La personalización de contenidos para audiencias masivas por medio de la generación automatizada con ChatGPT (GPT-4)

dc.contributor.advisorRojas Sánchez, Germán Mauricio
dc.contributor.authorUseche Moreno, Edwin Andrés
dc.contributor.authorRendón Bello, Sara Valentina
dc.date.accessioned2024-12-10T15:37:47Z
dc.date.available2024-12-10T15:37:47Z
dc.date.issued2024-10
dc.description.abstractEl propósito del estudio fue evaluar cómo la personalización de contenidos para audiencias masivas, mediante la generación automatizada con ChatGPT (GPT-4), puede mejorar la efectividad en el marketing digital. El estudio se enfocó en el uso de inteligencia artificial para personalizar mensajes en tiempo real y a gran escala, optimizando la experiencia del usuario sin comprometer la calidad. Para ello, se emplearon técnicas de recopilación de datos demográficos, de comportamiento y de preferencias de los usuarios mediante herramientas como cookies, CRM y encuestas, además de análisis de redes sociales. Estos datos fueron procesados y utilizados por ChatGPT para generar contenido personalizado en plataformas web y de correos electrónicos. Los resultados mostraron un incremento del 25% en la tasa de conversión y un aumento del 15% en el tiempo de interacción, lo que confirmó que la personalización incrementó la relevancia percibida y el compromiso de los usuarios. Asimismo, la retención de clientes mejoró un 18%, y la satisfacción del usuario alcanzó el 85% en las encuestas. Las conclusiones destacan que la personalización automatizada con ChatGPT no solo es viable a gran escala, sino que también representa una ventaja competitiva importante para las empresas que buscan mejorar su interacción con los clientes y aumentar las tasas de conversión y fidelización.
dc.description.abstractenglishThe purpose of the study was to evaluate how personalizing content for mass audiences, through automated generation with ChatGPT (GPT-4), can improve effectiveness in digital marketing. The study focused on the use of artificial intelligence to personalize messages in real time and at scale, optimizing the user experience without compromising quality. To achieve this, techniques were used to collect demographic data, behavior and user preferences through tools such as cookies, CRM and surveys, as well as social network analysis. This data was processed and used by ChatGPT to generate personalized content on web and email platforms. The results showed a 25% increase in conversion rate and a 15% increase in interaction time, confirming that personalization increased perceived relevance and user engagement. Additionally, customer retention improved by 18%, and user satisfaction reached 85% in surveys. The findings highlight that automated personalization with ChatGPT is not only viable at scale, but also represents an important competitive advantage for companies seeking to improve their interaction with customers and increase conversion and loyalty rates.
dc.description.degreelevelPregradospa
dc.description.degreenameProfesional en Marketing y Transformación Digitalspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13662
dc.language.isoes
dc.language.isoen_US
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMarketing y Transformación Digitalspa
dc.relation.referencesBrown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. Recuperado de: https://arxiv.org/pdf/2005.14165
dc.relation.referencesDavenport, T., & Ronanki, R. (2018). Artificial Intelligence for the Real World. Harvard Business Review, 96(1), 108–116. Recuperado de: https://www.studocu.com/ca-es/document/universitat-de-barcelona/contabilidad/artificial-intelligence-for-the-real-world-spanish-version-davenport-th-ronanki-r-hbp-2018/14396426
dc.relation.referencesHassan, A., Zaki, M., & Johnson, C. (2020). The Impact of Personalization on Customer Engagement in Marketing. Journal of Business Research, 120, 128-139. Recuperado de: https://www.multiresearchjournal.com/admin/uploads/archives/archive-1705742232.pdf
dc.relation.referencesKaplan, A., & Haenlein, M. (2019). Siri, Siri in my hand, who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. Recuperado de: https://www.researchgate.net/publication/328761767_Siri_Siri_in_my_hand_Who's_the_fairest_in_the_land_On_the_interpretations_illustrations_and_implications_of_artificial_intelligence
dc.relation.referencesKietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263–267. Recuperado de: https://www.researchgate.net/publication/327500836_Artificial_Intelligence_in_Advertising_How_Marketers_Can_Leverage_Artificial_Intelligence_Along_the_Consumer_Journey
dc.relation.referencesKohavi, R., Deng, A., Longbotham, R., & Xu, Y. (2020). Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing. Cambridge University Press. Recuperado de: https://assets.cambridge.org/97811087/24265/frontmatter/9781108724265_frontmatter.pdf
dc.relation.referencesKumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2021). Understanding the Role of Artificial Intelligence in Personalized Engagement Marketing. California Management Review, 63(1), 50–73. Recuperado de: https://www.academia.edu/80691288/Understanding_the_Role_of_Artificial_Intelligence_in_Personalized_Engagement_Marketing
dc.relation.referencesLemon, K. N., & Verhoef, P. C. (2016). Understanding Customer Experience Throughout the Customer Journey. Journal of Marketing, 80(6), 69–96. Recuperado de: https://typeset.io/pdf/understanding-customer-experience-throughout-the-customer-52i6qreyzk.pdf
dc.relation.referencesManning, C. D., Raghavan, P., & Schütze, H. (2015). Introduction to Information Retrieval. Cambridge University Press. Recuperado de: https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
dc.relation.referencesMatz, S. C., Kosinski, M., Nave, G., & Stillwell, D. (2021). Psychological Targeting as an Effective Approach to Digital Mass Persuasion. Proceedings of the National Academy of Sciences, 118(12), 1-8. Recuperado de: https://www.pnas.org/doi/epdf/10.1073/pnas.1710966114
dc.relation.referencesPine, B. J., & Gilmore, J. H. (1999). The Experience Economy: Work Is Theater & Every Business a Stage. Harvard Business School Press. Recuperado de: https://enlillebid.dk/mmd/wp-content/uploads/2012/03/Welcome-to-the-Experience-Economy-Pine-and-Gilmore.pdf
dc.relation.referencesSchreiner, M., Fischer, D., & Riedl, R. (2019). Impact of Content Personalization on User Engagement: An Experimental Study in E-Learning. Computers in Human Behavior, 92, 159–170. Recuperado de: https://www.researchgate.net/publication/377538425_The_Impact_of_Personalization_Strategies_on_Consumer_Engagement_and_Conversion_Rates_in_Digital_Marketing
dc.relation.referencesTam, K. Y., & Ho, S. Y. (2005). Web personalization as a persuasion strategy: An elaboration likelihood model perspective. Information Systems Research, 16(3), 271–291. Recuperado de: http://www.communicationcache.com/uploads/1/0/8/8/10887248/web_personalization_as_a_persuasion_strategy-_an_elaboration_likelihood_model_perspective.pdf
dc.relation.referencesTikkinen-Piri, C., Rohunen, A., & Markkula, J. (2018). EU General Data Protection Regulation: Changes and Implications for Personal Data Collecting Companies. Computer Law & Security Review, 34(1), 134-153. Recuperado de: https://www.infona.pl/resource/bwmeta1.element.elsevier-3a44a579-9cc6-3332-bdc5-7f3a1ea97d42
dc.relation.referencesWang, Y., Kung, L., & Byrd, T. A. (2020). Big Data Analytics: Understanding its Capabilities and Potential Benefits for Healthcare Organizations. Technological Forecasting and Social Change, 126, 3-13. Recuperaqdo de: https://ideas.repec.org/a/eee/tefoso/v126y2018icp3-13.html
dc.relation.referencesZeng, D., Chen, H., Lusch, R., & Li, S.-H. (2010). Social Media Analytics and Intelligence. IEEE Intelligent Systems, 25(6), 13-16. Recuperado de: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5678581
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPersonalización de contenidos
dc.subjectInteligencia artificial
dc.subjectChatGPT
dc.subjectMarketing digital
dc.subjectGeneración automatizada
dc.subject.ddc382
dc.subject.keywordsContent personalization
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsChatGPT
dc.subject.keywordsDigital marketing
dc.subject.keywordsAutomated generation
dc.titleLa personalización de contenidos para audiencias masivas por medio de la generación automatizada con ChatGPT (GPT-4)
dc.title.translatedPersonalizing content for mass audiences through automated generation with ChatGPT (GPT-4)
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
749.59 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1. Acta de aprobacion.pdf
Tamaño:
268.7 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
749.59 KB
Formato:
Adobe Portable Document Format
Descripción: