GeoGebra y el método de Pólya, como estrategia pedagógica en los procesos de enseñanza aprendizaje de los teoremas de semejanza de triángulos en un contexto educativo de básica secundaria

dc.contributor.advisorMolano Cabrejo, Miguel Fernando
dc.contributor.authorArias Cruz, Jesús Emilio
dc.contributor.authorDíaz Barón, Andrés Felipe
dc.date.accessioned2024-11-27T16:46:58Z
dc.date.available2024-11-27T16:46:58Z
dc.date.issued2024-10
dc.description.abstractEn este trabajo se implementa el software GeoGebra y el método Pólya como estrategia pedagógica con el fin de mejorar la comprensión de los teoremas de semejanza de triángulos en estudiantes de grado Noveno pertenecientes al Colegio Carlos Alban Holguín IED. Dentro de la investigación, con el fin de caracterizar a los estudiantes, se diseñó una encuesta sociodemográfica aplicada a los 120 estudiantes de grado noveno, posteriormente se tomó una muestra de 60 estudiantes, divididos equitativamente en dos grupos, uno de control y otro experimental para realizar el estudio. Luego se aplicó una prueba pre-test que permitió identificar los conocimientos previos de los estudiantes sobre la comprensión de los Teoremas de semejanza de triángulos y su aplicación en situaciones reales. Con la información recopilada por estos dos instrumentos, se diseñó e implementó una intervención didáctica, dividida en tres sesiones, mediada por el uso del software GeoGebra y utilizando el método Pólya para la solución de problemas, con el fin de mejorar la comprensión de los teoremas de semejanza de triángulos. Por último, se realizó una prueba post-test, con el objetivo de evaluar la comprensión de los conceptos y propiedades de la semejanza de triángulos por parte de los estudiantes tras la intervención didáctica. Para el análisis de los datos, primero se aplicaron las pruebas normalidad Shapiro-Wilk y Kolmogórov-Smirnov a los puntajes de las pruebas del pre-test y pos-test, debido a que las distribuciones no son normales, se decidió realizar los análisis de Chi cuadrado y Mann-Whitney U para datos no paramétricos. Los resultados mostraron que el uso de GeoGebra y el método de Pólya tuvo un impacto positivo en el desempeño de los estudiantes del grupo experimental con respecto al grupo control. Estos resultados pueden indicar que el uso de recursos tecnológicos contemporáneos como GeoGebra unido a un método eficaz, aunque no tan actual, como el de Pólya consiguen mejorar la apropiación de conceptos geométricos y el desempeño académico por parte de los estudiantes.
dc.description.abstractenglishThis study implements GeoGebra software and the Pólya method as a pedagogical strategy to improve the understanding of triangle similarity theorems among ninth-grade students at Carlos Alban Holguín IED School. To characterize the students, a sociodemographic survey was designed and applied to 120 ninth-grade students. Subsequently, a sample of 60 students was selected, equally divided into control and experimental groups for the study. A pre-test was then administered to identify students' prior knowledge of triangle similarity theorems and their application in real situations. Using the information gathered from these two instruments, a didactic intervention was designed and implemented, divided into three sessions, mediated using GeoGebra software and utilizing the Pólya method for problem-solving, aimed at improving the understanding of triangle similarity theorems. Finally, a post-test was conducted to evaluate students' comprehension of the concepts and properties of triangle similarity after the didactic intervention. For data analysis, Shapiro-Wilk and Kolmogorov-Smirnov normality tests were first applied to the pre-test and post-test scores. As the distributions were not normal, Chi-square and Mann-Whitney U analyses were performed for non-parametric data. The results showed that the use of GeoGebra and the Pólya method had a positive impact on the performance of students in the experimental group compared to the control group. These findings suggest that the use of contemporary technological resources such as GeoGebra, combined with an effective method like Polya's, albeit not as recent, can improve students' appropriation of geometric concepts and academic performance.
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Innovación y Tecnología para la Educaciónspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13399
dc.language.isoes
dc.publisher.facultyFacultad de Educaciónspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Innovación y Tecnología para la Educaciónspa
dc.relation.referencesAldana, E., Morales, L. & Aldana, J. (2019). Las TIC en la enseñanza de la geometría para el desarrollo del pensamiento espacial. Revista Ciencia Unemi, Vol. 12 (29), 53-66
dc.relation.referencesAusubel, D. (1983). Teoría del aprendizaje significativo. Fascículos de CEIF.
dc.relation.referencesÁlvarez, C. (2020). La enseñanza de la semejanza de triángulos desde una perspectiva constructivista. Revista Digital de Investigación en Docencia Universitaria, 14(1), 213-234.
dc.relation.referencesBáez, R. & Iglesias, M. (2007). Principios didácticos a seguir en el proceso de enseñanza y aprendizaje de la geometría en la UPEL “El Mácaro”. Enseñanza de la Matemática. Vols. 12 al 16. Número extraordinario. pp. 67-87.
dc.relation.referencesBarahona, B. V., & Ponce, B. H. (2015). GeoGebra para la enseñanza de la matemática y su incidencia en el rendimiento académico estudiantil. Revista Tecnológica-ESPOL, 28(5).
dc.relation.referencesBaroody, A. J., & Ginsburg, H. P. (1983). The effects of instruction on children's understanding of the "equals" sign. The Elementary School Journal, 84(2), 199-212.
dc.relation.referencesBarrantes-López, M., & Balletbo-Fernández, I. (2012). Tendencias actuales de la enseñanza aprendizaje de la geometría en educación secundaria. Revista Internacional de Investigación en Ciencias Sociales, 8(1), 25-42.
dc.relation.referencesBecker, J. y Rivera, F. (2009). Activación de conocimientos previos en la comprensión de conceptos geométricos. Intersecciones Educativas, 2(1), 23-35.
dc.relation.referencesCaleño, M (2014). Apropiación De Los Criterios De Semejanza A Partir De Los Conceptos De Proporcionalidad Y Congruencia De Triángulos Utilizando El Software GeoGebra Y Algunas Aplicaciones Applet En La Web. Tesis UN. Manizales.
dc.relation.referencesCarvajal, C. A. (2006). Las ideas de Pólya en la resolución de problemas. Cuadernos de investigación y formación en educación matemática.
dc.relation.referencesCen, I. D. J. M. (2015). George Pólya (1965). Cómo plantear y resolver problemas [título original: How To Solve It?]. México: Trillas. 215 pp. Entreciencias: Diálogos en la sociedad del conocimiento, 3(8), 419-420.
dc.relation.referencesChacel, I. R. (2006). George Pólya: estrategias para la solución de problemas. Revista Departamento de Matemáticas.
dc.relation.referencesCisterna, F. & Muñoz, L. (2015). Desarrollo del pensamiento geométrico a través de la indagación guiada utilizando GeoGebra. Revista Innovación Educativa, Vol. (1), 19-33.
dc.relation.referencesCortés, L. y Espinel, M. (2018). Comprensión del concepto de derivada: el papel de los conocimientos previos sobre semejanza de triángulos. Tecné, Episteme y Didaxis: TED, 44(1), 25-39.
dc.relation.referencesCreswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th ed.). Pearson.
dc.relation.referencesCreswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.
dc.relation.referencesCuevas-Vallejo, A (2023). Promover el razonamiento proporcional mediante la tecnología digital. Revista Apertura Universidad de Guadalajara, Vol. 15 (1), 84-101
dc.relation.referencesCurcio, F. R. (1987). Developing graph comprehension. Reston, VA: NCTM.
dc.relation.referencesDíaz Pinzón, J. E. (2018). Aprendizaje de las matemáticas con el uso de simulación. Sophia, 14(1), 22-30.
dc.relation.referencesFetters, M. D., Curry, L. A., y Creswell, J. W. (2013). Achieving integration in mixed methods designs-principles and practices. Health Services Research, 48(6pt2)
dc.relation.referencesGamboa Araya, R., & Ballestero Alfaro, E. (2010). La enseñanza y aprendizaje de la geometría en secundaria, la perspectiva de los estudiantes. Revista Electrónica Educare, XIV (2).
dc.relation.referencesGarcía, J. (2019). Relación entre razonamiento proporcional y la aplicación de la semejanza de triángulos en problemas geométricos. [Tesis de maestría, Universidad Pedagógica] Repositorio Institucional UPN.
dc.relation.referencesGarcía Peñalvo, F. J. (2002). Software educativo: evolución y tendencias. Aula, 14, 19-29.
dc.relation.referencesGarcía Valcárcel, A. y González Rodero, L. (2006). Uso pedagógico de materiales y recursos educativos de las TIC: sus ventajas en el aula. Ministerio de Educación y Ciencia
dc.relation.referencesGutiérrez, A. (2021). Dificultades en la enseñanza de la geometría en bachillerato y la percepción de los estudiantes. Revista Sophia, Vol. 17(2), 55-66.
dc.relation.referencesHernández-Sampieri, R., y Mendoza, C. P. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Interamericana
dc.relation.referencesHernández, V. & Villalba, M. (2001). Perspectivas en la enseñanza de la geometría para el siglo XXI. Documento de discusión para estudio ICMI. PMME-UNISON. Traducción del documento original.
dc.relation.referencesHoffer, A. (1981). Geometry is more than proof. Mathematics Teacher, 74(1), 11–18
dc.relation.referencesJunca Rodríguez, G. A. (2019). Desempeño académico en las pruebas Saber 11. Panorama Económico, 27(1).
dc.relation.referencesInstituto Colombiano para la Evaluación de la Educación (ICFES). (2023). Resultados Nacionales Saber 11° 2023-2.
dc.relation.referencesLondoño, L. & Muñoz, L. (2014). La geometría dinámica como metodología de enseñanza y aprendizaje de la geometría. Revista Sophia, Vol. 10(2), 175-187.
dc.relation.referencesMarquès, P. (1999) : La informática como medio didáctico : software educativo, posibilidades e integración curricular, en J. CABERO (Ed.) Medios audiovisuales y nuevas tecnologías para la formación en el siglo XXI. Murcia: DM, 93-109.
dc.relation.referencesMartínez, J. & González, M. (2019). Enseñanza tradicional de la geometría y efectos en el aprendizaje. Revista Educare, Vol. 23(1), 159-176.
dc.relation.referencesMinisterio de Educación Nacional (2006). Estándares básicos de competencias en lenguaje, matemáticas, ciencias y ciudadanas. Guía sobre lo que los estudiantes deben saber y saber hacer con lo que aprenden. Revolución Educativa Colombia Aprende.
dc.relation.referencesMinisterio de educación Nacional. (2016). Derechos básicos de aprendizaje Matemáticas V2
dc.relation.referencesMoise, E. E., Downs, F. L., & García, M. (1966). Geometría moderna.
dc.relation.referencesMonterroza, L. S. (2021). GeoGebra y el desarrollo del pensamiento espacial: Una oportunidad de innovación en la práctica educativa. Ciencia Latina Revista Científica Multidisciplinar, 5(4), 4388-4405.
dc.relation.referencesPatton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). SAGE Publications.
dc.relation.referencesPeñaloza, M. y. (2019). Método de Pólya como estrategia pedagógica para fortalecer la competencia resolución de problemas matemáticos con operaciones básicas. In Zona Próxima (Issue 31).
dc.relation.referencesPereira Pérez, Z. (2011). Los diseños de método mixto en la investigación en educación: Una experiencia concreta. Revista Electrónica Educare, 15(1).
dc.relation.referencesPérez, R. & Ramírez, M. (2017). Recursos didácticos para la enseñanza de la geometría euclidiana. Revista Praxis & Saber, Vol 8(16), 55-74.
dc.relation.referencesPrivitera, G. J. (2018). Research methods for the behavioral sciences (2nd ed.). SAGE Publications.
dc.relation.referencesReichardt, C. S. (2019). Quasi-experimental design. In R. E. Millsap & A. Maydeu-Olivares (Eds.), The SAGE handbook of quantitative methods in psychology (pp. 46-71). SAGE Publications Ltd
dc.relation.referencesRodríguez, P. (2015). Dificultades en el aprendizaje de conceptos geométricos en estudiantes de secundaria. Revista de Educación Matemática, Vol. 31(1), 32–48
dc.relation.referencesRodríguez Velázquez, J. A., & Steegmann Pascual, C. (2013). Modelos matemáticos.
dc.relation.referencesRico, L. (2016). La formación inicial del profesorado de matemáticas de secundaria. Revista Internacional de Formación del Profesorado e Investigación Educativa (RIFOPIE), Vol. 1, 61-89.
dc.relation.referencesSalas Perea, R. S. (n. d.). La simulación como método de enseñanza y aprendizaje. Educación Médica Superior, 9(1).
dc.relation.referencesSombra del Río, L. (2019). Los mil y un aportes de GeoGebra al estudio de la Geometría Tridimensional. Épsilon.
dc.relation.referencesUNESCO (2021). Education for sustainable development goals: Learning objectives.
dc.relation.referencesUNICEF, U. O. (2022). La encrucijada de la educación en América Latina y el Caribe: Informe regional de monitoreo ODS4-Educación 2030. Perfiles Educativos, 44(178), 182-199.
dc.relation.referencesVanegas, J. (2019). Propuesta para el Proceso de Enseñanza-Aprendizaje de las Relaciones de Semejanza y Congruencia de Triángulos. Tesis UN. Medellín.
dc.relation.referencesWhite, H., & Sabarwal, S. (2014). Diseño y métodos cuasiexperimentales. Síntesis metodológicas: evaluación de impacto, 8(1).
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSoftware educativo
dc.subjectGeoGebra
dc.subjectTriángulos semejantes
dc.subjectTeoremas de semejanza de triángulos
dc.subjectMétodo de Pólya
dc.subjectEstrategia didáctica
dc.subject.keywordsEducational software
dc.subject.keywordsGeoGebra
dc.subject.keywordsSimilar triangles
dc.subject.keywordsTriangle similarity theorems
dc.subject.keywordsPólya method
dc.subject.keywordsTeaching strategy
dc.titleGeoGebra y el método de Pólya, como estrategia pedagógica en los procesos de enseñanza aprendizaje de los teoremas de semejanza de triángulos en un contexto educativo de básica secundaria
dc.title.translatedImplementation of GeoGebra and the Pólya method, as a pedagogical strategy in the teaching-learning processes of triangle similarity theorems in a basic secondary educational context
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestría

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
2.59 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Acta de grado.pdf
Tamaño:
399.03 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
234.45 KB
Formato:
Adobe Portable Document Format
Descripción: