La personalización de contenidos para audiencias masivas por medio de la generación automatizada con ChatGPT (GPT-4)
dc.contributor.advisor | Rojas Sánchez, Germán Mauricio | |
dc.contributor.author | Useche Moreno, Edwin Andrés | |
dc.contributor.author | Rendón Bello, Sara Valentina | |
dc.date.accessioned | 2024-12-10T15:37:47Z | |
dc.date.available | 2024-12-10T15:37:47Z | |
dc.date.issued | 2024-10 | |
dc.description.abstract | El propósito del estudio fue evaluar cómo la personalización de contenidos para audiencias masivas, mediante la generación automatizada con ChatGPT (GPT-4), puede mejorar la efectividad en el marketing digital. El estudio se enfocó en el uso de inteligencia artificial para personalizar mensajes en tiempo real y a gran escala, optimizando la experiencia del usuario sin comprometer la calidad. Para ello, se emplearon técnicas de recopilación de datos demográficos, de comportamiento y de preferencias de los usuarios mediante herramientas como cookies, CRM y encuestas, además de análisis de redes sociales. Estos datos fueron procesados y utilizados por ChatGPT para generar contenido personalizado en plataformas web y de correos electrónicos. Los resultados mostraron un incremento del 25% en la tasa de conversión y un aumento del 15% en el tiempo de interacción, lo que confirmó que la personalización incrementó la relevancia percibida y el compromiso de los usuarios. Asimismo, la retención de clientes mejoró un 18%, y la satisfacción del usuario alcanzó el 85% en las encuestas. Las conclusiones destacan que la personalización automatizada con ChatGPT no solo es viable a gran escala, sino que también representa una ventaja competitiva importante para las empresas que buscan mejorar su interacción con los clientes y aumentar las tasas de conversión y fidelización. | |
dc.description.abstractenglish | The purpose of the study was to evaluate how personalizing content for mass audiences, through automated generation with ChatGPT (GPT-4), can improve effectiveness in digital marketing. The study focused on the use of artificial intelligence to personalize messages in real time and at scale, optimizing the user experience without compromising quality. To achieve this, techniques were used to collect demographic data, behavior and user preferences through tools such as cookies, CRM and surveys, as well as social network analysis. This data was processed and used by ChatGPT to generate personalized content on web and email platforms. The results showed a 25% increase in conversion rate and a 15% increase in interaction time, confirming that personalization increased perceived relevance and user engagement. Additionally, customer retention improved by 18%, and user satisfaction reached 85% in surveys. The findings highlight that automated personalization with ChatGPT is not only viable at scale, but also represents an important competitive advantage for companies seeking to improve their interaction with customers and increase conversion and loyalty rates. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Profesional en Marketing y Transformación Digital | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13662 | |
dc.language.iso | es | |
dc.language.iso | en_US | |
dc.publisher.faculty | Facultad de Ciencias Económicas y Administrativas | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Marketing y Transformación Digital | spa |
dc.relation.references | Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. Recuperado de: https://arxiv.org/pdf/2005.14165 | |
dc.relation.references | Davenport, T., & Ronanki, R. (2018). Artificial Intelligence for the Real World. Harvard Business Review, 96(1), 108–116. Recuperado de: https://www.studocu.com/ca-es/document/universitat-de-barcelona/contabilidad/artificial-intelligence-for-the-real-world-spanish-version-davenport-th-ronanki-r-hbp-2018/14396426 | |
dc.relation.references | Hassan, A., Zaki, M., & Johnson, C. (2020). The Impact of Personalization on Customer Engagement in Marketing. Journal of Business Research, 120, 128-139. Recuperado de: https://www.multiresearchjournal.com/admin/uploads/archives/archive-1705742232.pdf | |
dc.relation.references | Kaplan, A., & Haenlein, M. (2019). Siri, Siri in my hand, who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. Recuperado de: https://www.researchgate.net/publication/328761767_Siri_Siri_in_my_hand_Who's_the_fairest_in_the_land_On_the_interpretations_illustrations_and_implications_of_artificial_intelligence | |
dc.relation.references | Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263–267. Recuperado de: https://www.researchgate.net/publication/327500836_Artificial_Intelligence_in_Advertising_How_Marketers_Can_Leverage_Artificial_Intelligence_Along_the_Consumer_Journey | |
dc.relation.references | Kohavi, R., Deng, A., Longbotham, R., & Xu, Y. (2020). Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing. Cambridge University Press. Recuperado de: https://assets.cambridge.org/97811087/24265/frontmatter/9781108724265_frontmatter.pdf | |
dc.relation.references | Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2021). Understanding the Role of Artificial Intelligence in Personalized Engagement Marketing. California Management Review, 63(1), 50–73. Recuperado de: https://www.academia.edu/80691288/Understanding_the_Role_of_Artificial_Intelligence_in_Personalized_Engagement_Marketing | |
dc.relation.references | Lemon, K. N., & Verhoef, P. C. (2016). Understanding Customer Experience Throughout the Customer Journey. Journal of Marketing, 80(6), 69–96. Recuperado de: https://typeset.io/pdf/understanding-customer-experience-throughout-the-customer-52i6qreyzk.pdf | |
dc.relation.references | Manning, C. D., Raghavan, P., & Schütze, H. (2015). Introduction to Information Retrieval. Cambridge University Press. Recuperado de: https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf | |
dc.relation.references | Matz, S. C., Kosinski, M., Nave, G., & Stillwell, D. (2021). Psychological Targeting as an Effective Approach to Digital Mass Persuasion. Proceedings of the National Academy of Sciences, 118(12), 1-8. Recuperado de: https://www.pnas.org/doi/epdf/10.1073/pnas.1710966114 | |
dc.relation.references | Pine, B. J., & Gilmore, J. H. (1999). The Experience Economy: Work Is Theater & Every Business a Stage. Harvard Business School Press. Recuperado de: https://enlillebid.dk/mmd/wp-content/uploads/2012/03/Welcome-to-the-Experience-Economy-Pine-and-Gilmore.pdf | |
dc.relation.references | Schreiner, M., Fischer, D., & Riedl, R. (2019). Impact of Content Personalization on User Engagement: An Experimental Study in E-Learning. Computers in Human Behavior, 92, 159–170. Recuperado de: https://www.researchgate.net/publication/377538425_The_Impact_of_Personalization_Strategies_on_Consumer_Engagement_and_Conversion_Rates_in_Digital_Marketing | |
dc.relation.references | Tam, K. Y., & Ho, S. Y. (2005). Web personalization as a persuasion strategy: An elaboration likelihood model perspective. Information Systems Research, 16(3), 271–291. Recuperado de: http://www.communicationcache.com/uploads/1/0/8/8/10887248/web_personalization_as_a_persuasion_strategy-_an_elaboration_likelihood_model_perspective.pdf | |
dc.relation.references | Tikkinen-Piri, C., Rohunen, A., & Markkula, J. (2018). EU General Data Protection Regulation: Changes and Implications for Personal Data Collecting Companies. Computer Law & Security Review, 34(1), 134-153. Recuperado de: https://www.infona.pl/resource/bwmeta1.element.elsevier-3a44a579-9cc6-3332-bdc5-7f3a1ea97d42 | |
dc.relation.references | Wang, Y., Kung, L., & Byrd, T. A. (2020). Big Data Analytics: Understanding its Capabilities and Potential Benefits for Healthcare Organizations. Technological Forecasting and Social Change, 126, 3-13. Recuperaqdo de: https://ideas.repec.org/a/eee/tefoso/v126y2018icp3-13.html | |
dc.relation.references | Zeng, D., Chen, H., Lusch, R., & Li, S.-H. (2010). Social Media Analytics and Intelligence. IEEE Intelligent Systems, 25(6), 13-16. Recuperado de: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5678581 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Personalización de contenidos | |
dc.subject | Inteligencia artificial | |
dc.subject | ChatGPT | |
dc.subject | Marketing digital | |
dc.subject | Generación automatizada | |
dc.subject.ddc | 382 | |
dc.subject.keywords | Content personalization | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | ChatGPT | |
dc.subject.keywords | Digital marketing | |
dc.subject.keywords | Automated generation | |
dc.title | La personalización de contenidos para audiencias masivas por medio de la generación automatizada con ChatGPT (GPT-4) | |
dc.title.translated | Personalizing content for mass audiences through automated generation with ChatGPT (GPT-4) | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 749.59 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1. Acta de aprobacion.pdf
- Tamaño:
- 268.7 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 749.59 KB
- Formato:
- Adobe Portable Document Format
- Descripción: