Bioacumulación de penicilinas, sulfamidas y fluoroquinolonas en peces: Una revisión bibliográfica de métodos analíticos para su detección, descripción de la biotransformación y toxicidad en peces

dc.contributor.advisorBecerra Figueroa, Liliana Marcela
dc.contributor.authorEscudero Romero, Cielo Julieth
dc.contributor.authorBecerra Figueroa, Liliana Marcela
dc.contributor.orcidEscudero Romero, Cielo Julieth [0009-0003-3286-8293]
dc.contributor.orcidBecerra Figueroa, Liliana Marcela [0000-0002-0459-3419]
dc.date.accessioned2024-05-15T18:39:28Z
dc.date.available2024-05-15T18:39:28Z
dc.date.issued2024-05
dc.description.abstractSe examinó la presencia de tres grupos de antibióticos (penicilinas, sulfonamidas y fluoroquinolonas) en peces mediante diversas técnicas cromatográficas. Para las penicilinas, se encontró únicamente un estudio que detectó amoxicilina en músculo de peces utilizando HPLC-MS/MS, en las sulfonamidas y fluoroquinolonas, predominó el uso de HPLC-MS/MS, UPLC-MS/MS y LC-MS/MS, en diversos tejidos de peces. Los procedimientos de preparación de muestras y las condiciones cromatográficas fueron muy similares entre estos grupos, el analizador de masas principal fue triple cuadrupolo acoplado a MRM, con fuentes de ionización ESI y API. Con relación a la bioacumulación, la ciprofloxacina mostró la mayor presencia entre las múltiples especies. La sulfadiazina también presentó altos niveles de bioacumulación, mientras que el sulfametoxazol y la Norfloxacina tuvieron una presencia moderada pero el LogBAF más alto (5,3). Las especies con mayor bioacumulación fueron las carpas, y los sitios más afectados fueron el río Amarillo y Mahegang, China, las branquias fue el tejido con la mayor bioacumulación, no se observó una relación significativa entre el coeficiente de reparto octanol-agua (Log P) y el factor de bioacumulación (log BAF).
dc.description.abstractenglishThe presence of three groups of antibiotics (penicillins, sulfonamides and fluoroquinolones) in fish was examined by various chromatographic techniques. For penicillins, only one study was found that detected amoxicillin in fish muscle using HPLC-MS/MS; for sulfonamides and fluoroquinolones, the use of HPLC-MS/MS, UPLC-MS/MS and LC-MS/MS predominated in various fish tissues. Sample preparation procedures and chromatographic conditions were very similar among these groups, the main mass analyzer was triple quadrupole coupled to MRM, with ESI and API ionization sources. Regarding bioaccumulation, ciprofloxacin showed the highest presence among the multiple species. Sulfadiazine also showed high levels of bioaccumulation, while sulfamethoxazole and Norfloxacin had a moderate presence but the highest LogBAF (5.3). The species with the highest bioaccumulation were carp, and the most affected sites were the Yellow River and Mahegang, China, the gills was the tissue with the highest bioaccumulation, no significant relationship was observed between the octanol-water partition coefficient (Log P) and the bioaccumulation factor (log BAF).
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12119
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.referencesN. Nassar, S. Kasapis, S. Pyreddy, and T. Istivan, “The History of Antibiotics Illumes the Future of Antimicrobial Peptides Administered Through Nanosystems,” Nanotechnology. Life Sci., 2022, pp. 1–74.
dc.relation.referencesF. De y H. A. Lopardo, «Antibióticos Clasificación, estructura, mecanismos de acción y resistencia Libros de Cátedra», La plata, 2020.
dc.relation.referencesVan Boeckel et al., «Reducing antimicrobial use in food animals», Science, vol. 357, n. o 6358. AAAS, 2017. pp. 1350-1352.
dc.relation.referencesT. Hu et al., «Bioaccumulation and trophic transfer of antibiotics in the aquatic and terrestrial food webs of the Yellow River Delta», Chemosphere, vol. 323, 2023.
dc.relation.referencesA. Qadeer et al., «Influence of habitats and physicochemical factors on trophic transfer processes of antibiotics in a freshwater ecosystem: Application of stable isotopes and human health risks», STOTEN, vol. 863, 2023.
dc.relation.referencesP. Kovalakova, L. Cizmas, T. J. McDonald, B. Marsalek, M. Feng, y V. K. Sharma, «Occurrence and toxicity of antibiotics in the aquatic environment: A review», Chemosphere, vol. 251, 2020, p. 126351
dc.relation.referencesI. T. Carvalho y L. Santos, «Antibiotics in the aquatic environments: A review of the European scenario», Environ Int, vol. 94, 2016, pp. 736-757.
dc.relation.referencesH. Zhao, W. Quan, T. G. Bekele, M. Chen, X. Zhang, y B. Qu, «Effect of copper on the accumulation and elimination kinetics of fluoroquinolones in the zebrafish (Danio rerio) », Ecotoxicol Environ Saf, vol. 156, 2018, pp. 135-140.
dc.relation.referencesK. S. D. Nunes et al., «Depletion study, withdrawal period calculation and bioaccumulation of sulfamethazine in tilapia (Oreochromis niloticus) treated with medicated feed», Chemosphere, vol. 197, 2018, pp. 89-95.
dc.relation.referencesX. Zhang et al., «Antibiotics in mariculture organisms of different growth stages: Tissue-specific bioaccumulation and influencing factors», Environ Pollut, vol. 288, 2021.
dc.relation.referencesM. C. Danner, A. Robertson, V. Behrends, y J. Reiss, «Antibiotic pollution in surface fresh waters: Occurrence and effects», STOTEN, vol. 664, 2019, pp. 793-804.
dc.relation.referencesP. Carriquiriborde, «Principios de ecotoxicología», 2021.
dc.relation.referencesN. Iftikhar, R. Zafar, y I. Hashmi, «Multi-biomarkers approach to determine the toxicological impacts of sulfamethoxazole antibiotic on freshwater fish Cyprinus carpio», Ecotoxicol Environ Saf, vol. 233, mar. 2022.
dc.relation.referencesM. M. Bonomo, I. T. de C. Sachi, M. G. Paulino, J. B. Fernandes, R. M. Carlos, y M. N. Fernandes, «Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish», Environ Pollut, vol. 268, 2021, p. 115758.
dc.relation.referencesM. Zhu, J. Chen, W. J. G. M. Peijnenburg, H. Xie, Z. Wang, y S. Zhang, «Controlling factors and toxicokinetic modeling of antibiotics bioaccumulation in aquatic organisms: A review», Crit. Rev. Environ. Sci. Technol., vol. 53, n.o 15, 2023, pp. 1431-1451.
dc.relation.referencesH. Chen et al., «Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure», Mar Pollut Bull, vol. 90, n.o 1-2, 2015, pp. 181-187.
dc.relation.referencesZ. Xie, G. Lu, Z. Yan, J. Liu, P. Wang, y Y. Wang, «Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake»,Environ Pollut, vol. 222, 2017, pp. 356-366.
dc.relation.referencesA. Zakari-Jiya, C. Frazzoli, C. N. Obasi, B. B. Babatunde, K. C. Patrick-Iwuanyanwu, y O. E. Orisakwe, «Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review», Environ Toxicol Pharmacol, vol. 94, 2022.
dc.relation.referencesE. N. Evgenidou, I. K. Konstantinou, y D. A. Lambropoulou, «Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review», Sci. Total Environ, vol. 505, 2015, pp. 905-926.
dc.relation.referencesQ. Wang et al., «Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population», J Hazard Mater, vol. 383, 2020.
dc.relation.referencesJ.C. Carrizo et al., «Different antibiotic profiles in wild and farmed Chilean salmonids. Which is the main source for antibiotic in fish? », Sci. Total Environ, vol. 800, 2021.
dc.relation.referencesL.C. Dickson, «Performance characterization of a quantitative liquid chromatography-tandem mass spectrometric method for 12 macrolide and lincosamide antibiotics in salmon, shrimp and tilapia», J Chromatogr B Analyt Technol Biomed Life Sci, vol. 967, 2014, pp. 203-210.
dc.relation.referencesP. A. Evangelista et al., «Bioaccumulation and Depletion of the Antibiotic Sulfadiazine 14C in Lambari (Astyanax bimaculatus)», Animals, vol. 13, n.o 15, 2023.
dc.relation.referencesA. Adenaya, M. Berger, T. Brinkhoff, M. Ribas-Ribas, y O. Wurl, «Usage of antibiotics in aquaculture and the impact on coastal waters», Mar Pollut Bull, vol. 188, 2023, p. 114645.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 33613, Amoxicillin. », 2024.
dc.relation.referencesV. F. Fonseca et al., «Environmental risk assessment and bioaccumulation of pharmaceuticals in a large, urbanized estuary», Sci. Total Environ, vol. 783, 2021. p. 147021.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 5329, Sulfamethoxazole», 2024.
dc.relation.referencesNational Center for Biotechnology Information (2024), «PubChem Annotation Record for, SULFAQUINOXALINE, Source: Hazardous Substances Data Bank (HSDB). », 2024.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 5327, Sulfamethazine», 2024.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 5332, Sulfamonomethoxine. », 2024.
dc.relation.referencesJ. Tang, J. Zhang, L. Su, Y. Jia, y Y. Yang, «Bioavailability and trophic magnification of antibiotics in aquatic food webs of Pearl River, China: Influence of physicochemical characteristics and biotransformation», Sci. Total Environ, vol. 820, 2022, p. 153285.
dc.relation.references32. National Center for Biotechnology Information, «PubChem Compound Summary for CID 5323, Sulfadimethoxine», 2024.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 5336, Sulfapyridine. », 2024.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 4539, Norfloxacin. », 2024.
dc.relation.referencesS. Liu, G. Dong, H. Zhao, M. Chen, W. Quan, y B. Qu, «Occurrence and risk assessment of fluoroquinolones and tetracyclines in cultured fish from a coastal region of northern China», ESPR, 2018, pp. 8035-8043.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 2764, Ciprofloxacin», 2024.
dc.relation.referencesNational Center for Biotechnology Information, «PubChem Compound Summary for CID 4583, Ofloxacin», 2024.
dc.relation.referencesY. Sun et al., «Enhanced bioaccumulation of fluorinated antibiotics in crucian carp (Carassius carassius): Influence of fluorine substituent», Sci. Total Environ, vol. 748, 2020.
dc.relation.referencesM. Zhu, J. Chen, W. J. G. M. Peijnenburg, H. Xie, Z. Wang, y S. Zhang, «Controlling factors and toxicokinetic modeling of antibiotics bioaccumulation in aquatic organisms: A review», Crit Rev Environ Sci Technol, vol. 53, n.o 15, 2023, pp. 1431-1451.
dc.relation.referencesH. Zhao, W. Quan, T. G. Bekele, M. Chen, X. Zhang, y B. Qu, «Effect of copper on the accumulation and elimination kinetics of fluoroquinolones in the zebrafish (Danio rerio) », Ecotoxicol Environ Saf, vol. 156, 2018, pp. 135-140.
dc.relation.referencesV. G. Bose y K. S. Shreenidhi, «Microbial degradation of pharmaceuticals and personal care products», Microbes Microb. Biotechnol. Green Remed., 2022, pp. 619-632.
dc.relation.referencesJ. V. Tarazona y G. P. Dohmen, «Ecotoxicology of Rice Pesticides», Pestic. Risk Assess. Rice Paddies, 2008, pp. 69-90.
dc.relation.referencesN. Iftikhar, R. Zafar, y I. Hashmi, «Multi-biomarkers approach to determine the toxicological impacts of sulfamethoxazole antibiotic on freshwater fish Cyprinus carpio», Ecotoxicol Environ Saf, vol. 233, 2022, p. 113331.
dc.relation.referencesA. Baesu, G. Ballash, D. Mollenkopf, T. Wittum, S. M. P. Sulliván, y S. Bayen, «Suspect screening of pharmaceuticals in fish livers based on QuEChERS extraction coupled with high resolution mass spectrometry», Sci. Total Environ, vol. 783, 2021, p. 146902.
dc.relation.referencesQ. Wu, C. G. Pan, Y. H. Wang, S. K. Xiao, y K. F. Yu, «Antibiotics in a subtropical food web from the Beibu Gulf, South China: Occurrence, bioaccumulation and trophic transfer», Sci. Total Environ, vol. 751, 2021, p. 141718.
dc.relation.referencesK. Nozaki et al., «Pharmaceuticals and personal care products (PPCPs) in surface water and fish from three Asian countries: Species-specific bioaccumulation and potential ecological risks», Sci. Total Environ, vol. 866, 2023, p. 161258.
dc.relation.referencesH. Chen et al., «Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area», J Hazard Mater, vol. 343, 2018, pp. 140-148.
dc.relation.referencesJ. Zhang et al., «Polycyclic aromatic hydrocarbons (PAHs) and antibiotics in oil-contaminated aquaculture areas: Bioaccumulation, influencing factors, and human health risks», J Hazard Mater, vol. 437, 2022, p. 129365.
dc.relation.referencesQ. Wu, C. G. Pan, Y. H. Wang, S. K. Xiao, y K. F. Yu, «Antibiotics in a subtropical food web from the Beibu Gulf, South China: Occurrence, bioaccumulation and trophic transfer», Sci. Total Environ, vol. 751, 2021, p. 141718.
dc.relation.referencesJ. Guo et al., «Accumulation rates and chronologies from depth profiles of 210Pbex and 137Cs in sediments of northern Beibu Gulf, South China sea», J Environ Radioact, vol. 213, 2020, p. 106136
dc.relation.referencesR. Pashaei, R. Dzingelevičienė, S. Abbasi, M. Szultka-Młyńska, y B. Buszewski, «Determination of 15 human pharmaceutical residues in fish and shrimp tissues by high-performance liquid chromatography-tandem mass spectrometry», Environ Monit Assess, vol. 194, n.o 5, 2022.
dc.relation.referencesA. Baesu, G. Ballash, D. Mollenkopf, T. Wittum, S. M. P. Sulliván, y S. Bayen, «Suspect screening of pharmaceuticals in fish livers based on QuEChERS extraction coupled with high resolution mass spectrometry», Sci. Total Environ, vol. 783, 2022, p. 146902.
dc.relation.referencesH. Y. Kim, I. S. Lee, y J. E. Oh, «Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea», Sci. Total Environ,vol. 579, 2017, pp. 940-949.
dc.relation.referencesC. Wang et al., «Ecological and human health risks of antibiotics in marine species through mass transfer from sea to land in a coastal area: A case study in Qinzhou Bay, the South China sea»,Environ Pollut, vol. 316, 2023, p. 120502.
dc.relation.referencesS. Zhao, X. Wang, Y. Li, y J. Lin, «Bioconcentration, metabolism, and biomarker responses in marine medaka (Oryzias melastigma) exposed to sulfamethazine», Aquatic Toxicology, vol. 181, 2016, pp. 29-36.
dc.relation.referencesQ.F. Han et al., «Antibiotics in marine aquaculture farms surrounding Laizhou Bay, Bohai Sea: Distribution characteristics considering various culture modes and organism species», Sci. Total Environ., vol. 760, 2021, p. 143863, 2021.
dc.relation.referencesP. M. Ondarza, S. P. Haddad, E. Avigliano, K. S. B. Miglioranza, y B. W. Brooks, «Pharmaceuticals, illicit drugs and their metabolites in fish from Argentina: Implications for protected areas influenced by urbanization», Sci. Total Environ, vol. 649, 2019, pp. 1029-1037.
dc.relation.referencesJ. Wang y P. R. Gardinali, «Analysis of selected pharmaceuticals in fish and the freshwater bodies directly affected by re claimed water using liquid chromatography-tandem mass spectrometry», Anal Bioanal Chem, vol. 404, n.o 9, 2012, pp. 2711-2720.
dc.relation.referencesDaniel. C Harrys, «Análisis químico cuantitativo», 2016.
dc.relation.referencesK. Nozaki et al., «Pharmaceuticals and personal care products (PPCPs) in surface water and fish from three Asian countries: Species-specific bioaccumulation and potential ecological risks», Sci. Total Environ, vol. 866, 2023, p. 161258.
dc.relation.referencesM. Wagil, J. Kumirska, S. Stolte, A. Puckowski, J. Maszkowska, P. Stepnowski, and A. Białk-Bielińska, & quot;Development of sensitive and reliable LC-MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland," Sci. Total Environ., vol. 493, 2014, pp. 1006–1013.
dc.relation.referencesY. Xu, L. Luo, y J. Chen, «Sulfamethoxazole induces brain capillaries toxicity in zebrafish by up-regulation of VEGF and chemokine signalling», Ecotoxicol Environ Saf, vol. 238, 2022, p. 113620.
dc.relation.referencesN.Iftikhar, R. Zafar, y I. Hashmi, «Multi-biomarkers approach to determine the toxicological impacts of sulfamethoxazole antibiotic on freshwater fish Cyprinus carpio», Ecotoxicol Environ Saf, vol. 233, 2022, p. 113331.
dc.relation.referencesW. Qiu et al., «Maternal exposure to environmental antibiotic mixture during gravid period predicts gastrointestinal effects in zebrafish offspring», J Hazard Mater, vol. 399, 2020, p. 123009.
dc.relation.referencesS. Babić et al., «Assessment of river sediment toxicity: Combining empirical zebrafish embryotoxicity testing with in silico toxicity characterization», Sci. Total Environ., vol. 643, 2018, pp. 435-450.
dc.relation.referencesJ. Liu, G. Lu, D. Wu, y Z. Yan, «A multi-biomarker assessment of single and combined effects of norfloxacin and sulfamethoxazole on male goldfish (Carassius auratus) », Ecotoxicol Environ Saf, vol. 102, n.o 1, 2014, pp. 12-17.
dc.relation.referencesT.L.M. Pihlaja, S. M. Niemissalo, y T. M. Sikanen, «Cytochrome P450 Inhibition by Antimicrobials and Their Mixtures in Rainbow Trout Liver Microsomes In Vitro», Environ Toxicol Chem, vol. 41, n.o 3, 2022, pp. 663-676.
dc.relation.referencesD. Jia, R. Zhang, J. Shao, W. Zhang, L. Cai, y W. Sun, «Exposure to trace levels of metals and fluoroquinolones increases inflammation and tumorigenesis risk of zebrafish embryos», Environ. Sci. Pollut. Res, vol. 10, 2022, p. 100162.
dc.relation.referencesY. T. Zhang et al., «Subchronic toxicity of dietary sulfamethazine and nanoplastics in marine medaka (Oryzias melastigma): Insights from the gut microbiota and intestinal oxidative status», Ecotoxicol Environ Saf, vol. 226, 2021, p. 112820.
dc.relation.referencesR. Oliveira, S. McDonough, J. C. L. Ladewig, A. M. V. M. Soares, A. J. A. Nogueira, y I. Domingues, «Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio) », Environ Toxicol Pharmacol, vol. 36, n.o 3, 2013, pp. 903-912.
dc.relation.referencesC. L. Gonçalves et al., «Exposure to a high dose of amoxicillin causes behavioral changes and oxidative stress in young zebrafish», Metab Brain Dis, vol. 35, n.o 8, 2020, pp. 1407-141.
dc.relation.referencesK. L. Deprey y J. K. Uno, «Amoxicillin decreases intestinal microbial diversity and increases stress-associated behaviors in zebrafish», The FASEB Journal, vol. 30, n.o S1, 2016 pp. 1027.7-1027.7.
dc.relation.referencesR. Rao, B. Manu, y A. K. Thalla, «Behavioral, Physical and Biochemical Responses Induced by Amoxicillin Exposure from Cyprinus carpio», IJEE, vol. 10, n.o 03, 2017, pp. 673-676
dc.relation.referencesC.C.E. Yang et al., «Evaluation of Locomotion Complexity in Zebrafish after Exposure to Twenty Antibiotics by Fractal Dimension and Entropy Analysis», Antibiotics, Vol. 11, 2022, p. 1059
dc.relation.referencesF.Z. Vilca, O. M. L. Vilca, R. F. Silveira, y V. L. Tornisielo, «Uptake and depletion of the antibiotic sulfadiazine 14C in rainbow trout (Oncorhynchus mykiss) », J Radioanal Nucl Chem, vol. 323, n.o 3, 2020, pp. 1033-1039
dc.relation.referencesX. Liu, S. Lu, W. Meng, y B. Zheng, «Residues and health risk assessment of typical antibiotics in aquatic products from the Dongting Lake, Chin “Did you eat «Antibiotics» today?” », Environ. Sci. Pollut. Res, vol. 25, n.o 4, 2018, pp. 3913-3921.
dc.relation.referencesS. Rodriguez-Mozaz et al., «Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river», Water Res, vol. 69, 2015, pp. 234-242.
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacionalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectBioacumulación
dc.subjectPenicilinas
dc.subjectSulfonamidas
dc.subjectFluoroquinolonas
dc.subjectCromatografía líquida
dc.subjectEspectrofotometría de masas
dc.subjectToxicidad
dc.subject.ddc615.19
dc.subject.keywordsBioaccumulation
dc.subject.keywordsPenicillins
dc.subject.keywordsSulfonamides
dc.subject.keywordsFluoroquinolones
dc.subject.keywordsLiquid chromatography
dc.subject.keywordsMass spectrophotometry
dc.subject.keywordsToxicity
dc.titleBioacumulación de penicilinas, sulfamidas y fluoroquinolonas en peces: Una revisión bibliográfica de métodos analíticos para su detección, descripción de la biotransformación y toxicidad en peces
dc.title.translatedBioaccumulation of penicillins, sulfonamides and fluoroquinolones in fish: A literature review of analytical methods for their detection, description of biotransformation and toxicity in fish
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
674.53 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Anexo 2 S1 Matriz metodos analiticos S2 Propiedades fisicoquímicas.xlsx
Tamaño:
97.29 KB
Formato:
Microsoft Excel XML