Diseño y caracterización de hidrogeles empleando Eichhornia crassipes (buchón de agua)

dc.contributor.advisorJiménez Cruz, Ronald Andrés
dc.contributor.advisorMillán Cortés, Diana Milena
dc.contributor.authorBriceño Barón, Andrea Nicole
dc.contributor.authorMolina Rodríguez, Angelly Nicole
dc.contributor.authorQuiñones Martinez, Maria Jose
dc.date.accessioned2024-05-15T18:34:49Z
dc.date.available2024-05-15T18:34:49Z
dc.date.issued2024-05
dc.description.abstractLa creciente demanda de alternativas a los hidrogeles sintéticos y la inconveniente proliferación de la Eichhornia crassipes que causa afectaciones al medio ambiente, parecen ser dos problemáticas que se pueden solventar entre sí. Este estudio pretendía evaluar la viabilidad de esta planta invasora como fuente de celulosa para la fabricación de hidrogeles físicos de uso tópico. Para ello, se obtuvieron cuatro prototipos mediante variaciones de la metodología Organosolv, los cuales fueron caracterizados farmacotécnicamente y reológicamente. Los ensayos revelaron que cada prototipo obtenido se trataba de un hidrogel, con un contenido de agua superior al 92%, determinado por pérdida por secado, y un rendimiento del 31.1% ± 4.9%. La esparcibilidad señaló el prototipo B como semifluido, mientras que las pruebas reológicas determinaron que entre los prototipos no hay diferencias significativas y son pseudoplásticos garantizando el uso como hidrogeles tópicos. Además, todos los hidrogeles demostraron una baja citotoxicidad. Un análisis IR sugirió diferencias estructurales en cada uno de los hidrogeles, confirmando a su vez la prevalencia de celulosa. Se llevó a cabo un análisis de varianza (p < 0.05) para determinar cambios significativos. En conjunto, estos hallazgos sugieren que la Eichhornia crassipes es una fuente viable para la fabricación de hidrogeles.
dc.description.abstractenglishThe increasing demand for alternatives to synthetic hydrogels and the issue of Eichhornia crassipes' proliferation, which causes environmental damage, seem to be two problems that can be addressed by each other. This study aimed to evaluate the feasibility of utilizing this invasive plant as a source of cellulose for the fabrication of topical-use physical hydrogels. Four prototypes were synthesized via variations of the Organosolv methodology and subsequently subjected to pharmaceutical characterization. The experimental assays demonstrated that each prototype constituted a hydrogel, characterized by a water content exceeding 92%, as determined through drying loss, with a yield of 31.1% ± 4.9%. Evaluation of spreadability indicated the suitability of prototype B, while rheological assessments determined that there were no significant differences among the prototypes and they were all pseudoplastic, enserió their use as topical hydrogels. Furthermore, all hydrogels exhibited low cytotoxicity. Infrared spectroscopy revealed distinctive structural variances among the hydrogel formulations, confirming the predominance of cellulose. Statistical analysis, conducted via analysis of variance (p < 0.05), underscored significant differences. Collectively, these findings display the potential of Eichhornia crassipes as a viable cellulose source for hydrogel production.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12118
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.referencesLaffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int.J.Pharm. 2020, 590, 1-15.
dc.relation.referencesDuceac, I.A.; Stanciu, M.-C.; Nechifor, M.; Tanasă, F.; Teacă, C.-A. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022, 8, 771.
dc.relation.referencesYang, D. Recent Advances in Hydrogels. Chem.Mater. 2022, 34, 1987–1989.
dc.relation.referencesXiaoliu, L.; Chunliu, H.; Hui, L.; Hu, C.; Jiabao, S.; Hongwei, C.; Gang, L. Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chin.Chem.Lett. 2023, 1-16.
dc.relation.referencesPreeti, M.; Monika, S.; Meena, D. Hydrogels: An overview of its classifications, properties, and applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145.
dc.relation.referencesMaximize Market Research. Hydrogel Market: Global Industry Analysis And Forecast 2024-2030. Recuperado de https://www.maximizemarketresearch.com/market-report/global-hydrogel-market/30928/#toc (Consultado el 4 de Febrero de 2024).
dc.relation.referencesBakrim, W.; Ezzariai, A.; Karouach, F.; Sobeh, M.; Kibret, M.; Hafidi, M. Eichhornia crassipes (Mart.) Solms: A Comprehensive Review of Its Chemical Composition, Traditional Use, and Value-Added Products. Front. Pharmacol. 2022, 13.
dc.relation.referencesRajen, K.; Pushpa, M.; Bhawna, C.; Bappaditya, D.. Cellulose hydrogels: Green and sustainable soft biomaterials, Curr. Res. Green. Sustain. Chem. 2022, 5, 100252.
dc.relation.referencesWei, Z.; Lulu, L.; Hui, C.; Jing, Z.; Xinyi, L.; Sheng, Y.; Xiaojing, L.. Hydrogel-based dressings designed to facilitate wound healing. Mat. Adv. 2024, 5, 1364-1394.
dc.relation.referencesZhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514.
dc.relation.referencesZainal, S. H.; Mohd, N. H.; Suhaili, N.; Anuar, F. H.; Lazim, A. M.; Othaman, R. Preparation of Cellulose-based Hydrogel: A Review. J. Mater. Res. Technol. 2020, 10, 935-952.
dc.relation.referencesKannan, K.P.; Bharani, M.; Pavithra, M.K.; Harshini, S.; Keerthika D. Extraction, Purification and Characterization of Nanocrystalline Cellulose from Eichhornia crassipes (Mart.) Solms: A Common Aquatic Weed Water Hyacinth. J. Nat. Fibers 2022, 19, 7424-7435.
dc.relation.referencesAshvinder, K.; Vijai, K.; Phil, H.; Vijay, K.T. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications, Environ. Res. 2024, 243, 117889.
dc.relation.referencesKilole T.C. Extraction of cellulose nanocrystals from agricultural by-products: a review, Green Chem. Lett. Rev., 2022, 15:3, 582-597.
dc.relation.referencesSetyaningsih, L.; Satria, E.; Khoironi, H.; Dwisari, M.; Setyowati, G.; Rachmawati, N.; Kusuma, R.; Anggraeni, J. Cellulose extracted from water hyacinth and the application in hydrogel. Mater. Sci. Eng. 2019 , 673, 012017.
dc.relation.referencesNasmi, H.S.; Suteja; Sanjay, M.R.; Suchart, S. A Review on Cellulose Fibers from Eichornia Crassipes: Synthesis, Modification, Properties and Their Composites, J. Nat. Fibers, 2023, 20, 2162179.
dc.relation.referencesNazrul, I.; Fatima, R.; Sumona, A.P.; Omar, F.; Atanu, K.D.; Nipa, A.; Adolphe, O.D.; Nazmul, A. Water hyacinth (Eichhornia crassipes (Mart.) Solms.) as an alternative raw material for the production of bio-compost and handmade paper. J. Environ. Manage. 2021, 294, 113036.
dc.relation.referencesAkshay, J.; Bhaskor, J.; Rakesh, K.; Prabhakar, S.; Hiranya, D. Theoretical potential estimation and multi-objective optimization of Water Hyacinth (Eichhornia Crassipes) biodiesel powered diesel engine at variable injection timings, Renew. Energy, 2023, 206, 514-530.
dc.relation.referencesRenu, P.; Preeti, P.; Dong, Z; Gaurav, P.; Adam, P. H; Anamika, K.; Shivani, G. Recent advancements in treatment technologies for lignocellulosic fermentation of water hyacinth, In Advanced Zero Waste Tools, Bio-Based Materials and Waste for Energy Generation and Resource Management, 2023, 5, 281-297.
dc.relation.referencesNgcobo, S.; Bada, S. O.; Ukpong, A. M.; Risenga, I. Optimal chlorophyll extraction conditions and postharvest stability in Moringa (M. Oleifera) leaves. J. Food Meas. Charact., 2023, 18, 1611–1626.
dc.relation.referencesAtykyan, N.; Revin, V.; Shutova, V. Raman and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Expr 2020, 10, 84.
dc.relation.referencesPackiam, K.; Murugesan, B; Kaliyannan, M.; Srinivasan, H.; Dhanasekaran, K. Extraction, Purification and Characterization of Nanocrystalline Cellulose from Eichhornia crassipes (Mart.) Solms: A Common Aquatic Weed Water Hyacinth. Journal of Natural Fibers, 2021, 19, 1–12.
dc.relation.referencesMd Salim, R;, Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol 2021, 55, 295–313.
dc.relation.referencesAhmad, Z.; Salman, S.; Khan, S. A.; Amin, A.; Rahman, Z. U.; Al-Ghamdi, Y. O.; Akhtar, K.; Bakhsh, E. M.; Khan, S. B. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022, 8(3), 167.
dc.relation.referencesMezger, T. Applied Rheology. 1st ed. Austria, 2015.
dc.relation.referencesYuxuan, M.; Peng, L.; Jiewei, Y.; Yanjie, B.; Huan, Z.; Xiao, L.; Huilin, Y.; Lei, Y. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis. J. Mater. Sci. Technol. 2021, 63, 228-235.
dc.relation.referencesMartinez, M.; García, V.; Gude, M.R. Gel point determination of thermoset prepreg by means of rheology. Polymer Testing, 2019, 78.
dc.relation.referencesHo, T.C.; Chang, C. C.; Chan, H. P.; Chung, T. W.; Shu, C. W.; Chuang, K. P.; Duh, T. H.; Yang, M. H.; Tyan, Y. C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27(9), 2902.
dc.relation.referencesPoole, C. F. Solvent selection for liquid-phase extraction. Liquid-phase extraction 2020, 45-89.
dc.relation.referencesNair, L. G.; Agrawal, K.; Verma, P. Organosolv pretreatment: an in-depth purview of mechanics of the system. Bioresources and Bioprocessing 2023, 10(1), 50.
dc.relation.referencesVaidya, A.A.; Murton, K.D.; Smith, D.A.; Deudal, G. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conv. Bioref 2022, 12, 5427–5442.
dc.relation.referencesKarlsson, R.M.; Larsson, P.T.; Pettersson, T.; Wågberg, L. Swelling of Cellulose-Based Fibrillar and Polymeric Networks Driven by Ion-Induced Osmotic Pressure. Langmuir, 2020.
dc.relation.referencesMahajan, N.M.; Wanaskar, K.; Ali, N.; Mahapatra, D.K.; Iqbal, M.; Bhat, A.R.; Kaleem, M. Innovative Wound Healing Hydrogel Containing Chicken Feather Keratin and Soy Isoflavone Genistein: In Vivo Studies. Gels 2023, 9, 462.
dc.relation.referencesWahib, S. A., Da'na, D. A.; Al-Ghouti, M. A. Insight into the extraction and characterization of cellulose nanocrystals from date pits. Arab. J. Chem., 2022, 15(3), 103650.
dc.relation.referencesFerro, M.; Mannu, A.; Panzeri, W.; Theeuwen, C.H.J.; Mele A. An Integrated Approach to Optimizing Cellulose Mercerization. Polymers (Basel) 2020; 12(7):1559.
dc.relation.referencesTatsumi, D.; Kanda, A.; Kondo, T. Characterization of mercerized cellulose nanofibrils prepared by aqueous counter collision process. J Wood Sci 2022, 68, 13.
dc.relation.referencesVäisänen, S., Kosonen, H., Ristolainen, M. et al. Cellulose dissolution in aqueous NaOH–ZnO: effect of pulp pretreatment at macro and molecular levels. Cellulose 2021­, 28, 4385–4396.
dc.relation.referencesDuceac, I.; Tanasa, F.; Coseri, S. Selective Oxidation of Cellulose-A Multitask Platform with Significant Environmental Impact. Materials (Basel) 2022, 15(14):5076.
dc.relation.referencesChrysanta, A.; Agnes, M.; Supriyanto; Andriati, N. Effect of Sodium Hydroxide and Sodium Hypochlorite on the Physicochemical Characteristics of Jack Bean Skin (Canavalia ensiformis). Pakistan Journal of Nutrition 2019, 18: 193-200.
dc.relation.referencesFischer, K. Obtención de un álcali-celulosa apropiado para reacciones de derivatización. Google Patents, 2018.
dc.relation.referencesFechter, C., Fischer, S., Reimann, F. et al. Influence of pulp characteristics on the properties of alkali cellulose. Cellulose 2020, 27, 7227–7241.
dc.relation.referencesAli, F.; Milad, S.; Alireza, O.; Hamid, S.; Mehran, N. Synthesis of a nanocomposite with holocellulose extracted from barley straw and montmorillonite, and optimization of the removal of methylene blue dye using the synthesized adsorbent. Appl. Water Sci. 2023, 13, 243.
dc.relation.referencesWang, T.; Zhao, Y. Optimization of bleaching process for cellulose extraction from apple and kale pomace and evaluation of their potentials as film forming materials. Carbohydr. Polym.,2021, 253, 117225.
dc.relation.referencesJiya, V.P.; Athira, H.M.; Hafeela, S.G.; Sabu, T.; Pereira, M. Hydrogels: An overview of the history, classification, principles, applications, and kinetics, Sustain. Hydrogels, 2023, 1-22.
dc.relation.referencesTudoroiu, E.; Albu, M.G.; Titorencu, I; et al. Design and evaluation of new wound dressings based on collagen-cellulose derivatives. Mater Des. 2023, 236, 112469.
dc.relation.referencesSupachok, T.; Sirilak, M.; Chotirot, K.; Woraporn, K.; Kasidit T.; Chutidech, T.; Anyaporn, B. Extraction of Nanofibrillated Cellulose from Water Hyacinth Using a High Speed Homogenizer, J. Nat. Fibers, 2022, 19:13, 5676-5696.
dc.relation.referencesXiang, C.; Weijie, S.; Xiangdong, L.; Zilong, D.; Yongping, C. Convective drying of shrinking hydrogel with a constant temperature stage: Experimental and numerical investigations, International Journal of Heat and Mass Transfer. 2024, 219, 124815.
dc.relation.referencesRomruen, O.; Karbowiak, T.; Tongdeesoontorn, W.; Shiekh, K.; Rawdkuen, S. Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand. Polymers, 2022, 14(9), 1830.
dc.relation.referencesAnita, E.; Amaka, J.; Simon, R.; Stephen, J. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chemical Reviews. 2023 123 (5), 2016-2048.
dc.relation.referencesGonzales, K.N. Síntesis de hidrogeles con derivado de quitosana y caracterización de sus propiedades fisicoquímicas y mecánicas, Maestría, Pontificia Universidad Católica Del Perú, Lima, 2019.
dc.relation.referencesSolhi, L.; Guccini, V.; Heise, K.; Solala, L.; Niinivaara, E.; Xu, W.; Mihhels, K.; Kröger, M.; Meng, Z.; Wohlert, J.; Tao, H.; Cranston, E.; Kontturi, E. Understanding Nanocellulose–Water Interactions: Turning a Detriment into an Asset. Chemical Reviews 2023, 123 (5) , 1925-2015.
dc.relation.referencesWong, R.S.H.; Ashton, M.; Dodou, K. Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics. 2015, 7(3), 305–19.
dc.relation.referencesISO. The International Organization for Standardization 10993–5. Biological evaluation of medical devices Part 5: Tests for in vitro cytotoxicity. 2009; 1–24.
dc.relation.referencesCarvalho, L. F. C.; dos Santos, L.; Bonnier, F.; O’Callaghan, K.; O’Sullivan, J.; Flint, S.; Neto, L.P.M.; Martin, A.A.; Lyng, F.M.; Byrne, H. J. Can ethanol affect the cell structure - a dynamic molecular and Raman spectroscopy study. Photodiagnosis and Photodynamic Therapy 2020, 101675.
dc.relation.referencesKar, N.; Gupta, D.; Bellare, J.. Ethanol affects fibroblast behavior differentially at low and high doses: A comprehensive, dose-response evaluation. Toxicology reports 2021, 8, 1054–1066.
dc.relation.referencesSalazar, S.; Torres, C.; Rojas, J. Cytotoxic evaluation of sodium hypochlorite, using Pisum sativum L as effective bioindicator. Ecotoxicology and Environmental Safety 2019, 173, 71–76.
dc.relation.referencesUmai, R.; Samuel J.; Vinod K. Deep Eutectic Solvent Pretreatment of Water Hyacinth for Improved Holocellulosic Saccharification and Fermentative Co-Production of Xylitol and Lipids Using Rhodosporidium toruloides NCIM 3547, Fermentation 2022, 8(11), 591.
dc.relation.referencesPintor, L.; Rivera, J.; Ngangyo, M.; Rutiaga, J. Evaluation of the chemical components of Eichhornia crassipes as an alternative raw material for pulp and paper, BioRes, 2018. 13(2), 2800-2813.
dc.relation.referencesSuh, E.; Park, B.; Han, B. In vitro micropropagation of water hyacinth (Eichhornia crassipes). Journal of Plant Biotechnology, 2010, 37(4), 505-510.
dc.relation.referencesAhmed, F;, Wodag, A.; Gelebo, G.; Gebre, B. Ethiopian Water Hyacinth Leaf Extract as a Potential Tannery Effluent Treatment Material. Journal of Engineering, 2022.
dc.relation.referencesKablanbekov, A.; Svetlana Y.; Feruza B.; Serik S.; Sergey Y.; Nurgali S.; Baimakhan S.; Alma T.; Abdurassul Z. Rice Husk Cellulose-Based Adsorbent to Extract Rare Metals: Preparing and Properties. Materials 2023, 16(18), 6277.
dc.relation.referencesUrbano, C. Validación del método analítico para la cuantificación de polifenoles totales en productos elaborado con té verde por método colorimétrico folin ciocalteu. Pregrado, Universidad ICESI, Santiago de Cali, 2016.
dc.relation.referencesACS. Infrared Spectroscopy. ACS Reagent Chemicals, 2017, 2.
dc.relation.referencesCasas, E.; Raquid, J.; Yaptenco, K.; Peralta, E. Optimized drying parameters of water hyacinths (Eichhornia crassipes. L). Science Diliman 2012, 24(2).
dc.relation.referencesNaga, V.; Maheshwari, P.; Navya, M.; Reddy, S.; Shivakumar, H.; Gowda, D.v. Calcipotriol delivery into the skin as emulgel for effective permeation. Saudi Pharmaceutical Journal. 2014, 22(6), 591–599.
dc.relation.referencesStojkov, G.; Niyazov, Z.; Picchioni, F.; Bose, R. Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels. 2021, 7(4), 255.
dc.relation.referencesMihranyan, A.; Edsman, K.; Strømme, M. Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocolloids 2007, 21(2), 267-272.
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHidrogel físico
dc.subjectCelulosa
dc.subjectEichhornia crassipes
dc.subjectUso tópico
dc.subjectBiomasa
dc.subjectMaterial lignocelulósico
dc.subject.ddc615.19
dc.subject.keywordsPhysical hydrogel
dc.subject.keywordsCellulose
dc.subject.keywordsEichhornia crassipes
dc.subject.keywordsTopical use
dc.subject.keywordsBiomass
dc.subject.keywordsLignocellulosic material
dc.titleDiseño y caracterización de hidrogeles empleando Eichhornia crassipes (buchón de agua)
dc.title.translatedDesign and characterization of hydrogels using Eichhornia crassipes (water hyacinth)
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
13.97 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Anexo 2 Material suplementario.pdf
Tamaño:
469.09 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Anexo 3 Certificado de identificación taxonómica.pdf
Tamaño:
334.12 KB
Formato:
Adobe Portable Document Format