Revisión bibliográfica de estudios preclínicos sobre los efectos de los cannabinoides y su potencial aplicación terapéutica en el tratamiento de la enfermedad de Alzheimer.

dc.contributor.advisorSosa Venegas, Luis Mauricio
dc.contributor.advisorPino-Pinzón, Carmen Juliana
dc.contributor.authorOrtegón Buitrago, Ana María
dc.date.accessioned2024-05-15T00:27:39Z
dc.date.available2024-05-15T00:27:39Z
dc.date.issued2024-04-25
dc.description.abstractLa planta Cannabis sativa, miembro de la familia Cannabaceae está compuesta por cannabinoides, los cuales poseen propiedades analgésicas, neuroprotectoras y antiinflamatorias relacionadas con el sistema endocannabinoide (SEC). Este sistema, compuesto principalmente por los receptores CB1 y CB2 desempeña funciones clave en la cognición, memoria, emociones y control del dolor. El interés en la investigación de Cannabis sativa ha aumentado, especialmente en relación con la enfermedad de Alzheimer (EA), una enfermedad neurodegenerativa que afecta a un número creciente de personas y se ha convertido en una de las principales causas de muerte en todo el mundo, razón por la cual en esta revisión se buscó recopilar literatura científica relacionada a estudios in vivo e in vitro en roedores sobre los efectos de los cannabinoides y su potencial aplicación terapéutica en el tratamiento de la enfermedad de Alzheimer. Para ello se realizó una búsqueda y selección de artículos a través de las bases Scopus, ScienceDirect, ProQuest y Springer Link donde se incluyeron palabras clave y criterios de exclusión e inclusión. Dentro de los resultados que se obtuvieron, se evidenciaron diferentes efectos del Cannabidiol (CBD), Tetrahidrocannabinol (THC) y el uso concomitante de estos cannabinoides; el CBD ha demostrado mitigar la neurotoxicidad y revertir el déficit cognitivo en modelos de ratones con enfermedad de Alzheimer (EA). Además, se ha observado que este cannabinoide tiene impactos positivos en la memoria de reconocimiento social, la reducción de la neuroinflamación, la formación de placas de Aβ y la hiperfosforilación de tau. Por otro lado, el THC ha mostrado reducir la concentración de Aβ y poseer propiedades neuroprotectoras, mejorando el rendimiento cognitivo y la memoria espacial en dosis bajas. Al finalizar la revisión se encontró que tanto el THC como el CDB mostraron tener efectos beneficiosos para el tratamiento de la enfermedad de Alzheimer (EA) en estudios in vivo e in vitro que podrían ayudar a disminuir o detener el progreso de la enfermedad. Sin embargo, se requiere de investigación preclínica para comprender completamente los mecanismos y riesgos del uso de THC, CBD y su mezcla en el contexto de la EA. Así como para comprender completamente los mecanismos y determinar la eficacia y seguridad en el tratamiento de la EA.
dc.description.abstractenglishThe Cannabis sativa plant, a member of the Cannabaceae family, is composed of cannabinoids, which have analgesic, neuroprotective and anti-inflammatory properties related to the endocannabinoid system (ECS). This system, composed mainly of CB1 and CB2 receptors, plays key functions in cognition, memory, emotions and pain control. Interest in Cannabis sativa research has increased, especially in relation to Alzheimer's disease (AD), a neurodegenerative disease that affects a growing number of people and has become a leading cause of death worldwide. , which is why this review sought to compile scientific literature related to in vivo and in vitro studies in rodents on the effects of cannabinoids and their potential therapeutic application in the treatment of Alzheimer's disease. To do this, a search and selection of articles was carried out through the Scopus, ScienceDirect, ProQuest and Springer Link databases, where keywords and exclusion and inclusion criteria were included. Within the results obtained, different effects of Cannabidiol (CBD), Tetrahydrocannabinol (THC) and the concomitant use of these cannabinoids were evident; CBD has been shown to mitigate neurotoxicity and reverse cognitive deficits in mouse models of Alzheimer's disease (AD). Additionally, this cannabinoid has been observed to have positive impacts on social recognition memory, reduction of neuroinflammation, Aβ plaque formation, and tau hyperphosphorylation. On the other hand, THC has been shown to reduce the concentration of Aβ and have neuroprotective properties, improving cognitive performance and spatial memory at low doses. At the end of the review, it was found that both THC and CBD showed beneficial effects for the treatment of Alzheimer's disease (AD) in in vivo and in vitro studies that could help slow or stop the progression of the disease. However, preclinical research is required to fully understand the mechanisms and risks of using THC, CBD, and their mixture in the context of AD. As well as to fully understand the mechanisms and determine the effectiveness and safety in the treatment of AD.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12115
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.referencesÁngeles López, Guadalupe Esther, Brindis, Fernando, Cristians Niizawa, Sol, & Ventura Martínez, Rosa. (2014). Cannabis sativa L., una planta singular. Revista mexicana de ciencias farmacéuticas, 45(4), 1-6. Recuperado en 13 de marzo de 2024, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000400004&lng=es&tlng=es.
dc.relation.references[2] Martín, A. (2011). MECANISMOS DE LA ACCIÓN NEUROPROTECTORA DE LOS CANNABINOIDES EN LA ENFERMEDAD DE ALZHEIMER. [Imagen].
dc.relation.referencesPertwee, R., Howlet, A., Abood, M., Alexander, S., Di Marzo, V., & Elphick, M. (2010). International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev., 62, 588-631.
dc.relation.referencesPertwee, R. (2015). Pharmacological actions of cannabinoids. Handb. Exp. Pharmacol., 231, 1-37.
dc.relation.referencesHu, S., & y Mackie, K. (2015). Distribution of the Endocannabinoid System in the Central Nervous System. Handb Exp Pharmacol., 231, 59-93.
dc.relation.referencesSánchez, A. J., & García-Merino, A. (2012). Neuroprotective agents: cannabinoids. Clinical immunology (Orlando, Fla.), 142(1), 57–67. https://doi.org/10.1016/j.clim.2011.02.010
dc.relation.referencesMaldonado, R., Berrendero, F., Ozaita, A., & y Robledo, P. (2011). Neurochemical basis of cannabis addiction. Neuroscience. , 181, 1-17.
dc.relation.referencesAtwood, B., & Mackie, K. (2010). CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol., 160, 467-479.
dc.relation.referencesSilvestri C, Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013;17(4):475-490. doi:10.1016/j.cmet.2013.03.001
dc.relation.referencesGoicoechea-García, C, Sanz-González, M, Martínez-García, MÁ, Pascual-Serrano, D, & Sánchez-Robles, EM. (2022). Resultados preclínicos de cannabinoides y dolor (algunos). Revista de la Sociedad Española del Dolor, 29(Supl. 1), 3-9. Epub 28 de noviembre de 2022.https://dx.doi.org/10.20986/resed.2022.4033/2022
dc.relation.referencesIqbal, K., Liu, F., & Gong, C. X. (2016). Tau and neurodegenerative disease: the story so far. Nature reviews. Neurology, 12(1), 15–27. https://doi.org/10.1038/nrneurol.2015.225
dc.relation.referencesCalsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimer's & dementia : the journal of the Alzheimer's Association, 12(6), 719–732. https://doi.org/10.1016/j.jalz.2016.02.010
dc.relation.referencesSerrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer informedisease. Cold Spring Harbor perspectives in medicine, 1(1), a006189.
dc.relation.referencesAlzheimer ́s Association. (2023). Alzheimer ’ s disease facts and figures. Alzheimer’s & Dementia, 18, 321–387. DOI: https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf
dc.relation.referencesDíaz, C., López, M., & Roncallo, L. (2017). Entendiendo las generaciones: una revisión del concepto, clasificación y características distintivas de los baby boomers, X y millennials. Clío América, 11(22).
dc.relation.referencesWeidner W., Benoist C, Long, S. (2023). Informe Mundial sobre el Alzheimer 2023 .https://www.alzint.org/u/World-Alzheimer-Report-2023_Spanish.pdf
dc.relation.referencesZapata, A. (2018). Factores asociados al alzhéimer en mujeres entre 60 y 85 años de Colombia [Tesis de pregrado]. UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA.
dc.relation.referencesRomero-Vanegas, S. J., Vargas-González, J. C., Pardo, R., Eslava-Schmalbach, J. y Moreno-Angarita, M. (2021). El sistema de salud colombiano y el reconocimiento de la enfermedad de Alzheimer. Revista de Salud Pública, 23(2), 1-9. https://doi.org/10.15446/rsap.v23n2.88369 [ Links ].
dc.relation.referencesSchubert D, Kepchia D, Liang Z, Dargusch R, Goldberg J & Maher P. (2019). Efficacy of Cannabinoids in a Pre-Clinical Drug-Screening Platform for Alzheimer’s Disease. https://doi.org/10.1007/s12035-019-1637-8
dc.relation.referencesHernández, M (2019). Cannabinoides y la Enfermedad de Alzheimer. Cannabinoids and Alzheimer's Disease. [Imagen] https://riull.ull.es/xmlui/bitstream/handle/915/14724/Cannabinoides%20y%20la%20enfermedad%20de%20Alzheimer.pdf?sequence=1
dc.relation.referencesWatt G, Chesworth R., Przybyla M., Ittner A., Garner B., Ittner L. y Karl T. (2020). Chronic cannabidiol (CBD) treatment did not exhibit beneficial effects in 4-month-old male TAU58/2 transgenic mice, Pharmacology Biochemistry and Behavior, Volume 196,172970, ISSN 0091-3057, https://doi.org/10.1016/j.pbb.2020.172970.
dc.relation.referencesChong F. Yen K. Yian R & Chye S. (2018). Tau Proteins and Tauopathies in Alzheimer’s Disease https://doi.org/10.1007/s10571-017-0574-1
dc.relation.referencesAbate, Giulia; Uberti, Daniela; Tambaro, Simone.(2021). Potential and Limits of Cannabinoids in Alzheimer’s Disease Therapy. 10.3390/biology10060542
dc.relation.referencesVallée A, Lecarpentier Y, Guillevin R, Vallée JN. (2017). Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease.
dc.relation.referencesKarl T, Garner B, Cheng D. (2017). The therapeutic potential of the phytocannabinoid cannabidiol for Alzheimer's disease. 10.1097/FBP.0000000000000247
dc.relation.referencesColes M, Steiner-Lim Z; Karl T.  (2022). Therapeutic properties of multi-cannabinoid treatment strategies for Alzheimer’s disease. 10.3389/fnins.2022.962922
dc.relation.referencesLibro R, Diomede F, Scionti D, Piattelli A, Grassi G, Pollastro F, Bramanti P, Mazzon E y Trubiani O. (2016). Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells.
dc.relation.referencesCheng, D., Spiro, A. S., Jenner, A. M., Garner, B., and Karl, T. (2014). Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer's disease transgenic mice.
dc.relation.referencesHao, F., & Feng, Y. (2021). Cannabidiol (CBD) enhanced the hippocampal immune response and autophagy of APP/PS1 Alzheimer's mice uncovered by RNA-seq. 10.1016/j.lfs.2020.118624 PMID:33096116
dc.relation.referencesWatt, G. , Karl, T. (2017). In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer's Disease. https://doi.org/10.3389/fphar.2017.00020
dc.relation.referencesKlein C, Karanges E, de Adena A, Wong A, Spencer J, Huynh T, Gunasekaran N, Karl T, Largo L, Xu-Feng Huang ,Kelly Liu ,Jonathan C. Arnold yIan S. McGregor (2011). Cannabidiol potentiates Δ9-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats https://doi.org/10.1007/s00213-011-2342-0
dc.relation.referencesMartín A., Reigada D, Ramírez B, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos A. (2011). Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: Relevance to Alzheimer's Disease. 10,1124/mol.111,071290
dc.relation.referencesCheng, D., Low, J. K., Logge, W., Garner, B., and Karl, T. (2014b). Chronic cannabidiol treatment improves social and object. 10.1007/s00213-014-3478-5
dc.relation.referencesFonseca C, Ettcheto M, Bicker J, Fernandez M, Falcão A, Camins A, Fortuna A. (2023). Bajo el paraguas de la fisiopatología de la depresión y la enfermedad de Alzheimer: ¿Pueden los cannabinoides ser una terapia doble pleiotrópica?https://doi.org/10.1016/j.arr.2023.101998
dc.relation.referencesTripson, M., Litwa, K. & Soderstrom, K. (2023) El cannabidiol inhibe las respuestas neuroinflamatorias y la pérdida sináptica asociada al circuito después de un daño en la región cortical premotora vocal de un pájaro cantor. Representante científico 13 , 7907. https://doi.org/10.1038/s41598-023-34924-z
dc.relation.referencesjuyong kim 1 2, Pilju Choi 2, Parque Young-Tae 2, Taejun Kim 2 3, Jamón Jungyeob 2 3 4, Jin Chul Kim (2023). Los cannabinoides, CBDA y THCA, rescatan los déficits de memoria y reducen la patología beta-amiloide y tau en un modelo de ratón similar a la enfermedad de Alzheimer. 10.3390/ijms24076827
dc.relation.referencesSteiner-Lim, G. Z., Coles, M., Jaye, K., Metri, N. J., Butt, A. S., Christofides, K., & Karl, T. (2023). Medicinal Cannabis for Alzheimer's Disease. In Medical Cannabis and the Effects of Cannabinoids on Fighting Cancer, Multiple Sclerosis, Epilepsy, Parkinson's, and Other Neurodegenerative Diseases (pp. 1-47). IGI Global.
dc.relation.referencesChuanhai Caoa,b, Yaqiong Lic , Hui Liua,b , Ge Baic , Jonathan Maylb , Xiaoyang Lina,b , Kyle Sutherlandd , Neel Nabare and Jianfeng Caic (2014). The Potential Therapeutic Effects of THC on Alzheimer’s Disease. 10.3233/JAD-140093
dc.relation.referencesWang, Yanhong; Hong, Yuzhu; Yan, Jiyu; Brown, Breanna; Lin, Xiaoyang (2022). Low-Dose Delta-9-Tetrahydrocannabinol as Beneficial Treatment for Aged APP/PS1 Mice. 10.3390/ijms23052757
dc.relation.referencesSuliman, N.A., Taib, C.N.M., Moklas, M.A.M. et al. Delta-9-Tetrahydrocannabinol (∆9-THC) Induce Neurogenesis and Improve Cognitive Performances of Male Sprague Dawley Rats. Neurotox Res 33, 402–411 (2018). https://doi.org/10.1007/s12640-017-9806-x
dc.relation.referencesCurrais, A., Quehenberger, O., Armando, A., Daugherty, D., Maher, P., & Schubert, D. (2016). Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids. NPJ aging and mechanisms of disease, 2(1), 1-8.
dc.relation.referencesWatt G, Shang K, Zieba J, Olaya J, Li H, Garner B, Karl T. (2020). Chronic Treatment with 50 mg/kg Cannabidiol Improves Cognition and Moderately Reduces Aβ40 Levels in 12-Month-Old Male AβPPswe/PS1ΔE9 Transgenic Mice 10.3233/JAD-191242
dc.relation.referencesNitzan, K., Ellenbogen, L., Bentulila, Z., Dekel, D., Franko, M.(2022). An Ultra-Low Dose of ∆9-Tetrahydrocannabinol Alleviates Alzheimer's Disease-Related Cognitive Impairments and Modulates TrkB Receptor Expression in a 5XFAD Mouse Model. 10.3390/ijms23169449
dc.relation.referencesRuthirakuhan, M. T., Herrmann, N., Gallagher, D., Andreazza, A. C., Kiss, A., Verhoeff, N. P. L. G., Black, S. E., & Lanctôt, K. L. (2019). Investigating the safety and efficacy of nabilone for the treatment of agitation in patients with moderate-to-severe Alzheimer's disease: Study protocol for a cross-over randomized controlled trial. Contemporary clinical trials communications, 15, 100385. https://doi.org/10.1016/j.conctc.2019.100385
dc.relation.referencesWoodward, M. R., Harper, D. G., Stolyar, A., Forester, B. P., & Ellison, J. M. (2014). Dronabinol for the treatment of agitation and aggressive behavior in acutely hospitalized severely demented patients with noncognitive behavioral symptoms. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry, 22(4), 415–419. https://doi.org/10.1016/j.jagp.2012.11.022
dc.relation.referencesNidadavolu, P., Bilkei-Gorzo, A., Krämer, M., Schürmann, B., Palmisano, M., Beins, EC, (2021). Effects of tetrahydrocannabinol treatment on brain metabolism and neuron loss in a mouse model of sporadic Alzheimer's disease 10.3389/fnagi.2021.718850
dc.relation.referencesSeok Hee Kim, Jin Won Yang, Kyung Han Kim, Jong Uk Kim, and Tae Han Yook. (2019). A Review on Studies of Marijuana for Alzheimer’s Disease – Focusing on CBD, THC. 10.3831/KPI.2019.22.030
dc.relation.referencesAso, E., and Ferrer, I. (2015). Cannabinoids for treatment of Alzheimer's disease: moving toward the clinic. https://www.frontiersin.org/articles/10.3389/fphar.2014.00037/full
dc.relation.referencesAhmed, A.I.A., Van Der Marck, M.A., Van Den Elsen, G.A.H., Olde Rikkert, M.G.M.(2015). Cannabinoids in Late-Onset Alzheimer's Disease. 10.1002/cpt.117
dc.relation.referencesAso E, Pol A, Carmona M, Maldonado R, Ferrer I. (2016). Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer's Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine. 10.3233/JAD-150913
dc.relation.referencesCasarejosa, M. Peruchoa, J. Gomeza, A. Munoz, M. Fernandez, M. Sagredoc, O. Fernandez, J. Guzman, M. Garcia, J. y Mena, M. (2013). Natural Cannabinoids Improve Dopamine Neurotransmission and Tau and Amyloid Pathology in a Mouse Model of Tauopathy. 10.3233/JAD-130050.
dc.relation.referencesFarkhondeh, T., Khan, H., Aschner, M., Samini, F., Pourbagher-Sahri, A. M., Aramjoo, H., Roshanravan, B., Hoyte, C., Mehrpour, O., & Samarghandianm, S. (2020). Impact of Cannabis-Based Medicine on Alzheimer's Disease by Focusing on the Amyloid β-Modifications: A Systematic Study 10.2174/1871527319666200708130745.
dc.relation.referencesPascual, A, Martín, M. Giusto, M. de Ceballos, L.Pasquaré, S. (2014). Normal aging in rats and pathological aging in human Alzheimer’s disease decrease FAAH activity: Modulation by cannabinoid agonists https://doi.org/10.1016/j.exger.2014.10.011
dc.relation.referencesLeweke, F. M., Piomelli, D., Pahlisch, F., Muhl, D., Gerth, C. W., Hoyer, C., Klosterkötter, J., Hellmich, M., & Koethe, D. (2012). Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Translational psychiatry, 2(3), e94. https://doi.org/10.1038/tp.2012.15
dc.relation.referencesBurns , K. , Jayasinha , R. , Tsang , R. y Brodaty , H. ( 2012 ). Manejo del comportamiento una guía de buenas prácticas: manejo de los síntomas conductuales y psicológicos de la demencia . DCRC, UNSW Sídney Australia. Disponible en: https://dementiaresearch.org.au/wp-
dc.relation.referencesElmes, M. W., Kaczocha, M., Berger, W. T., Leung, K., Ralph, B. P., Wang, L., Sweeney, J. M., Miyauchi, J. T., Tsirka, S. E., Ojima, I., & Deutsch, D. G. (2015). Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). The Journal of biological chemistry, 290(14), 8711–8721. https://doi.org/10.1074/jbc.M114.618447
dc.relation.referencesRodríguez A. & Hernandez F. (2020). Envejecimento, Alzheimer y reprogramación celular in vivo. Efecto de la sobreexpresión de GSK-3β y de los factores de Yamanaka en el sistema nervioso central. , https://repositorio.uam.es/bitstream/handle/10486/692804/garcia_rodriguez_alberto.pdf?sequence=1
dc.relation.referencesLi B, Chohan MO, Grundke-Iqbal I, Iqbal K. (2007). Interrupción de la red de microtúbulos por tau anormalmente hiperfosforilada de Alzheimer. Acta Neuropathol (Berl) ; 113 : 501–511.
dc.relation.referencesGra Menéndez, Silvia, Padrón Pérez, Noel, & Llibre Rodríguez, Juan de Jesús. (2002). Péptido beta amiloide, proteína Tau y enfermedad de Alzheimer. Revista Cubana de Investigaciones Biomédicas, 21(4), 253-261. Recuperado en 21 de abril de 2024, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002002000400006&lng=es&tlng=es.
dc.relation.referencesRom, S., & Persidsky, Y. (2013). Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology, 8(3), 608–620. https://doi.org/10.1007/s11481-013-9445-9
dc.relation.referencesSarne, Y., Asaf, F., Fishbein, M., Gafni, M., & Keren, O. (2011). The dual neuroprotective-neurotoxic profile of cannabinoid drugs. British journal of pharmacology, 163(7), 1391–1401. https://doi.org/10.1111/j.1476-5381.2011.01280.x
dc.relation.referencesLi, X. L., Hu, N., Tan, M. S., Yu, J. T., & Tan, L. (2014). Behavioral and psychological symptoms in Alzheimer's disease. BioMed research international, 2014, 927804. https://doi.org/10.1155/2014/927804
dc.relation.referencesIakas T, van Nieuwenhuijzen PS, Devenish SO, McGregor IS, Arnold JC, Chebib M. (2017).The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. Pharmacol. 119:358-370. doi:10.1016/j.phrs.2017.02.022
dc.relation.referencesGómez-García, D. M., & García-Perdomo, H. A. (2022). Medical cannabis: Critical points for clinical application. Cannabis medicinal: puntos críticos para su uso clínico. Biomedica : revista del Instituto Nacional de Salud, 42(3), 450–459. https://doi.org/10.7705/biomedica.6468
dc.relation.referencesRomero Tirado, MA, Pampin, Blanco, Gallego Gómez, R, García-Caballero, L, & Varela Gómez, M. (2022). Proteína precursora del beta-amiloide (β-App) y daño axonal difuso tras un traumatismo craneoencefálico: un punto de vista forense. Medicina Legal de Costa Rica , 39 (2), 37-50. Recuperado el 21 de abril de 2024, de http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152022000200037&lng=en&tlng=es.
dc.relation.referencesWinston, C. N., Chellappa, D., Wilkins, T., Barton, D. J., Washington, P. M., Loane, D. J., Zapple, D. N., & Burns, M. P. (2013). Controlled cortical impact results in an extensive loss of dendritic spines that is not mediated by injury-induced amyloid-beta accumulation. Journal of neurotrauma, 30(23), 1966–1972. https://doi.org/10.1089/neu.2013.2960
dc.relation.referencesMorales J, Poveda E. (2017). Efectos del consumo de marihuana en adultos sobre la ingesta y el metabolismo de los nutrientes: una revisión. Rev Esp Nutr Hum Diet; 21( 3 ): 280-292. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S2174-51452017000300010&lng=es. https://dx.doi.org/10.14306/renhyd.21.3.328.
dc.relation.referencesvan Dalen-Kok, A. H., Pieper, M. J., de Waal, M. W., Lukas, A., Husebo, B. S., & Achterberg, W. P. (2015). Association between pain, neuropsychiatric symptoms, and physical function in dementia: a systematic review and meta-analysis. BMC geriatrics, 15, 49. https://doi.org/10.1186/s12877-015-0048-6
dc.relation.referencesSantos-García Sanz, I. (2021). Potencial terapéutico del sistema endocannabinoide en el espectro ELA-DFT.
dc.relation.referencesOsuna-Zazueta, Marcela Amparo, Ponce-Gómez, Juan Antonio, & Pérez-Neri, Iván. (2015). Mecanismos neuroprotectores de los canabinoides en la isquemia cerebral y las enfermedades neurodegenerativas. Investigación Clínica, 56(2), 188-200. Recuperado en 21 de abril de 2024, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0535-51332015000200008&lng=es&tlng=es.
dc.relation.referencesBhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, Nosarti C, O' Carroll CM, Seal M, Allen P, Mehta MA, Stone JM, Tunstall N, Giampietro V, Kapur S, Murray RM, Zuardi AW, Crippa JA, Atakan Z, McGuire PK. (2010). Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology. 35(3):764-74. doi: 10.1038/npp.2009.184.
dc.relation.referencesKatona, I., & Freund, T. F. (2012). Multiple functions of endocannabinoid signaling in the brain. Annual review of neuroscience, 35, 529–558. https://doi.org/10.1146/annurev-neuro-062111-150420
dc.relation.referencesCastillo, P. E., Younts, T. J., Chávez, A. E., & Hashimotodani, Y. (2012). Endocannabinoid signaling and synaptic function. Neuron, 76(1), 70–81. https://doi.org/10.1016/j.neuron.2012.09.020
dc.relation.referencesNovotna, A., Mares, J., Ratcliffe, S., Novakova, I., Vachova, M., Zapletalova, O., & Group, S. P. S. (2011). A randomized, double‐blind, placebo‐controlled, parallel‐group, enriched‐design study of nabiximols* (Sativex ®), as add‐on therapy, in subjects with refractory spasticity caused by multiple sclerosis. European Journal of Neurology, 18(9), 1122-1131. [DOI: 10.1111/j.1468-1331.2010.03328.x]
dc.relation.referencesMonteiro, K. L. C., Dos Santos Alcântara, M. G., de Aquino, T. M., & da Silva-Júnior, E. F. (2021). Cannabinoid pharmacology and its therapeutic uses in Alzheimer's disease. Neural regeneration research, 16(5), 990–991. https://doi.org/10.4103/1673-5374.294336
dc.relation.referencesDi Marzo V., Stella N., Zimmer A. (2015). Señalización endocannabinoide y deterioro del cerebro. Nat. Rev. Neurociencias. 16 (1): 30–42. [http://dx.doi.org/10.1038/nrn3876].
dc.relation.referencesDeutsch D. G. (2016). A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs). Frontiers in pharmacology, 7, 370. https://doi.org/10.3389/fphar.2016.00370
dc.relation.referencesCassano, T., Calcagnini, S., Pace, L., De Marco, F., Romano, A., & Gaetani, S. (2017). Cannabinoid Receptor 2 Signaling in Neurodegenerative Disorders: From Pathogenesis to a Promising Therapeutic Target. Frontiers in neuroscience, 11, 30. https://doi.org/10.3389/fnins.2017.00030
dc.relation.referencesSolas M., Francis PT, Franco R., Ramirez MJ (2013). Receptor CB2 y patología amiloide en la corteza frontal de pacientes con enfermedad de Alzheimer. Neurobiol. Envejecimiento. 34 (3): 805–808. [http://dx.doi. org/10.1016/j.neurobiolaging.2012.06.005].
dc.relation.referencesRodríguez-Cueto C., Benito C., Fernández-Ruiz J., Romero J., Hernández-Gálvez M., Gómez-Ruiz M. (2014). Cambios en los receptores CB(1) y CB(2) en la autopsia cerebelo de humanos afectados por ataxias espinocerebelosas. Hno. J. Farmacol. 171 (6): 1472-1489. [http://dx.doi.org/10.1111/bph.12283].
dc.relation.referencesSoria, D., Gaitán, B., Jiménez, H, & Miranda, R. (2019). El Sistema de Endocannabinoides como regulador de la lipogénesis y su posible modulación por la Mangiferina. Revista biomédica, 30(2), 83-102. https://doi.org/10.32776/revbiomed.v30i2.638
dc.relation.referencesMatthew J. Joanne E. Patrick M. Tammy C. Hoffmann, D. Shamseer, M. Tetzlaff, A. Akl, E. Glanville, M. Hróbjartsson, M. Li, W. Luke A. McGuinness, A. Stewart, C. Tricco, A. (2021) Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas, Revista Española de Cardiología, Volume 74, Issue 9, https://doi.org/10.1016/j.recesp.2021.06.016
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCannabinoides
dc.subjectNeurotoxicidad
dc.subjectEnfermedades neurodegenerativas
dc.subjectCannabis
dc.subjectAlzheimer
dc.subject.ddc615.19
dc.subject.keywordsCannabinoids
dc.subject.keywordsNeurotoxicity
dc.subject.keywordsNeurodegenerative diseases
dc.subject.keywordsCannabis
dc.subject.keywordsAlzheimer's
dc.titleRevisión bibliográfica de estudios preclínicos sobre los efectos de los cannabinoides y su potencial aplicación terapéutica en el tratamiento de la enfermedad de Alzheimer.
dc.title.translatedBibliographic review of preclinical studies on the effects of cannabinoids and their potential therapeutic application in the treatment of Alzheimer's disease.
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
Anexo 1 Acta de aprobación.pdf
Tamaño:
1.43 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Carta de autorizacion.pdf
Tamaño:
200.26 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Trabajo de grado.docx.pdf
Tamaño:
885.21 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción: