Biomineralización de tejidos calcificados
dc.contributor.author | Mejía Naranjo, Wilson | |
dc.contributor.author | Beltrán Zúñiga, Edgar O. | |
dc.date.accessioned | 2022-09-20T13:42:03Z | |
dc.date.available | 2022-09-20T13:42:03Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Este libro responde a la necesidad de presentar a los estudiantes de Odontología y de cursos básicos de posgrado en ciencias biomédicas u odontológicas los fundamentos y mecanismos del fenómeno de biomineralización de tejidos dentales. Se trata de un proceso dinámico y complejo llevado a cabo por células especializadas, mediante el cual ocurren la secreción y deposición de minerales de calcio y fosfato inorgánicos, los cuales interactúan de forma organizada con proteínas nucleadoras en una matriz extracelular para generar tejidos mineralizados altamente funcionales. Las células especializadas son los ameloblastos, los odontoblastos, los cementoblastos y los osteoblastos, responsables respectivamente de la producción de esmalte, dentina, cemento y hueso. Comprender los procesos de biomineralización y las dinámicas de mineralización y remineralización es importante para prevenir y tratar las enfermedades causadas por una mineralización anormal y/o defectuosa de los tejidos calcificados. | spa |
dc.description.abstractenglish | This book responds to the need to present to students of Dentistry and basic postgraduate courses in biomedical or dental sciences the fundamentals and mechanisms of the phenomenon of biomineralization of dental tissues. It is a dynamic and complex process carried out by specialized cells, through which the secretion and deposition of inorganic calcium and phosphate minerals occur. These interact in an organized way with nucleating proteins in an extracellular matrix to generate highly functional mineralized tissues. The specialized cells are the ameloblasts, the odontoblasts, the cementoblasts and the osteoblasts, responsible respectively for the production of enamel, dentin, cementum and bone. Understanding biomineralization processes and the dynamics of mineralization and remineralization is important to prevent and treat diseases caused by abnormal and/or defective mineralization of calcified tissues. | eng |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.isbn | 9789587392760 | |
dc.identifier.isbn | 9789587392814 | |
dc.identifier.isbn | 9789587392753 | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/9051 | |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.relation.references | Bronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893. https://doi.org/10.1177/0022034509343280 | spa |
dc.relation.references | Cameron, F. K., & Seidell, A. (1904). The action of water upon the phosphates of calcium. Journal of the American Chemical Society, 26(11), 1454-1463. https://doi.org/10.1021/ja02001a007 | spa |
dc.relation.references | Castiblanco, G. A., Rutishauser, D., Ilag, L. L., Martignon, S., Castellanos, J. E., & Mejía, W. (2015). Identification of proteins from human permanent erupted enamel. European Journal of Oral Sciences, 123(6), 390-395. https://doi.org/10.1111/eos.12214 | spa |
dc.relation.references | Dorozhkin, S. V. (2011). Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164. https://doi.org/10.4161/biom.18790 | spa |
dc.relation.references | Dreesmann, H. (1892). Ueber knochenplombierung. Beitr Klin Chir, 9, 804-810. | spa |
dc.relation.references | Evans, J. S. (2017). Polymorphs, proteins, and nucleation theory: A critical analysis. Minerals (2075-163X), 7(4):62. https://doi.org/10.3390/min7040062 | spa |
dc.relation.references | Evans, J. S. (2019). Composite materials design: Biomineralization proteins and the guided assembly and organization of biomineral nanoparticles. Materials (Basel, Switzerland), 12(4). https://doi.org/10.3390/ma12040581 | spa |
dc.relation.references | Furtos, G., Lesci, I. G., Šiller, L., Marin, F., Brümmer, F., & Checa, A. (2015). Biomineralization: From fundamentals to biomaterials & environmental issues. Pfaffikon, Switzerland: Trans Tech Publications Ltd. Retrieved from https://ezproxy.javeriana.edu.co:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1165291&lang=es&site=ehost-live | spa |
dc.relation.references | Gower, L. B. (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chemical Reviews, 108(11), 4551-4627. https://doi.org/10.1021/cr800443h | spa |
dc.relation.references | Kay, M. I., Young, R. A., & Posner, A. S. (1964). Crystal structure of hydroxyapatite. Nature, 204(4963), 1050-1052. https://doi.org/10.1038/2041050a0 | spa |
dc.relation.references | Lafisco, M., Delgado López, J., & Drouet, C. (2014). Nanocrystaline apatites: Synthesis, physical-cehmical and thermodynamic characterization. In M. Lafisco, & J. Delgado López (Eds.), Apatite (pp. 49-80) Nova Science Publishers, Inc. | spa |
dc.relation.references | Lide, D. (2005). The CRC handbook of chemistry and physics. CRC Press, Boca Ratón, Florida, 86, 2544. | spa |
dc.relation.references | Madupalli, H., Pavan, B., & Tecklenburg, M. (2017). Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem. 255:27-35. https://doi.org/10.1016/j.jssc.2017.07.025 | spa |
dc.relation.references | Omelon, S. J., & Grynpas, M. D. (2008). Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chemical Reviews, 108(11), 4694-4715. https://doi.org/10.1021/cr0782527 | spa |
dc.relation.references | Posner, A. S., & Betts, F. (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Accounts of Chemical Research, 8(8), 273-281. https://doi.org/10.1021/ar50092a003 | spa |
dc.relation.references | Ramirez-Rodríguez, G., Delgado-López, J., & Gomez-Morales, J. (2013). Evolution of calcium phosphate precipitatation in hanging drop vapor infussion by in situ raman microspectroscopy. CrystEngComm, 15, 2206. | spa |
dc.relation.references | Rodríguez-Navarro, A. B., Marie, P., Nys, Y., Hincke, M. T., & Gautron, J. (2015). Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 190(3), 291-303. https://doi.org/10.1016/j.jsb.2015.04.014 | spa |
dc.relation.references | Sharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: How pH modulates toxicity. PLoS ONE, 5(-5), -e10895. https://doi.org/10.1371/journal.pone.0010895 | spa |
dc.relation.references | Simmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108. https://doi.org/10.1177/10454411950060020701 | spa |
dc.relation.references | Yao, S., Jin, B., Liu, Z., Shao, C., Zhao, R., Tang, R., & Wang, X. (2017). Biomineralization: From material tactis to biological strategy. Adv Mater, 29(14). https://doi.org/10.1002/adma.201605903 | spa |
dc.relation.references | Zahn, D. (2015). Thermodynamics and kinetics of prenucleation clusters, classical and non-classical nucleation. ChemPhysChem, 16(10), 2069-2075. https://doi.org/10.1002/cphc.201500231 | spa |
dc.relation.references | Aoba, T., & Fejerskov, O. (2002). Dental fluorosis: Chemistry and biology. Crit Rev Oral Biol & Med., 13(2), 155-170. https://doi.org/10.1177/154411130201300206 | spa |
dc.relation.references | Bansal, A., Shetty, D., Bindal, R., & Pathak, A. (2012). Amelogenin: Novel protein with diverse applications in genetic and molecular profiling. Oral Maxillofac Pathol J, 16, 395-399. https://doi.org/10.4103/0973-029X.102495 | spa |
dc.relation.references | Bartlett, J. D., & Simmer, J. P. (2015). New perspectives on amelotin and amelogenesis. J Dent Res., 94(5), 642-644. https://doi.org/10.1177/0022034515572442 | spa |
dc.relation.references | Bartlett, J. D., Ganss, B., Goldberg, M., Moradian-Oldak, J., Paine, M. L., Snead, M. L., . . . Zhou, Y. L. (2006). Protein–Protein interactions of the developing enamel matrix. Current Topics in Developmental Biology, 74, 57-115. https://doi.org/10.1016/S0070-2153(06)74003-0 | spa |
dc.relation.references | Bouropoulos, N., & Moradian-Oldak, J. (2004). Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelin. Journal of Dental Research, 83(4), 278-282. https://doi.org/10.1177/154405910408300402 | spa |
dc.relation.references | Bromley, K. M., Kiss, A. S., Lokappa, S. B., Lakshminarayanan, R., Fan, D., Ndao, M., . . . Moradian-Oldak, J. (2011). Dissecting amelogenin protein nanospheres: Characterization of metastable oligomers. Journal of Biological Chemistry, 286(40), 34643-34653. https://doi.org/10.1074/jbc.M111.250928 | spa |
dc.relation.references | Bronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893. https://doi.org/10.1177/0022034509343280 | spa |
dc.relation.references | Castiblanco, G. A., Rutishauser, D., Ilag, L. L., Martignon, S., Castellanos, J. E., & Mejía, W. (2015). Identification of proteins from human permanent erupted enamel. European Journal of Oral Sciences, 123(6), 390-395. https://doi.org/10.1111/eos.12214 | spa |
dc.relation.references | Carey, C. M. (2014). Focus on fluorides: Update on the use of fluoride for the prevention of dental caries. Journal of Evidence Based Dental Practice, 14, 95-102. https://doi.org/10.1016/j.jebdp.2014.02.004 | spa |
dc.relation.references | Fincham, A. G., Belcourt, A. B., Termine, J. D., Butler, W. T., & Cothran, W. C. (1981). Dental enamel matrix: Sequences of two amelogenin polypeptides. Bioscience Reports, 1(10), 771-778. https://doi.org/10.1007/BF01114799 | spa |
dc.relation.references | Fincham, A. G., Moradian-Oldak, J., & Simmer, J. P. (1999). The structural biology of the developing dental enamel matrix. Journal of Structural Biology, 126(3), 270-299. https://doi.org/10.1006/jsbi.1999.4130 | spa |
dc.relation.references | Gallon, V., Chen, L., Yang, X., & Moradian-Oldak, J. (2013). Localization and quantitative co-localization of enamelin with amelogenin. Journal of Structural Biology, 183(2), 239-249. https://doi.org/10.1016/j.jsb.2013.03.014 | spa |
dc.relation.references | Hu, J. C. -., Zhang, C. H., Yang, Y., Kärrman-MÅrdh, C., Forsman-Semb, K., & Simmer, J. P. (2001). Cloning and characterization of the mouse and human enamelin genes. J Dent Res., 80(3), 898-902. https://doi.org/10.1177/00220345010800031001 | spa |
dc.relation.references | Hu, J. C. -., Hu, Y., Lu, Y., Smith, C. E., Lertlam, R., Wright, J. T., . . . Simmer, J. P. (2014). Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS ONE, 9(3), e89303. https://doi.org/10.1371/journal.pone.0089303 | spa |
dc.relation.references | Hu, Y., Smith, C. E., Richardson, A. S., Bartlett, J. D., Hu, J. C. C., & Simmer, J. P. (2016). MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Molecular Genetics & Genomic Medicine, 4(2), 178-196. https://doi.org/10.1002/mgg3.194 | spa |
dc.relation.references | Kidd, E., & Fejerskov, O. (2016). Essentials of dental caries. p. 6. Oxford: OUP Oxford. | spa |
dc.relation.references | Lacruz, R. S., Smith, C. E., Kurtz, I., Hubbard, M. J., & Paine, M. L. (2012). New paradigms on the transport functions of maturation-stage ameloblasts. Journal of Dental Research, 92(2), 122-129. https://doi.org/10.1177/0022034512470954 | spa |
dc.relation.references | Lacruz, R. S., Habelitz, S., Timothy Wright, J., & Paine, M. L. (2017). Dental enamel formation and implications for oral health and disease. Physiological Reviews, 97(3), 939-993. https://doi.org/10.1152/physrev.00030.2016 | spa |
dc.relation.references | Le Norcy, E., Kwak, S., Wiedemann-Bidlack, F. B., Beniash, E., Yamakoshi, Y., Simmer, J. P., & Margolis, H. C. (2011). Leucine-rich amelogenin peptides regulate mineralization in vitro. Journal of Dental Research, 90(9), 1091-1097. https://doi.org/10.1177/0022034511411301 | spa |
dc.relation.references | Lu, Y., Papagerakis, P., Yamakoshi, Y., Hu, J., Bartlett, J., & Simmer, J. (2008). Functions of KLK4 and MMP-20 in dental enamel formation. Biological Chemistry, 389(6), 695-700. https://doi.org/10.1515/BC.2008.080 | spa |
dc.relation.references | Margolis, H. C., Beniash, E., & Fowler, C. E. (2006). Role of macromolecular assembly of enamel matrix proteins in enamel formation. Journal of Dental Research, 85(9), 775-793. https://doi.org/10.1177/154405910608500902 | spa |
dc.relation.references | Moradian-Oldak, J. (2012). Protein- mediated enamel mineralization. Frontiers in Bioscience : A Journal and Virtual Library, 17, 1996-2023. | spa |
dc.relation.references | Nagano, T., Kakegawa, A., Yamakoshi, Y., Tsuchiya, S., Hu, J. C. -., Gomi, K., . . . Simmer, J. P. (2009). Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. Journal of Dental Research, 88(9), 823-828. https://doi.org/10.1177/0022034509342694 | spa |
dc.relation.references | Sharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: How pH modulates toxicity. - PLoS ONE, 5(- 5), -e10895. https://doi.org/10.1371/journal.pone.0010895 | spa |
dc.relation.references | Simmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108. https://doi.org/10.1177/10454411950060020701 | spa |
dc.relation.references | Sire, J., Delgado, S., Frometin, D., & Girondot, M. (2005). Amelogenin: Lessons from evolution. Archives of Oral Biology, (- 2), 205-212. https://doi.org/10.1016/j.archoralbio.2004.09.004 | spa |
dc.relation.references | Teepe, J. D., Schmitz, J. E., Hu, Y., Yamada, Y., Fajardo, R. J., Smith, C. E., & Chun, Y. P. (2014). Correlation of ameloblastin with enamel mineral content. Connect Tissue Res, 55, 38-42. https://doi.org/10.3109/03008207.2014.923871 | spa |
dc.relation.references | Veis, A., & Dorvee, J. (2013). Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matrices. Calcified Tissue International, 93(4), 307-315. https://doi.org/10.1007/s00223-012-9678-2 | spa |
dc.relation.references | Weatherell, J., Deutsch, D., Robinson, C., & Hallsworth, A. (1975). Fluoride concentrations in developing enamel. Nature, 256(5514), 230-232. https://doi.org/10.1038/256230a0 | spa |
dc.relation.references | Akiva, A., Kerschnitzki, M., Pinkas, I., Wagermaier, W., Yaniv, K., Fratzl, P., .Weiner, S. (2016). Mineral formation in the larval zebrafish tail bone occurs via an acidic disordered calcium phosphate phase. Journal of the American Chemical Society, 138(43), 14481-14487. https://doi.org/10.1021/jacs.6b09442 | spa |
dc.relation.references | Alvares, K. (2014). The role of acidic phosphoproteins in biomineralization. Connective Tissue Research, 55(1), 34-40. https://doi.org/10.3109/03008207.2013.867336 | spa |
dc.relation.references | Arana-Chavez, V. E., & Massa, L. F. (2004). Odontoblasts: The cells forming and maintaining dentine. Int J Biochem Cell Biol, 36(8), 1367-1373 https://doi.org/10.1016/j.biocel.2004.01.006 | spa |
dc.relation.references | Beniash, E. (2011). Biominerals-hierarchical nanocomposites: The example of bone. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 3(1), 47-69 https://doi.org/10.1002/wnan.105 | spa |
dc.relation.references | Bertassoni, L., & Swain, M. (2017). Removal of dentin non-collagen structures results in the unraveling of microfibril bundless in collagen type I. Connect Tissue Res, 58(5), 414-423. https://doi.org/10.1080/03008207.2016.1235566 | spa |
dc.relation.references | Bertassoni, L. E., Orgel, J. P. R., Antipova, O., & Swain, M. V. (2012). The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale. Acta Biomaterialia, 8(7), 2419-2433. https://doi.org/10.1016/j.actbio.2012.02.022 | spa |
dc.relation.references | Bertassoni, L. E., Habelitz, S., Kinney, J. H., Marshall, S. J., & Marshall Jr., G. W. (2009). Biomechanical perspective on the remineralization of dentin. Caries Research, 43(1), 70-77. https://doi.org/0.1159/000201593 | spa |
dc.relation.references | Bertassoni, L. E. (2017). Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dental Materials, 33, 637-649. https://doi.org/10.1016/j.dental.2017.03.008 | spa |
dc.relation.references | Bleicher, F. (2014). Odontoblast physiology. Exp Cell Res, 325(2), 65-71. https://doi.org/10.1016/j.yexcr.2013.12.012 | spa |
dc.relation.references | Bonar, L. C., Lees, S., & Mook, H. A. (1985). Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol, 181(2), 265-270. https://doi.org/10.1016/0022-2836(85)90090-7 | spa |
dc.relation.references | Bonucci, E. (2002). Crystal ghost and biological mineralization: Fancy spectres in an old castle, or negelcted structures worthy of belief. J. Bone. Miner. Metab, 20(5), 249-265. https://doi.org/10.1007/s007740200037 | spa |
dc.relation.references | Boonrungsiman, S., Gentleman, E., Carzaniga, R., Evans, N. D., McComb, D. W., Porter, A. E., & Stevens, M. M. (2012). The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A., 109(35), 14170-14175. https://doi.org/10.1073/pnas.1208916109 | spa |
dc.relation.references | Butler, W. T., Brunn, J. C., & Qin, C. (2003). Dentin extracellular matrix (ECM) proteins: Comparison to bone ECM and contribution to dynamics of dentinogenesis. Connective Tissue Research, 44(1), 171-178. https://doi.org/10.1080/03008200390152287 | spa |
dc.relation.references | Cao, Y. C., Mei, L. M., Li, Q., Lo, C. E., & Chu, H. C. (2015). Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci, 16(3), 4615-4627. https://doi.org/10.3390/ijms16034615 | spa |
dc.relation.references | Colfen, H. (2010). Biomineralization: A crystal-clear view. Nat Mater, 9(12), 960-961. https://doi.org/10.1038/nmat2911 | spa |
dc.relation.references | Dorozhkin, S. V. (2017). Hydroxyapatite and other calcium orthophosphates: Nanodimensional, multiphasic and amorphous formulations. New York: Nova Science Publishers, Inc. Retrieved from https://ezproxy.javeriana.edu.co:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1530704&lang=es&site=ehost-live | spa |
dc.relation.references | Embery, G., Hall, R., Waddington, R., Septier, D., & Goldberg, M. (2001). Proteoglycans in dentinogenesis. Crit Rev Oral Biol & Med, 12(4), 331-349. https://doi.org/10.1177/10454411010120040401 | spa |
dc.relation.references | Fisher, L. W., & Fedarko, N. S. (2003). Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res, 44(Suppl 1), 33-40. | spa |
dc.relation.references | Gericke, A., Qin, C., Sun, Y., Redfern, R., Redfern, D., Fujimoto, Y., . . . Boskey, A. L. (2010). Different forms of DMP1 play distinct roles in mineralization. J Dent Res, 89(4), 355-359. https://doi.org/10.1177/0022034510363250 | spa |
dc.relation.references | Goldberg, M., Kulkarni, A., Young, M., & Boskey, A. (2011). Dentin: Structure, composition and mineralization. Front Biosci, 3(2), 711-735. https://doi.org/10.2741/e281 | spa |
dc.relation.references | Hao, J., Zou, B., Narayanan, K., & George, A. (2004). Differential expression patterns of the dentin matrix proteins during mineralized tissue formation. Bone, 34(6), 921-932 https://doi.org/10.1016/j.bone.2004.01.020 | spa |
dc.relation.references | He, G., Dahl, T., Veis, A., & George, A. (2003). Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater, 2(8), 552-558. https://www.nature.com/articles/nmat945 | spa |
dc.relation.references | He, G., & George, A. (2004). Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem, 279(12), 11649-11656. https://doi.org/10.1074/jbc.M309296200 | spa |
dc.relation.references | He, L., Hao, Y., Zhen, L., Liu, H., Shao, M., Xu, X., . . . van Loveren, C. (2019). Biomineralization of dentin. J Struct Biol, 207(2), 115-122. https://doi.org/10.1016/j.jsb.2019.05.010 | spa |
dc.relation.references | Kalamajski, S., & Oldberg, Å. (2010). The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biology, 29(4), 248-253. https://doi.org/10.1016/j.matbio.2010.01.001 | spa |
dc.relation.references | Kawasaki, K., & Weiss, K. M. (2008). SCPP gene evolution and the dental mineralization continuum. J Dent Res, 87(6), 520-531. https://doi.org/10.1177/154405910808700608 | spa |
dc.relation.references | Kinney, J. H., Pople, J. A., Driessen, C. H., Breunig, T. M., Marshall, G. W., & Marshall, S. J. (2001). Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II (DI-II). J Dent Res, 80(6), 1555-1559. https://doi.org/10.1177/00220345010800061501 | spa |
dc.relation.references | Li, C., Jing, Y., Wang, K., Ren, Y., Liu, X., Wang, X., . . . Feng, J. Q. (2018). Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process. Int J Biol Sci, 14(7), 693-704. https://doi.org/10.7150/ijbs.25712 | spa |
dc.relation.references | Linde, A., & Robins, S. (1988). Quantitative assessment of collagen crosslinks in dissected predentin and dentin. Coll Relat Res, 8(5), 443-450. https://doi.org/10.1016/s0174-173x(88)80017-7 | spa |
dc.relation.references | Linde, A. (1989). Dentin matrix proteins: Composition and possible functions in calcification. The Anatomical Record, 224(2), 154-166. https://doi.org/10.1002/ar.1092240206 | spa |
dc.relation.references | Nijhuis, A. W. G., Nejadnik, M. R., Nudelman, F., Walboomers, X. F., te Riet, J., Habibovic, P., . . . Leeuwenburgh, S. C. G. (2014). Enzymatic pH control for biomimetic deposition of calcium phosphate coatings. Acta Biomaterialia, 10(2), 931-939. https://doi.org/10.1016/j.actbio.2013.09.036 | spa |
dc.relation.references | Niu, L., Jee, S. E., Jiao, K., Tonggu, L., Li, M., Wang, L., . . . Tay, F. R. (2017). Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater, 16(3), 370-378. https://doi.org/10.1038/nmat4789 | spa |
dc.relation.references | Niu, L., Zhang, W., Pashley, D. H., Breschi, L., Mao, J., Chen, J., & Tay, F. R. (2013). Biomimetic remineralization of dentin. Dental Materials: Official Publication of the Academy of Dental Materials, 30(1), 77-96. https://doi.org/10.1016/j.dental.2013.07.013 | spa |
dc.relation.references | Nudelman, F., Lausch, A. J., Sommerdijk, N. A. J. M., & Sone, E. D. (2013). In vitro models of collagen biomineralization. Journal of Structural Biology, 183(2), 258-269. https://doi.org/10.1016/j.jsb.2013.04.003 | spa |
dc.relation.references | Orgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences, 103(24), 9001-9005. https://doi.org/10.1073/pnas.0502718103 | spa |
dc.relation.references | Padovano, J. D., Ravindran, S., Snee, P. T., Ramachandran, A., Bedran-Russo, A., & George, A. (2015). DMP1-derived peptides promote remineralization of human dentin. J Dent Res., 94(4), 608-614. https://doi.org/10.1177/0022034515572441 | spa |
dc.relation.references | Prasad, M., Butler, W. T., & Qin, C. (2010). Dentin sialophosphoprotein (DSPP) in biomineralization. Connect Tissue Res, 51(5), 404-417. https://doi.org/10.3109/03008200903329789 | spa |
dc.relation.references | Qin, C., Baba, O., & Butler, W. T. (2004). Post-translational modifications of SIBLING proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol & Med, 15(3), 126-136. https://doi.org/10.1177/154411130401500302 | spa |
dc.relation.references | Ruch, J., Lesot, H., & Bègue-Kirn, C. (1995). Odontoblast differentiation. Int. J. Dev. BioI., 39(1), 51-68. https://pubmed.ncbi.nlm.nih.gov/7626422/#:~:text=Odontoblasts%20are%20post%2Dmitotic%2C%20neural,and%20secrete%20predentin%2Ddentin%20components | spa |
dc.relation.references | Scott, J. E. (1990). Proteoglycan:Collagen interactions and subfibrillar structure in collagen fibrils. implications in the development and ageing of connective tissues. Journal of Anatomy, 169, 23-35. https://pubmed.ncbi.nlm.nih.gov/2384335/ | spa |
dc.relation.references | Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., & Fratzl, P. (2001). Graded microstructure and mechanical properties of human crowm dentine. Calcif Tissue Int, 69(3), 147-157. https://doi.org/10.1007/s00223-001-2012-z | spa |
dc.relation.references | Thesleff, I. (2003). Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci., 116(Pt 9), 1647-1648. https://doi.org/10.1242/jcs.00410 | spa |
dc.relation.references | Toroian, D., Lim, J. E., & Price, P. A. (2007). The size exclusion characteristics of type I collagen: Implications for the role of noncollagenous bone constituents in mineralization. The Journal of Biological Chemistry, 282(31), 22437-22447. https://doi.org/10.1074/jbc.M700591200 | spa |
dc.relation.references | Veis, A., & Dorvee, J. (2013). Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matrices. Calcified Tissue International, 93(4), 307-315. https://doi.org/10.1007/s00223-012-9678-2 | spa |
dc.relation.references | Yamakoshi, Y., & Simmer, J. P. (2018). Structural features, processing mechanism and gene splice variants of dentin sialophosphoprotein. Japanese Dental Science Review, 54(4), 183-196. https://doi.org/10.1016/j.jdsr.2018.03.006 | spa |
dc.relation.references | Zhao, J., Liu, Y., Wei-bin Sun, & Yang, X. (2012). First detection, characterization, and application of amorphous calcium phosphate in dentistry. Journal of Dental Sciences, 7(4), 316-323. https://doi.org/10.1016/j.jds.2012.09.001 | spa |
dc.relation.references | Ababneh, K. T., Hall, R. C., & Embery, G. (1999). The proteoglycans of human cementum: Immunohistochemical localization in healthy, periodontally involved and ageing teeth. J Periodont Res, 34(2), 87-96. https://doi.org/10.1111/j.1600-0765.1999.tb02227.x | spa |
dc.relation.references | Abou Neel, E., Aljabo, A., Strange, A., Ibrahim, S. (2016). Coathup M, Young A & Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanom 11, 4743-4763. https://doi.org/10.2147/IJN.S107624 | spa |
dc.relation.references | Arzate, H., Zeichner-David, M., & Mercado-Celis, G. (2015). Cementum proteins: Role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 67(1), 211-233. https://doi.org/10.1111/prd.12062 | spa |
dc.relation.references | Beertsen, W., VandenBos, T., & Everts, V. (1999). Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: Inhibition of acellular cementum formation. J. Dent. Res 78(6), 1221-1229. https://doi.org/10.1177/00220345990780060501 | spa |
dc.relation.references | Berry, J. E., Zhao, M., Jin, Q., Foster, B. L., Viswanathan, H., & Somerman, M. J. (2003). Exploring the origins of cementoblasts and their trigger factors. Connect. Tissue Res 44(1), 97-102. https://pubmed.ncbi.nlm.nih.gov/12952181/ | spa |
dc.relation.references | Choi, H., Kim, T., Yang, S., Lee, J., You, H., & Cho, E. (2017). A reciprocal interaction between β-catenin and osterix in cementogenesis. Sci Rep 7, 8160. https://www.nature.com/articles/s41598-017-08607-5 | spa |
dc.relation.references | Foster, B., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., & Somerman, M. (2015). Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78, 150-164. https://doi.org/10.1016/j.bone.2015.05.007 | spa |
dc.relation.references | Foster, B. L. (2017). On the discovery of cementum. J Periodontal Res, 52(2), 666-685. https://doi.org/10.1111/jre.12444 | spa |
dc.relation.references | Gottlieb, B. (1942). Biology of the cementum. J Periodontol 13, 13-19. | spa |
dc.relation.references | Hollis, A., Arundel, P., High, A., & Balmer, R. (2013). Current concepts in hypophosphatasia: Case report and literature review. Int J Paediatr Dent 23(3), 153-159. https://doi.org/10.1111/j.1365-263X.2012.01239.x | spa |
dc.relation.references | Ikezawa, K., Hart, C. E., Williams, D. C., & Narayanan, A. S. (1997). Characterization of cementum derived growth factor as an insulin-like growth factor-I like molecule. Connect Tissue Res 36(4), 309-319. https://doi.org/10.3109/03008209709160230 | spa |
dc.relation.references | Kaipatur, N. R., Murshed, M., & McKee, M. D. (2008). Matrix Gla protein inhibition of tooth mineralization. J Dent Res 87(9), 839-844. https://doi.org/10.1177/154405910808700907 | spa |
dc.relation.references | Listik, E., Azevedo Marques Gaschler, J., Matias, M., Neuppmann Feres, M. F., Toma, L., & Raphaelli Nahás-Scocate, A. C. (2019). Proteoglycans and dental biology: The first review. Carbohydr Polym 1;225:115199. https://doi.org/10.1016/j.carbpol.2019.115199 | spa |
dc.relation.references | Montoya, G., Arenas, J., Romo, E., Zeichner-David, M., Alvarez, M., Narayanan, A. S., & Arzate, H. (2014). Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo. Bone 69, 154-164. https://doi.org/10.1016/j.bone.2014.09.014 | spa |
dc.relation.references | Montoya, G., Correa, R., Arenas, J., Hoz, L., Romo, E., Arroyo, R., & Arzate, H. (2019). Cementum protein 1-derived peptide (CEMP 1-p1) modulates hydroxyapatite crystal formation in vitro. J Pept Sci 25, e3211. https://doi.org/10.1002/psc.3211 | spa |
dc.relation.references | Nanci, A., & Bosshardt, D. D. (2006). Structure of periodontal tissues in health and disease*. Periodontol 2000, 40, 11-28. https://doi.org/10.1111/j.1600-0757.2005.00141.x | spa |
dc.relation.references | Orimo, H. (2010). The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 77, 4-12. https://doi.org/10.1272/jnms.77.4 | spa |
dc.relation.references | Popowics, T., Foster, B., Swanson, E., Fong, H., & Somerman, M. (2005). Defining the roots of cementum formation. Cells Tissues Organs 181, 248-257. https://www.karger.com/Article/Pdf/91386 | spa |
dc.relation.references | Tenório, D. M. H., Santos, M. F., & Zorn, T. M. T. (2003). Distribution of biglycan and decorin in rat dental tissue. Braz J Med Biol Res 36, 1061-1065. https://doi.org/10.1590/s0100-879x2003000800012 | spa |
dc.relation.references | van den Bos, T., & Beertsen, W. (1999). Alkaline phosphatase activity in human periodontal ligament: Age effect and relation to cementum growth rate. J Periodontal Res 34, 1-6. https://doi.org/10.1111/j.1600-0765.1999.tb02215.x | spa |
dc.relation.references | Watanabe, H., Umeda, M., Seki, T., & Ishikawa, I. (1993). Clinical and laboratory studies of severe periodontal disease in an adolescent associated with hypophosphatasia. A case report. J. Periodontol 64, https://doi.org/174-180. 10.1902/jop.1993.64.3.174 | spa |
dc.relation.references | Watanabe, K. (1990). Prepubertal periodontitis: A review of diagnostic criteria, pathogenesis, and differential diagnosis. J Periodontal Res 25, 31-48. https://doi.org/10.1111/j.1600-0765.1990.tb01205.x | spa |
dc.relation.references | Yamamoto, T., Domon, T., Takahashi, S., Arambawatta, A. K. S., & Wakita, M. (2004). Immunolocation of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars. Cell Tissue Res 317, 299-312. https://doi.org/10.1007/s00441-004-0896-4 | spa |
dc.relation.references | Zeichner-David, M. (2006). Regeneration of periodontal tissues: Cementogenesis revisited. Periodontol 2000 41, 196-217. https://doi.org/10.1111/j.1600-0757.2006.00162.x | spa |
dc.relation.references | Alam, I., Padgett, L. R., Ichikawa, S., Alkhouli, M., Koller, D. L., Lai, D. & Econs, M. J. (2014). SIBLING family genes and bone mineral density: Association and allele-specific expression in humans. Bone, 64, 166-172. https://doi.org/10.1016/j.bone.2014.04.013 | spa |
dc.relation.references | Aubin, J. E. (1998). Advances in the osteoblast lineage. Biochem Cell Biol, 76, 899-910. https://pubmed.ncbi.nlm.nih.gov/10392704/ | spa |
dc.relation.references | Babaji, P., Devanna, R., Jagtap, K., Chaurasia, V. R., Jerry, J. J., Choudhury, B. K., & Duhan, D. (2017). The cell biology and role of resorptive cells in diseases: A review. Ann Afr Med, 16(2), 39-45. https://doi.org/10.4103/aam.aam_97_16 | spa |
dc.relation.references | Bellido, T. (2013). Osteocytes and Their Role in Bone Remodeling. Actualizaciones En Osteología, 9(1), 56-64. https://osteologia.org.ar/files/pdf/rid32_Bellido.pdf | spa |
dc.relation.references | Bellido, T. (2014). Osteocyte-driven bone remodeling. Calcif Tissue Int, 94, 25-34. https://doi.org/10.1007/s00223-013-9774-y | spa |
dc.relation.references | Beniash, E. (2011), Biominerals—hierarchical nanocomposites: the example of bone. WIREs Nanomed Nanobiotechnol, 3(1), 47-69. https://doi.org/10.1002/wnan.105 | spa |
dc.relation.references | Bini, F., Pica, A., Marinozzi, A., & Marinozzi, F. (2017). 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone. Plos One. 12(12): e0189041. https://doi.org/10.1371/journal.pone.0189041 | spa |
dc.relation.references | Bouleftour, W., Juignet, L., Bouet, G., Granito, R. N., Vanden-Bossche, A., Laroche, N. & Malaval, L. (2016). The role of the SIBLING, bone sialoprotein in skeletal biology — contribution of mouse experimental genetics. Matrix Biol 52-54, 60-77. https://doi.org/10.1016/j.matbio.2015.12.011 | spa |
dc.relation.references | Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658 | spa |
dc.relation.references | Compston, J. (2006). Bone quality: What is it and how is it measured? Arq Bras Endocrinol Metabol. 50(4), 579-585. https://doi.org/10.1590/s0004-27302006000400003 | spa |
dc.relation.references | D'Amico, L., & Roato, I. (2012). Osteoclasts, the major actors in bone resorption. In J. S. Walker, & A. J. Brown (Eds.), Osteoclasts: Morphology, functions & clinical implications (pp. 95-112). Hauppauge, [New York]: Nova Science Publishers, Inc. | spa |
dc.relation.references | Deshpande, A. S., & Beniash, E. (2008). Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth & Des, 8, 3084-3090. https://doi.org/10.1021/cg800252f | spa |
dc.relation.references | Dorozhkin, S. (2016). Calcium orthophosphates (CaPO4): Ocurrence and properties. Prog Biomater, 5, 9-70. https://doi.org/10.1007/s40204-015-0045-z | spa |
dc.relation.references | Ducy, P., & Karsenty, G. (1998). Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol, 10, 614-619. https://doi.org/10.1016/s0955-0674(98)80037-9 | spa |
dc.relation.references | Ducy, P., Schinke, T., & Karsenty, G. (2000). The osteoblast: A sophisticated fibroblast under central surveillance. Science, 289, 1501-1504. https://doi.org/10.1126/science.289.5484.1501 | spa |
dc.relation.references | Foster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., Tran, A. B., Wimer, H. F., Zerfas, P. M., Nociti, F. H., Kantovitz, K. R., Quan, B. D., Sone, E. D., Goldberg, H. A., & Somerman, M. J. (2015). Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone, 78, 150-164. https://doi.org/10.1016/j.bone.2015.05.007 | spa |
dc.relation.references | George, A., & Veis, A. (2008). Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev, 108, 4670-4693. https://doi.org/10.1021/cr0782729 | spa |
dc.relation.references | Gorski, J. P. (2011). Biomineralization of bone: A fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed), 16, 2598-2621. https://doi.org/10.2741/3875 | spa |
dc.relation.references | Ikeda, F., Nishimura, R., Matsubara, T., Tanaka, S., Inoue, J., Reddy, S. V., & Yoneda, T. (2004). Critical roles of c-jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest, 114, 475-484. https://doi.org/10.1172/JCI19657 | spa |
dc.relation.references | Kagiya, T. (2016). Role of microRNAs in osteoclast differentiation and function. In C. Reeves (Ed.), Osteoclasts: Cell biology, functions and related diseases (pp. 1-18). New York: Nova Science Publishers, Inc. | spa |
dc.relation.references | Kanakamedala , A. K., Mahendra, J., Kareem, N., & Mahendra, L. (2019). Osteoclasts: Multifaceted molecule in vesicular trafficking. Journal of Clinical & Diagnostic Research 13(8), 1-5. https://doi.org/10.7860/JCDR/2019/40307.13064 | spa |
dc.relation.references | Kanazawa, I. (2015). Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes, 6(18), 1345-1354. https://doi.org/10.4239/wjd.v6.i18.1345 | spa |
dc.relation.references | Staines, K. A., MacRae, V. E., & Farquharson, C. (2012). The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. The Journal of endocrinology, 214(3), 241–255. https://doi.org/10.1530/JOE-12-0143 | spa |
dc.relation.references | Landis, W. J., & Silver, F. H. (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: Identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs, 189, 20-24. https://doi.org/10.1159/000151454 | spa |
dc.relation.references | Lerner, U. H., Kindstedt, E., & Lundberg, P. (2019). The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol, 46, 33-51. https://doi.org/10.1111/jcpe.13051 | spa |
dc.relation.references | Margolis, H. C., Kwak, S., & Yamazaki, H. (2014). Role of mineralization inhibitors in the regulation of hard tissue biomineralization: Relevance to initial enamel formation and maturation. Front Physiol, 5, 339-452. https://doi.org/10.3389/fphys.2014.00339 | spa |
dc.relation.references | Moser, S. C., & van der Eerden, B. C. J. (2019). Osteocalcin-A: Versatile bone-derived hormone. Front Endocrinol (Lausanne), 9, 794. https://doi.org/10.3389/fendo.2018.00794 | spa |
dc.relation.references | Neve, A., Corrado, A., & Cantatore, F. P. (2013). Osteocalcin: Skeletal and extra-skeletal effects. J Cell Physiol, 228(6), 1149-1153. https://doi.org/10.1002/jcp.24278 | spa |
dc.relation.references | Nudelman, F., Lausch, A. J., Sommerdijk, N. A. J. M., & Sone, E. D. (2013). In vitro models of collagen biomineralization. J Struct Biol, 183(2), 258-269. https://doi.org/ 10.1016/j.jsb.2013.04.003 | spa |
dc.relation.references | Orgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A, 103(24), 9001-5. https://doi.org/10.1073/pnas.0502718103 | spa |
dc.relation.references | Ou-Yang, H., Paschalis, E. P., Mayo, W. E., Boskey, A. L., & Mendelsohn, R. (2001). Infrared microscopic imaging of bone: Spatial distribution of CO3(2-). J Bone Miner Res, 16(5), 893-900. https://doi.org/10.1359/jbmr.2001.16.5.893 | spa |
dc.relation.references | Price, P. A., Toroian, D., & Lim, J. E. (2009). Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. The Journal of biological chemistry, 284(25), 17092-17101. https://doi.org/10.1074/jbc.M109.007013 | spa |
dc.relation.references | Qin, C., Baba, O., & Butler, W. T. (2004). Postranslational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol & Med, 15(3), 126-136. https://doi.org/10.1177/154411130401500302 | spa |
dc.relation.references | Qin, C., D’Souza, R., & Feng, J. Q. (2007). Dentin matrix protein 1 (DMP1): New and important roles for biomineralization and phosphate homeostasis. J Dent Res, 86, 1134-1141. https://doi.org/10.1177/154405910708601202 | spa |
dc.relation.references | Ritchie, H. (2018). The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci, 10, 31. https://doi.org/10.1038/s41368-018-0035-9 | spa |
dc.relation.references | Saito, T., Arsenault, A. L., Yamauchi, M., Kuboki, Y., & Crenshaw, M. A. (1999). Mineral induction by immobilized phosphoproteins. Bone, 21(4), 305-311. https://doi.org/10.1016/S8756-3282(97)00149-X | spa |
dc.relation.references | Scheurer, H. (2013). Osteoblasts: Morphology, functions and clinical implications. New York: Nova Science Publishers, Inc. | spa |
dc.relation.references | Singh, A., Gill, G., Kaur, H., Amhmed, M., & Jakhu, H. (2018). Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog Orthod 19(1), 18. https://doi.org/10.1186/s40510-018-0216-2 | spa |
dc.relation.references | Stewart, S., Shea, D. A., Tarnowski, C. P., Morris, M. D., Wang, D., Franceschi, R. & Keller, E. (2002). Trends in early mineralization of murine calvarial osteoblastic cultures: A raman microscopic study. J Raman Spectrosc, 33(7), 536-543. https://doi.org/10.1002/jrs.892 | spa |
dc.relation.references | Tavafoghi, M., & Cerruti, M. (2016). The role of amino acids in hydroxyapatite mineralization. J R Soc Interface, 13, 123. https://doi.org/10.1098/rsif.2016.0462 | spa |
dc.relation.references | Tresguerres, F. G. F., Torres, J., López-Quiles, J., Hernández, G., Vega, J. A., & Tresguerres, I. F. (2020). The osteocyte: A multifunctional cell within the bone. Ann Anat, 227, 151422. https://doi.org/10.1016/j.aanat.2019.151422 | spa |
dc.relation.references | Tsao, Y., Huang, Y., Wu, H., Liu, Y., Liu, Y., & Lee, K. O. (2017). Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int J Mol Sci, 18, 159. https://doi.org/10.3390/ijms18010159 | spa |
dc.relation.references | Veis, A., & Perry, A. (1967). The phosphoprotein of the dentin matrix. Biochemistry, 6(8), 2409-2416. https://doi.org/10.1021/bi00860a017 | spa |
dc.relation.references | Veschi, E. A., Bolean, M., Strzelecka-Kiliszek, A., Bandorowicz-Pikula, J., Pikula, S., Granjon, T., & Ciancaglini, P. (2020). Localization of annexin A6 in matrix vesicles during physiological mineralization. Int J Mol Sci, 21(4), 1367. https://doi.org/ 10.3390/ijms21041367 | spa |
dc.relation.references | Zofkova, I. (2008). Involvement of bone in systemic endocrine regulation. Physiol Res, 67, 669-677. https://doi.org/10.33549/physiolres.933843 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | Atribución-Nocomercial-SinDerivar 4.0 International | * |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Biomineralización | spa |
dc.subject | Ciencia de los materiales | spa |
dc.subject | Cristalización | spa |
dc.subject | Biomateriales | spa |
dc.subject | Calcificación | spa |
dc.subject.keywords | Biomineralization | spa |
dc.subject.keywords | Material science | spa |
dc.subject.keywords | Crystallization | spa |
dc.subject.keywords | Biomaterials | spa |
dc.subject.keywords | Calcification | spa |
dc.title | Biomineralización de tejidos calcificados | spa |
dc.type | book | |
dc.type.coar | https://purl.org/coar/resource_type/c_2f33 | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/book | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.local | Libro completo | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- 9789587392760.pdf
- Tamaño:
- 2.41 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Biomineralización de tejidos calcificados
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: