | |
dc.date.available | 2024-11-20T00:44:21Z | |
dc.date.issued | 2024-10 | |
dc.description.abstract | La enfermedad causada por virus chikungunya (CHIKV) no cuenta con un tratamiento específico y sus síntomas se manejan principalmente con analgésicos y antiinflamatorios. Extractos derivados de subproductos del cacao (cacota / cascarilla), han mostrado actividad antioxidante en estudios previos. Considerando que existe una relación entre los niveles de estrés oxidativo y el título viral de diferentes agentes virales, en este trabajo se evaluó el posible efecto antiviral de estos extractos en un modelo de infección in vitro con CHIKV. Para esto, células Huh-7 fueron tratadas con diferentes concentraciones de los extractos evaluando citotoxicidad por resazurina, actividad antioxidante con DCFH-DA y la actividad antiviral por RT-qPCR. Los resultados mostraron que los extractos de cacota y cascarilla no afectan la viabilidad de las células Huh-7 en los tiempos (24, 48 y 72h) y el rango de concentraciones evaluadas (250 - 15.6 µg/mL). Interesantemente, ambos extractos mostraron un potencial antioxidante y antiviral al reducir los niveles de ROS en las células infectadas con CHIKV, tanto a las 12 como a las 24 h de exposición, así como la replicación viral, observándose una reducción del número de copias de ARN viral. En conclusión, los extractos de cacao mostraron un potencial antiviral, posiblemente asociado a la reducción de las ROS producidas durante la infección con CHIKV. | |
dc.description.abstractenglish | The disease caused by the chikungunya virus (CHIKV) currently lacks a specific treatment, with symptoms being managed mainly through analgesics and anti-inflammatory drugs. Extracts derived from cacao by-products (cocoa pod husk/cocoa bean shell) have shown antioxidant activity in previous studies. Given the correlation between oxidative stress levels and viral titers of various viral agents, this study evaluated the potential antiviral effect of these extracts in an in vitro CHIKV infection model. Huh-7 cells were treated with different extract concentrations, and cytotoxicity was assessed using the resazurin assay, antioxidant activity with DCFH-DA, and antiviral activity via RT-qPCR. The results showed that cocoa pod husk and cocoa bean shell extracts did not affect the viability of Huh-7 cells at the tested time points (24, 48, and 72 hours) and concentration range (15.6 - 250 µg/mL). Interestingly, both extracts exhibited antioxidant and antiviral potential by reducing ROS levels in CHIKV-infected cells at 12 and 24 hours of exposure, as well as by inhibiting viral replication, evidenced by a reduction in viral RNA copy numbers. In conclusion, cacao extracts demonstrated antiviral potential, possibly linked to the reduction of ROS produced during CHIKV infection. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.description.sponsorship | Universidad Nacional de Colombia | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13258 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | [1]. Simon, F.; et al. French guidelines for the management of chikungunya (acute and persistent presentations). November 2014 Recommandations françaises pour la prise en charge du chikungunya. ScienceDIrect. 2015, 45, 243-263. | |
dc.relation.references | [2]. Biatan, Y.; et al. Molecular architecture of the Chikungunya virus replication complex. ScienceAdvances. 2022, 8, eadd2536. | |
dc.relation.references | [3]. Martínez, M.S.; et al. Infección por virus Chikungunya: de la clínica a la inmunopatogenia. AVFT. 2017, 36, pp. 132-143. | |
dc.relation.references | [4]. Argüello, T.; Gallegos, P.; Villena, M. Fiebre Chikungunya. Manifestaciones reumatológicas. Rev Cuba Reumatol. 2017, 19, 182-188. | |
dc.relation.references | [5]. Zúñiga, A.; Vélez, M. MANIFESTACIONES ARTICULARES DE LA FIEBRE CHIKUNGUNYA. Rev Reum Día. 2015, 10, 28-31. | |
dc.relation.references | [6]. U.S. FOOD & DRUG. La FDA aprueba la primera vacuna para prevenir la enfermedad causada por el virus del chikungunya. Recuperado online: https://www.fda.gov/news-events/press-announcements/la-fda-aprueba-la-primera-vacuna-para-prevenir-la-enfermedad-causada-por-el-virus-del-chikungunya#:~:text=Hoy%2C%20la%20Administraci%C3%B3n%20de%20Alimentos,exposici%C3%B3n%20al%20virus%20del%20chikungunya (consultado el 23 de septiembre de 2024). | |
dc.relation.references | [7]. Fundación iO. Datos mundiales de virus Chikungunya 2023 (ECDC). Recuperado online: https://fundacionio.com/datos-mundiales-de-virus-chikungunya-ecdc/. (consultado el 23 de septiembre de 2024). | |
dc.relation.references | [8]. Instituto Nacional de Salud, INS. Boletín Epidemiológico Semanal. Semana epidemiológica 36, 1-7 septiembre de 2024. Recuperado Online: https://www.ins.gov.co/BibliotecaDigital/2024-boletin-epidemiologico-semana-36.pdf (consultado el 23 de septiembre de 2024). | |
dc.relation.references | [9]. Foo, J.; Bellot, G.; Pervaiz, S.; Alonso, S. Mitochondria-mediated oxidative stress during viral infection. Trends in Microbiology. 2022, 30, 679 – 692. | |
dc.relation.references | [10]. Caetano, F.; da Silva, C.C.; Trindade, A.; de Brito, C.L. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017,162, 907-917. | |
dc.relation.references | [11]. Dhanwani, R.; Khan, M.; Bhaskar, A.; Singh, R.; Patro, I.K.; Rao, P.; Parida, M.M. Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: Role of apoptosis in neuronal cell death. Virus Research. 2012, 163, 563-572. | |
dc.relation.references | [12]. Kumar, A.; Shrinet, J.; Sunil, S. Chikungunya virus infection in Aedes aegypti is modulated by L-cysteine, taurine, hypotaurine and glutathione metabolism. PLoS Negl Trop Dis. 2023, 17, e0011280. | |
dc.relation.references | [13]. Corrales, L.C.; Muñoz, M. M. Estrés oxidativo: origen, evolución y consecuencias de la toxicidad del oxígeno. NOVA publ. Cient. 2012, 10,213-225. | |
dc.relation.references | [14]. Sena, L.A.; Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012, 48, 158-167. | |
dc.relation.references | [15]. Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007, 87, 245-313. | |
dc.relation.references | [16]. Schrader, M.; Fahimi, H.D. Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006, 1763, 1755-1766 | |
dc.relation.references | [17]. Cao, S.S.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014, 20, 396-413. | |
dc.relation.references | [18]. Babior, B.M. Phagocytes and oxidative stress. Am J Med. 2000, 109, 33-44. | |
dc.relation.references | [19]. Guerrero, C.A. Los virus RNA inducen estrés oxidativo celular y los antioxidantes reducen la generación de partículas virales, tanto in vitro como in vivo. Inge Libre 2020, 8. 78-99. | |
dc.relation.references | [20]. Cornejal, N.; et al. Antimicrobial and Antioxidant Properties of Theobroma cacao, Bourreria huanita, Eriobotrya japonica, and Elettaria cardamomum - Traditional Plants Used in Central America. J Med Act Plants. 2023, 12, 1-17. | |
dc.relation.references | [21]. Llerena, W.; Samaniego, I.; Vallejo, C.; Arreaga, A.; Zhunio, B.; Coronel, Z.; Quiroz, J.; Angós, I.; Carrillo, W. Profile of Bioactive Components of Cocoa (Theobroma cacao L.) By-Products from Ecuador and Evaluation of Their Antioxidant Activity. Foods. 2023, 12, 2583. | |
dc.relation.references | [22]. Rebollo, M.; Zhang, O.; Aguilera, Y.; Martín, M.A.; Gonzalez de Mejía, M. Relationship of the Phytochemicals from Coffee and Cocoa By-Products with their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants. 2019, 8, 279. | |
dc.relation.references | [23]. Rincón, M.C. Extracción asistida por microondas de compuestos fenólicos de los subproductos del beneficio del cacao (Theobroma cacao L.). Maestría, Universidad Nacional de Colombia, sede Bogotá, 10 de mayo del 2023. | |
dc.relation.references | [24]. Baidoo, M.F.; Asiedu, N.Y.; Darkwah, L.; Arhin, D.; Zhao, J.; Jerome, F.; Amaniampong, P.N. Conventional and Unconventional Transformation of Cocoa Pod Husks into Value-Added Products. Biomass, Biorefineries and Bioeconomy, 1ra ed.; Samer, M.; IntechOpen, Rijeka. 2022, 12, 561-569. | |
dc.relation.references | [25]. Valadez, L.; Ortíz, A.; Ceballos, G.; Mendiola, J.A.; Ibáñez, E. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J. Supercrit. Fluids. 2018, 131, 99-105. | |
dc.relation.references | [26]. Archila, E.D.; López, L.S.; Castellanos, J.E., Calvo, E.P. Molecular and biological characterization of an Asian-American isolate of Chikungunya virus. PLoS One. 2022, 17, e0266450. | |
dc.relation.references | [27]. López, L.S.; Calvo, E.P.; Castellanos, J.E. Deubiquitinating Enzyme Inhibitors Block Chikungunya Virus Replication. Viruses. 2023, 15, 481. | |
dc.relation.references | [28]. Da Silva, A.C.; et al. Infection profiles of Mayaro virus and Chikungunya virus in mammalian and mosquito cell lineages. Rev Pan-Amaz Saude. 2018, 9, 25-35. | |
dc.relation.references | [29]. Schwartz, O.; Albert, M.L. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010, 7, 491-500. | |
dc.relation.references | [30]. Escorbar, L.; Alfonso, P.A.; Aristizabal, F.A. Valoración de dos métodos de tinción en ensayos de citotoxicidad sobre líneas celulares tumorales. Rev colomb biotecnol. 2009, 11, 49-56. | |
dc.relation.references | [31]. de Lima Cavalcanti, T.Y.; Azevedo, E.A.; Lima, M.C.; Saraiva, K.L.: Franca, R.F. Chikungunya virus infection induces ultrastructural changes and impaired neuronal differentiation of human neurospheres. Front Microbiol. 2023, 14, 1152480. | |
dc.relation.references | [32]. Purdy, J.G. Pathways to Understanding Virus-Host Metabolism Interactions. Curr Clin Micro Rpt. 2019, 6, 34–43. | |
dc.relation.references | [33]. Allen, C.; Arjona, S.P.; Santerre, M.; Sawaya, B.E. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis. Viruses. 2022, 14, 602. | |
dc.relation.references | [34]. Thaker, S.K.; Ch'ng, J.; Christofk, H.R. Viral hijacking of cellular metabolism. BMC Biol. 2019, 17, 59. | |
dc.relation.references | [35]. Thio, C.L.; Yusof, R.; Abdul-Rahman, P.S.; Karsani, S.A. Differential proteome analysis of chikungunya virus infection on host cells. PLoS One. 2013, 8, e61444. | |
dc.relation.references | [36]. Krejbich-Trotot, P.; Gay, B.; Li-Pat-Yuen, G.; Hoarau, J.J.; Jaffar-Bandjee, M.C.; Briant, L.; Gasque, P.; Denizot, M. Chikungunya triggers an autophagic process which promotes viral replication. Virol J. 2011, 8, 432. | |
dc.relation.references | [37]. Joubert, P.M.; et al. Chikungunya virus–induced autophagy delays caspase-dependent cell death. J Exp Med. 2012, 209, 1029-1047. | |
dc.relation.references | [38]. Ploubidou, A.; Way, M. Viral transport and the cytoskeleton. Curr Opin Cell Biol. 2001, 13, 97–105. | |
dc.relation.references | [39]. Taylor, M.P.; Koyuncu, O.O.; Enquist, L.W. Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol. 2011, 9, 427–439. | |
dc.relation.references | [40]. Walsh, D.; Mohr, I. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol. 2011, 9, 860-875. | |
dc.relation.references | [41]. Busch, F.; et al. Cadherins: adherence and signaling in antiviral defense. Journal of Molecular Medicine. 2019, 97, 13-25. | |
dc.relation.references | [42]. Yeh, J.X.; Eunhye, P.; Schultz, K.L.; Griffin, D.E. NF-κB Activation Promotes Alphavirus Replication in Mature Neurons. J Virol. 2019, 93, e01071-19. | |
dc.relation.references | [43]. Martín, M.Á.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol Nutr Food Res. 2014, 58, 447-456. | |
dc.relation.references | [44]. Gough, D.R.; Cotter, T.G. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis. 2011, 2, 213. | |
dc.relation.references | [45]. Nathan, C.; Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA. 2000, 9, 8841-8848. | |
dc.relation.references | [46]. Lu, Q.; Li, L.; Xue, S.; Yang, D.; Wang, S. Stability of Flavonoid, Carotenoid, Soluble Sugar and Vitamin C in ‘Cara Cara’ Juice during Storage. Foods. 2019, 8, 417. | |
dc.relation.references | [47]. ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy. 2023, 13, 1580. | |
dc.relation.references | [48]. Ioannou, I.; Chekir, L.; Ghoul, M. Effect of Heat Treatment and Light Exposure on the Antioxidant Activity of Flavonoids. Processes. 2020, 8, 1078. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.subject | Virus chikungunya | |
dc.subject | Especies reactivas oxígeno | |
dc.subject | Cacota | |
dc.subject | Cascarilla | |
dc.subject | Actividad antioxidante | |
dc.subject | Actividad antiviral | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | Chikungunya virus | |
dc.subject.keywords | Reactive oxygen species | |
dc.subject.keywords | Cocoa pod husk | |
dc.subject.keywords | Cocoa bean shell | |
dc.subject.keywords | Antioxidant activity | |
dc.subject.keywords | Antiviral activity | |
dc.title | Evaluación del potencial antiviral de dos extractos derivados de subproductos del cacao en un modelo de infección in vitro con virus chikungunya | |
dc.title.translated | Evaluation of the antiviral potential of two extracts derived from cacao by-products in an in vitro chikungunya virus infection model | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.16 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 1.52 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 168.38 KB
- Formato:
- Adobe Portable Document Format
- Descripción: