Quimiosensores: una alternativa para la detección de antibióticos y antimicóticos en aguas para la prevención de la resistencia antimicrobiana

dc.contributor.advisorSarmiento Monsalve, Jeymy Tatiana
dc.contributor.authorParra Riaño, Allison Gabriela
dc.contributor.authorRamos Vásquez, Ana María
dc.date.accessioned2024-11-20T16:47:34Z
dc.date.available2024-11-20T16:47:34Z
dc.date.issued2024-10
dc.description.abstractLos antimicrobianos, hoy en día, representan uno de los problemas más grandes relacionados con la contaminación ocasionada por desechos de productos farmacéuticos, encontrados en diversas matrices ambientales, dentro de las cuales están las fuentes hídricas. Estas fuentes hídricas son las matrices de mayor preocupación actual, debido a que, tienen la capacidad de proporcionar condiciones favorables para la propagación de genes de resistencia antimicrobiana. Esta contaminación representa un gran problema de salud pública, cuyo efecto principal es el aumento de patógenos con resistencia adquirida dificultando así su tratamiento y manejo médico. Por lo tanto, es de suma importancia buscar alternativas que permitan realizar una detección temprana, adecuada, económica y sencilla de diferentes agentes antimicrobianos en entornos acuáticos. Los quimiosensores son una alternativa para la detección de estos agentes, ya que, presentan una gran variedad de ventajas, como: simplicidad, detección a simple vista, debido a que no requiere la utilización de instrumentos costosos y su respuesta es rápida. En el presente trabajo de grado se recopila información de los últimos avances científicos en la investigación, síntesis y desarrollo de quimiosensores usados para la detección de antimicrobianos en fuentes hídricas, clasificándolos y explicando el tipo de antimicrobiano que tienen la capacidad de detectar, sus mecanismos de detección, características y ventajas frente a las metodologías usadas en la actualidad, esto se realizará a través de una revisión bibliográfica en diferentes bases de datos como: ProQuest One Academic, Science Direct, Reaxys y Pubmed utilizando herramientas para la selección de los artículos científicos a revisar, como lo son: operadores booleanos, criterios de inclusión y exclusión, seleccionando un total de 60 artículos que fueron revisados minuciosamente para su análisis. Finalmente, se logró identificar los mecanismos de detección principales por los cuales los quimiosensores tienen la capacidad de detectar las diferentes familias de antimicrobianos generando una señal inmediata, siendo los más utilizados: el efecto de filtro interno (IFE) y la transferencia de electrones fotoinducida (PET), además de describir los diferentes quimiosensores para la detección de antimicrobianos en fuentes hídricas identificando tres grupos importantes que han sido desarrollados y sintetizados en los últimos años, los cuales son: quimiosensores fluorimétricos, colorimétricos y electroquímicos, cumpliendo un papel fundamental en la prevención de la resistencia antimicrobiana, por su capacidad para detectar muestras de forma no destructiva, rápida y selectiva.
dc.description.abstractenglishAntimicrobials, nowadays, represent one of the biggest problems related to contamination caused by waste pharmaceuticals found in various environmental matrices, among which are water sources. These water sources are the matrices of greatest current concern because they have the capacity to provide favorable conditions for the propagation of antimicrobial resistance genes. This contamination represents a major public health problem, whose main effect is the increase of pathogens with acquired resistance, thus making their treatment and medical management more difficult. Therefore, it is of utmost importance to look for alternatives that allow early, adequate, economical and simple detection of different antimicrobial agents in aquatic environments. Chemosensors are an alternative for the detection of these agents, since they present a great variety of advantages, such as: simplicity, detection at a glance, because they do not require the use of expensive instruments and their response is fast. In this degree work, information on the latest scientific advances in research, synthesis and development of chemosensors used for the detection of antimicrobials in water sources is compiled, classifying them and explaining the type of antimicrobial that have the ability to detect, their detection mechanisms, characteristics and advantages over the methodologies currently used, this will be done through a literature review in different databases such as: ProQuest One Academic, Science Direct, Reaxys and Pubmed using tools for the selection of scientific articles to be reviewed, such as: Boolean operators, inclusion and exclusion criteria, selecting a total of 60 articles that were thoroughly reviewed for analysis. Finally, it was possible to identify the main detection mechanisms by which the chemosensors have the capacity to detect the different families of antimicrobials generating an immediate signal, being the most used: Internal Filter Effect (IFE) and Photoinduced Electron Transfer (PET), in addition to describing the different chemosensors for the detection of antimicrobials in water sources identifying three important groups that have been developed and synthesized in recent years, which are: fluorimetric, colorimetric and electrochemical chemosensors, fulfilling a fundamental role in the prevention of antimicrobial resistance, for their ability to detect samples in a non-destructive, rapid and selective manner.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13272
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.references[1]. Burnett-Boothroyd, S. C., & McCarthy, B. J. (2011). Antimicrobial treatments of textiles for hygiene and infection control applications: an industrial perspective. Textiles for Hygiene and Infection Control, 196–209. https://doi.org/10.1533/9780857093707.3.196
dc.relation.references[2]. Yanbo Zeng, Liu Qi Fengqin Chang, Lizeng Duan, Donglin Li, Hucai Zhang. (2022). Recent Advances and Perspectives on the Sources and Detection of Antibiotics in Aquatic Environments. Journal of Analytical Methods in Chemistry. Article ID 5091181. 14 pages. https://doi.org/10.1155/2022/5091181
dc.relation.references[3]. Okoye, C. O., Nyaruaba, R., Ita, R. E., Okon, S. U., Addey, C. I., Ebido, C. C., Opabunmi, A. O., Okeke, E. S., & Chukwudozie, K. I. (2022). Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. Environmental Toxicology and Pharmacology, 96, 103995. https://doi.org/10.1016/J.ETAP.2022.103995
dc.relation.references[4]. Alderton, I., Palmer, B. R., Heinemann, J. A., Pattis, I., Weaver, L., Gutiérrez-Ginés, M. J., Horswell, J., & Tremblay, L. A. (2021). The role of emerging organic contaminants in the development of antimicrobial resistance. Emerging Contaminants, 7, 160–171. https://doi.org/10.1016/J.EMCON.2021.07.001
dc.relation.references[5]. Bai, Y., Zhang, M., Wang, B., Ren, Y., Wang, J. J., Cui, H., & Yang, X. (2021). Construction of four Zn(II)/Cd(II) coordination polymers with flexible isomer ligands: Chemosensor for antibiotic. Cleaner Engineering and Technology, 5, 100276. https://doi.org/10.1016/J.CLET.2021.100276
dc.relation.references[6]. Organización Panamericana de la Salud. (2020). Resistencia a los antimicrobianos. Obtenido de: https://n9.cl/43fert
dc.relation.references[7]. Robles, G. A. et al. (2023).The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. The Lancet Regional Health - America. https://doi.org/10.1016/j.lana.2023.100561
dc.relation.references[8]. Niharika Koch., Nazim F. Islam., Songita Sonowal., Ram Prasad & Hemen Sarma. (2021). Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation . Current Research in Microbial Sciences. 10.1016/j.crmicr.2021.100027
dc.relation.references[9]. Zhu, X. D., Zhang, K., Wang, Y., Long, W. W., Sa, R. J., Liu, T. F., & Lü, J. (2018). Fluorescent Metal-Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater. Inorganic Chemistry, 57(3), 1060–1065. DOI: 10.1021/acs.inorgchem.7b02471
dc.relation.references[10]. Vitiello, A., Ferrara, F., Boccellino, M., Ponzo, A., Cimmino, C., Comberiati, E., Zovi, A., Clemente, S & Sabbatucci, M. (2023). Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines 11, 1063. https://doi.org/10.3390/biomedicines11041063
dc.relation.references[11]. Pundi, A., & Chang, C. J. (2023). Recent developments in the preparation, characterization, and applications of chemosensors for environmental pollutants detection. Journal of Environmental Chemical Engineering, 11(5), 110346. https://doi.org/10.1016/J.JECE.2023.110346
dc.relation.references[12]. Jianbo Ding, Ce Xu, Xianghong Li, Bingguang Zhang, Dingguo Tang. (2024). A colorimetric Ag+ chemosensor based on a cyclometalated ruthenium complex with deprotonated 2-phenylbenzimidazole. Inorganic Chemistry Communications. Volume 169. https://doi.org/10.1016/j.inoche.2024.113010.
dc.relation.references[13]. Kim, S. H., & Son, Y. A. (2011). Near-infrared dyes. Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes, 1, 588–603. https://doi.org/10.1533/9780857093974.2.588
dc.relation.references[14]. El Sayed, S. (2023). Chromo-fluorogenic chemosensors for sensing applications. Fundamentals of Sensor Technology: Principles and Novel Designs, 631–667. https://doi.org/10.1016/B978-0-323-88431-0.00020-X
dc.relation.references[15]. Mena, L. (2020). Procesos de transferencia de protón y electrón acoplados en estado basal y en estado excitado
dc.relation.references[16]. Sedgwick, A. C., Wu, L., Han, H. H., Bull, S. D., He, X. P., James, T. D., Sessler, J. L., Tang, B. Z., Tian, H., & Yoon, J. (2018). Excited-state intramoleular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews, 47(23), 8842–8880. https://doi.org/10.1039/C8CS00185E
dc.relation.references[17]. Fan, L., Zhao, D., Li, B., Wang, F., Deng, Y., Peng, Y., Wang, X., & Zhang, X. (2022). Luminescent binuclear Zinc(II) organic framework as bifunctional water-stable chemosensor for efficient detection of antibiotics and Cr(VI) anions in water. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 264, 120232. https://doi.org/10.1016/J.SAA.2021.120232
dc.relation.references[18]. Guang-Ning Liu, Ruo-Yu Zhao, Rang-Dong Xu, Xu Zhang, Xue-Na Tang, Qing-Juan Dan, Yun-Wei Wei, Yan-Yan Tu, Qi-Bing Bo & Cuncheng Li. (2018). A Novel Tetranuclear Copper(I) Iodide Metal–Organic Cluster [Cu4I4(Ligand)5] with Highly Selective Luminescence Detection of Antibiotic. American Chemical Society. DOI: 10.1021/acs.cgd.8b00819.
dc.relation.references[19]. Bumagina, N. A., & Antina, E. v. (2024). Review of advances in development of fluorescent BODIPY probes (chemosensors and chemodosimeters) for cation recognition. In Coordination Chemistry Reviews (Vol. 505). Elsevier B.V. https://doi.org/10.1016/j.ccr.2024.215688
dc.relation.references[20]. Xuezhi Sun, Yunfan Qiao, Min Zhang, Yongzhe Cheng, Fanghong Ning, Hongyang Zhang, Ping Hu. (2023). AIE-based cyclodextrin metal–organic frame material for fluorescence detection of nitrofuran and tetracycline antibiotics in aqueous solution. Microchemical Journal. Volume 190. https://doi.org/10.1016/j.microc.2023.108687
dc.relation.references[21]. Dongkyun Gil, Boeun Choi, Jae Jun Lee, Hanseul Lee, Ki-Tae Kim, Cheal Kim. (2023). A colorimetric/ratiometric chemosensor based on an aggregation-induced emission strategy for tracing hypochlorite in vitro and in vivo. Ecotoxicology and Environmental Safety. Volume 257. https://doi.org/10.1016/j.ecoenv.2023.114954.
dc.relation.references[22]. Choi, Y. J., & Sawada, K. (2023). Physical Sensors: Fluorescence Sensors. Encyclopedia of Sensors and Biosensors: Volume 1-4, First Edition, 1–4, 1–19. https://doi.org/10.1016/B978-0-12-822548-6.00095-9
dc.relation.references[23]. You, M., Li, Z., Zhang, P., Bai, D., Lin, M., & Xu, F. (2018). Nanomaterial- and Micromaterial-Based Immunoassays. Handbook of Immunoassay Technologies: Approaches, Performances, and Applications, 273–304. https://doi.org/10.1016/B978-0-12-811762-0.00011-6
dc.relation.references[24]. Puttaraksa Naksen, Siwaluck Boonruang, Nunthawan Yuenyong, Hooi Ling Lee, Pravena Ramachandran, Wipark Anutrasakda, Maliwan Amatatongchai, Somkid Pencharee, Purim Jarujamrus. (2022). Sensitive detection of trace level Cd (II) triggered by chelation enhanced fluorescence (CHEF) “turn on”: Nitrogen-doped graphene quantum dots (N-GQDs) as fluorometric paper-based sensor. Talanta. Volume 242. https://doi.org/10.1016/j.talanta.2022.123305
dc.relation.references[25]. Bhriguram Das, Avijit Ghosh, Sabina Yesmin, Sk Jahir Abbas, Malay Dolai, Subhabrata Mabhai, Atanu Jana, Satyajit Dey, Ajay Misra. (2022). A cell-compatible phenolphthalein-aminophenol scaffold for Al3+sensing assisted by CHEF phenomenon. Journal of Molecular Structure. Volume 1253. https://doi.org/10.1016/j.molstruc.2021.132295
dc.relation.references[26]. Arup Tarai, Yuan Li, Bo Liu, Dan Zhang, Jia Li, Wei Yan, Junfeng Zhang, Junle Qu, Zhigang Yang. (2021). A review on recognition of tri-/tetra-analyte by using simple organic colorimetric and fluorometric probes. Coordination Chemistry Reviews. Volume 445. https://doi.org/10.1016/j.ccr.2021.214070
dc.relation.references[27]. Friganović, T., & Weitner, T. (2023). Reducing the Inner Filter Effect in Microplates by Increasing Absorbance? Linear Fluorescence in Highly Concentrated Fluorophore Solutions in the Presence of an Added Absorber. Analytical Chemistry, 95(35), 13036–13045. https://doi.org/10.1021/ACS.ANALCHEM.3C01295/ASSET/IMAGES/LARGE/AC3C01295_0005.JPEG
dc.relation.references[28]. Chen, S., Yu, Y. L., & Wang, J. H. (2018). Inner filter effect-based fluorescent sensing systems: A review. Analytica Chimica Acta, 999, 13–26. https://doi.org/10.1016/J.ACA.2017.10.026
dc.relation.references[29]. Chauhan, N., Maekawa, T., & Kumar, D. N. S. (2017). Graphene based biosensors - Accelerating medical diagnostics to new-dimensions. In Journal of Materials Research (Vol. 32, Issue 15, pp. 2860–2882). Cambridge University Press. https://doi.org/10.1557/jmr.2017.91
dc.relation.references[30]. Pandi Raja Lakshmi, Ananthu Shanmughan, Deivasigamani Umadevi, Sankarasekaran Shanmugaraju. (2022). Discriminative fluorescent sensing of nitro-antibiotics at ppb level using N-phenyl-amino-1,8-naphthalimides chemosensors. Results in Chemistry. Volumen 4. https://doi.org/10.1016/j.rechem.2022.100546.
dc.relation.references[31]. Yong-Liang Xu, Yi Liu, Xiao-Hui Liu, Yue Zhao, Peng Wang, Zheng-Liang Wang, Wei-Yin Sun. (2018). Novel cadmium(II) frameworks with mixed carboxylate and imidazole-containing ligands for selective detection of antibiotics. Polyhedron. Volume 15. Pages 350-356. https://doi.org/10.1016/j.poly.2018.08.009.
dc.relation.references[32]. Xu Ning, Zhang Qinghua, Baoshan Casa, Cheng Qian & Zhang Guoan. (2018). A Novel Magnesium Metal−Organic Framework as a Multiresponsive Luminescent Sensor for Fe(III) Ions, Pesticides, and Antibiotics with High Selectivity and Sensitivity. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. DOI: doi:10.1021/acs.inorgchem.8b01903
dc.relation.references[33]. Mingke Yu, Ying Xie, Xinyu Wang, Yuxin Li & Guangming Li. (2019). Highly Water-Stable Dye@Ln-MOFs for Sensitive and Selective Detection toward Antibiotics in Water. American Chemical Society. DOI: 10.1021/acsami.9b05815
dc.relation.references[34]. Farid Ahmed, Aaliya Minhaz, Muhammad Raza Shah, Noor ul Ain, Ashfaq Ahmad Khan, Kiramat Shah, Shafi Ullah, Muhammad Ishaq. (2019). Highly selective and sensitive chemosensor for detection of Pefloxacin in tap water based on click generated triazole. Microchemical Journal. Volume 146.https://doi.org/10.1016/j.microc.2019.01.017.
dc.relation.references[35]. Wei, J. H., Yi, J. W., Han, M. Le, Li, B., Liu, S., Wu, Y. P., Ma, L. F., & Li, D. S. (2019). A Water-Stable Terbium(III)–Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions. Chemistry – An Asian Journal, 14(20), 3694–3701. https://doi.org/10.1002/ASIA.201900706.
dc.relation.references[36]. Xing, P., Wu, D., Chen, J., Song, J., Mao, C.-J., Gao, Y. hao, & Niu, H. (2019). A Cd-MOF as Fluorescent Probe for Highly Selective, Sensitive and Stable Detection of Antibiotics in Water. The Analyst. doi:10.1039/c8an02442a
dc.relation.references[37]. Chongliang Li, Chenghui Zeng, Zhao Chen, Yefei Jiang, Hua Yao, Yangyi Yang, Wing-Tak Wong. (2020). Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water Journal of Hazardous Materials. Volume 38.
dc.relation.references[38]. Jing Wang, Qingqing Zha, Guoxu Qin, Yonghong Ni. (2020). A novel Zn(II)-based metal-organic framework as a high selective and sensitive sensor for fluorescent detections of aromatic nitrophenols and antibiotic metronidazole. Talanta. Volume. https://doi.org/10.1016/j.talanta.2020.120742.
dc.relation.references[39]. Qin, Jian Huan, Huang, Hua-Rui, Huang Ya-Dan, Shi. Ming-Yu, Wang, Hua-Rui, Han Min- Le, Yang Xiao-Gang, Li, Fei-Fei, Ma Lu-Fang. (2020). Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by an ionic liquid. DOI: https://doi.org/10.1039/C9RA08733H
dc.relation.references[40]. Sun, S.-L., Sun, X.-Y., Sun, Q., & Gao, E.-Q. (2021). Highly efficient fluorescent chemosensor for nitro antibiotic detection based on luminescent coordination polymers with 2,6-di(4-carboxyphenyl)pyrazine. CrystEngComm, 23(17), 3167–3174. doi: 10.1039/d1ce00245g
dc.relation.references[41]. Chen, X., Hao, X., Zhai, L., Fan, L., & Niu, Y. (2022). A Mixed Ligands Strategy Based Luminescent Binuclear Cadmium(II) Coordination Polymer as Chemo-sensor in the Detection of Nitrofurantoin Antibiotic in Water. Journal of Cluster Science, 33(1), 293–300. https://doi.org/10.1007/S10876-020-01975-5/FIGURES/8
dc.relation.references[42]. Zheng, R., & Zhang, K. (2023). Dual-emission Sm(III)-macrocycle as the lab-on-a-molecule chemosensor for nitroaromatic antibiotic analogues. Polyhedron, 245, 116635. https://doi.org/10.1016/J.POLY.2023.116635
dc.relation.references[43]. Upadhyay, S., Singh, A., Sinha, R., Omer, S., & Negi, K. (2019). Colorimetric chemosensors for d-metal ions: A review in the past, present and future prospect. Journal of Molecular Structure, 1193, 89–102. https://doi.org/10.1016/J.MOLSTRUC.2019.05.007
dc.relation.references[44]. Ebralidze, I. I., Laschuk, N. O., Poisson, J., & Zenkina, O. V. (2019). Colorimetric Sensors and Sensor Arrays. Nanomaterials Design for Sensing Applications, 1–39. https://doi.org/10.1016/B978-0-12-814505-0.00001-1
dc.relation.references[45]. Peixoto PS, Carvalho PH, Machado A, Barreiros L, Bordalo AA, Oliveira HP, Segundo MA. (2022). Development of a Screening Method for Sulfamethoxazole in Environmental Water by Digital Colorimetry Using a Mobile Device. Chemosensors. 10(1):25. https://doi.org/10.3390/chemosensors10010025
dc.relation.references[46]. Li, L., Zou, J. Y., Zhang, L., You, S. Y., Xie, X., & Chen, G. H. (2022). Sensitive detection of the antibiotic pollutants by a solvent-stable luminescent sensor based on a europium(III) metal-organic framework. Journal of Solid State Chemistry, 305. https://doi.org/10.1016/j.jssc.2021.122668
dc.relation.references[47]. Pal, T., Mathai, T., & Mukherji, S. (2023). Colorimetric chemosensor for rapid detection of fluoroquinolone load in environmental water bodies, urine, and counterfeit drug testing. Biosensors and Bioelectronics: X, 14, 100384. https://doi.org/10.1016/J.BIOSX.2023.100384
dc.relation.references[48]. Wang, Q., Xue, Q., Chen, T., Li, J., Liu, Y., Shan, X., Liu, F., & Jia, J. (2021). Recent advances in electrochemical sensors for antibiotics and their applications. Chinese Chemical Letters, 32(2), 609–619. https://doi.org/10.1016/J.CCLET.2020.10.025
dc.relation.references[49]. Nurgul K. Bakirhan, Bengi Uslu, Sibel A. Ozkan. (2017). Chapter 3 - Sensitive and Selective Assay of Antimicrobials on Nanostructured Materials by Electrochemical Techniques. Editor(s): Anton Ficai, Alexandru Mihai Grumezescu. In Micro and Nano Technologies. Nanostructures for Antimicrobial Therapy. Elsevier. https://doi.org/10.1016/B978-0-323-46152-8.00003-2.
dc.relation.references[50]. Tawfik A. Saleh, Khaled M.M. AlAqad, Abdur Rahim. (2018). Electrochemical sensor for the determination of ketoconazole based on gold nanoparticles modified carbon paste electrode. Journal of Molecular Liquids. Volume 256. Pages 39-48. https://doi.org/10.1016/j.molliq.2018.02.006.
dc.relation.references[51]. Haicheng Chen, Kang Luo, and Kang Li. (2019). A Facile Electrochemical Sensor Based on NiO-ZnO/MWCNT-COOH Modified GCE for Simultaneous Quantification of Imatinib and Itraconazole. School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China. DOI: 10.1149/2.1071908jes
dc.relation.references[52]. Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., Hernández, F. (2018). “An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.” Science of The Total Environment, 642, 842–853. doi:10.1016/j.scitotenv.2018.06.088
dc.relation.references[53]. Giono-Cerezo, S., Santos-Preciado, J. I., Rayo Morfín-Otero, M. D., Torres-López, F. J., & Alcántar-Curiel, M. D. (2020). Resistencia antimicrobiana. Importancia y esfuerzos por contenerla. Gaceta médica de México, 156(2), 172-180.
dc.relation.references[54]. Rai, M., Kon, K., Gade, A., Ingle, A., Nagaonkar, D., Paralikar, P., & da Silva, S. S. (2016). Antibiotic Resistance: Can Nanoparticles Tackle the Problem? Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches, 121–143. https://doi.org/10.1016/B978-0-12-803642-6.00006-X
dc.relation.references[55]. Amagliani, G., Brandi, G., & Schiavano, G. F. (2012). Incidence and role of Salmonella in seafood safety. Food Research International, 45(2), 780–788. https://doi.org/10.1016/J.FOODRES.2011.06.022
dc.relation.references[56]. Liu, R., Zhang, C., Liu, R., Sun, Y., Ren, B., Tong, Y., & Tao, Y. (2025). Advancing antibiotic detection and degradation: recent innovations in graphitic carbon nitride (g-C3N4) applications. Journal of Environmental Sciences, 150, 657–675. https://doi.org/10.1016/J.JES.2024.03.033
dc.relation.references[57]. Ruiz, L., & Alvarez-Ordóñez, A. (2017). The Role of the Food Chain in the Spread of Antimicrobial Resistance (AMR). Functionalized Nanomaterials for the Management of Microbial Infection: A Strategy to Address Microbial Drug Resistance, 23–47. https://doi.org/10.1016/B978-0-323-41625-2.00002-8
dc.relation.references[58]. Barzinmehr, H., Ramezanpour, S., Shiri, P., Meghrazi Ahadi, E., Mohammadi, S., Yazdian, F., & Tavatoni, P. (2024). A review of fluorescent peptide-based chemosensors with selectivity for metal ions. Coordination Chemistry Reviews, 518, 216055. https://doi.org/10.1016/J.CCR.2024.216055
dc.relation.references[59]. Sharma, S., Mehtab, S., Pandey, M., Zaidi, M. G. H., & Rawat, S. (2023). Electrochemical Sensing of Triazole Drugs based on Carbon Based Nanocomposites: A Review. Research Journal of Pharmacy and Technology, 16(2), 969–974. https://doi.org/10.52711/0974-360X.2023.00162
dc.relation.references[60]. Correia, A., & Marcano, L. (2015). Presencia y eliminación de compuestos farmacéuticos en plantas de tratamientos de aguas residuales: Revisión a nivel mundial y perspectiva nacional. Boletín de Malariología y Salud Ambiental, 55(1), 1–18. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1690-46482015000100001&lng=es&nrm=iso&tlng=es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAntimicrobianos
dc.subjectAntimicóticos
dc.subjectAntibióticos
dc.subjectDetección
dc.subjectQuimiosensor
dc.subjectAgua
dc.subject.ddc615.19
dc.subject.keywordsAntimicrobials
dc.subject.keywordsAntifungicals
dc.subject.keywordsAntibiotics
dc.subject.keywordsDetection
dc.subject.keywordsChemosensor
dc.subject.keywordsWater
dc.titleQuimiosensores: una alternativa para la detección de antibióticos y antimicóticos en aguas para la prevención de la resistencia antimicrobiana
dc.title.translatedChemosensors: an alternative for the detection of antibiotics and antifungals in water for the prevention of antimicrobial resistance
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
3.97 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Acta de aprobacion.pdf
Tamaño:
1.21 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
212.99 KB
Formato:
Adobe Portable Document Format
Descripción: