Biomineralización de tejidos calcificados

dc.contributor.authorMejía Naranjo, Wilson
dc.contributor.authorBeltrán Zúñiga, Edgar O.
dc.date.accessioned2022-09-20T13:42:03Z
dc.date.available2022-09-20T13:42:03Z
dc.date.issued2022
dc.description.abstractEste libro responde a la necesidad de presentar a los estudiantes de Odontología y de cursos básicos de posgrado en ciencias biomédicas u odontológicas los fundamentos y mecanismos del fenómeno de biomineralización de tejidos dentales. Se trata de un proceso dinámico y complejo llevado a cabo por células especializadas, mediante el cual ocurren la secreción y deposición de minerales de calcio y fosfato inorgánicos, los cuales interactúan de forma organizada con proteínas nucleadoras en una matriz extracelular para generar tejidos mineralizados altamente funcionales. Las células especializadas son los ameloblastos, los odontoblastos, los cementoblastos y los osteoblastos, responsables respectivamente de la producción de esmalte, dentina, cemento y hueso. Comprender los procesos de biomineralización y las dinámicas de mineralización y remineralización es importante para prevenir y tratar las enfermedades causadas por una mineralización anormal y/o defectuosa de los tejidos calcificados.spa
dc.description.abstractenglishThis book responds to the need to present to students of Dentistry and basic postgraduate courses in biomedical or dental sciences the fundamentals and mechanisms of the phenomenon of biomineralization of dental tissues. It is a dynamic and complex process carried out by specialized cells, through which the secretion and deposition of inorganic calcium and phosphate minerals occur. These interact in an organized way with nucleating proteins in an extracellular matrix to generate highly functional mineralized tissues. The specialized cells are the ameloblasts, the odontoblasts, the cementoblasts and the osteoblasts, responsible respectively for the production of enamel, dentin, cementum and bone. Understanding biomineralization processes and the dynamics of mineralization and remineralization is important to prevent and treat diseases caused by abnormal and/or defective mineralization of calcified tissues.eng
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.isbn9789587392760
dc.identifier.isbn9789587392814
dc.identifier.isbn9789587392753
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/9051
dc.publisher.grantorUniversidad El Bosquespa
dc.relation.referencesBronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893. https://doi.org/10.1177/0022034509343280spa
dc.relation.referencesCameron, F. K., & Seidell, A. (1904). The action of water upon the phosphates of calcium. Journal of the American Chemical Society, 26(11), 1454-1463. https://doi.org/10.1021/ja02001a007spa
dc.relation.referencesCastiblanco, G. A., Rutishauser, D., Ilag, L. L., Martignon, S., Castellanos, J. E., & Mejía, W. (2015). Identification of proteins from human permanent erupted enamel. European Journal of Oral Sciences, 123(6), 390-395. https://doi.org/10.1111/eos.12214spa
dc.relation.referencesDorozhkin, S. V. (2011). Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164. https://doi.org/10.4161/biom.18790spa
dc.relation.referencesDreesmann, H. (1892). Ueber knochenplombierung. Beitr Klin Chir, 9, 804-810.spa
dc.relation.referencesEvans, J. S. (2017). Polymorphs, proteins, and nucleation theory: A critical analysis. Minerals (2075-163X), 7(4):62. https://doi.org/10.3390/min7040062spa
dc.relation.referencesEvans, J. S. (2019). Composite materials design: Biomineralization proteins and the guided assembly and organization of biomineral nanoparticles. Materials (Basel, Switzerland), 12(4). https://doi.org/10.3390/ma12040581spa
dc.relation.referencesFurtos, G., Lesci, I. G., Šiller, L., Marin, F., Brümmer, F., & Checa, A. (2015). Biomineralization: From fundamentals to biomaterials & environmental issues. Pfaffikon, Switzerland: Trans Tech Publications Ltd. Retrieved from https://ezproxy.javeriana.edu.co:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1165291&lang=es&site=ehost-livespa
dc.relation.referencesGower, L. B. (2008). Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chemical Reviews, 108(11), 4551-4627. https://doi.org/10.1021/cr800443hspa
dc.relation.referencesKay, M. I., Young, R. A., & Posner, A. S. (1964). Crystal structure of hydroxyapatite. Nature, 204(4963), 1050-1052. https://doi.org/10.1038/2041050a0spa
dc.relation.referencesLafisco, M., Delgado López, J., & Drouet, C. (2014). Nanocrystaline apatites: Synthesis, physical-cehmical and thermodynamic characterization. In M. Lafisco, & J. Delgado López (Eds.), Apatite (pp. 49-80) Nova Science Publishers, Inc.spa
dc.relation.referencesLide, D. (2005). The CRC handbook of chemistry and physics. CRC Press, Boca Ratón, Florida, 86, 2544.spa
dc.relation.referencesMadupalli, H., Pavan, B., & Tecklenburg, M. (2017). Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem. 255:27-35. https://doi.org/10.1016/j.jssc.2017.07.025spa
dc.relation.referencesOmelon, S. J., & Grynpas, M. D. (2008). Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chemical Reviews, 108(11), 4694-4715. https://doi.org/10.1021/cr0782527spa
dc.relation.referencesPosner, A. S., & Betts, F. (1975). Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Accounts of Chemical Research, 8(8), 273-281. https://doi.org/10.1021/ar50092a003spa
dc.relation.referencesRamirez-Rodríguez, G., Delgado-López, J., & Gomez-Morales, J. (2013). Evolution of calcium phosphate precipitatation in hanging drop vapor infussion by in situ raman microspectroscopy. CrystEngComm, 15, 2206.spa
dc.relation.referencesRodríguez-Navarro, A. B., Marie, P., Nys, Y., Hincke, M. T., & Gautron, J. (2015). Amorphous calcium carbonate controls avian eggshell mineralization: A new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 190(3), 291-303. https://doi.org/10.1016/j.jsb.2015.04.014spa
dc.relation.referencesSharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: How pH modulates toxicity. PLoS ONE, 5(-5), -e10895. https://doi.org/10.1371/journal.pone.0010895spa
dc.relation.referencesSimmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108. https://doi.org/10.1177/10454411950060020701spa
dc.relation.referencesYao, S., Jin, B., Liu, Z., Shao, C., Zhao, R., Tang, R., & Wang, X. (2017). Biomineralization: From material tactis to biological strategy. Adv Mater, 29(14). https://doi.org/10.1002/adma.201605903spa
dc.relation.referencesZahn, D. (2015). Thermodynamics and kinetics of prenucleation clusters, classical and non-classical nucleation. ChemPhysChem, 16(10), 2069-2075. https://doi.org/10.1002/cphc.201500231spa
dc.relation.referencesAoba, T., & Fejerskov, O. (2002). Dental fluorosis: Chemistry and biology. Crit Rev Oral Biol & Med., 13(2), 155-170. https://doi.org/10.1177/154411130201300206spa
dc.relation.referencesBansal, A., Shetty, D., Bindal, R., & Pathak, A. (2012). Amelogenin: Novel protein with diverse applications in genetic and molecular profiling. Oral Maxillofac Pathol J, 16, 395-399. https://doi.org/10.4103/0973-029X.102495spa
dc.relation.referencesBartlett, J. D., & Simmer, J. P. (2015). New perspectives on amelotin and amelogenesis. J Dent Res., 94(5), 642-644. https://doi.org/10.1177/0022034515572442spa
dc.relation.referencesBartlett, J. D., Ganss, B., Goldberg, M., Moradian-Oldak, J., Paine, M. L., Snead, M. L., . . . Zhou, Y. L. (2006). Protein–Protein interactions of the developing enamel matrix. Current Topics in Developmental Biology, 74, 57-115. https://doi.org/10.1016/S0070-2153(06)74003-0spa
dc.relation.referencesBouropoulos, N., & Moradian-Oldak, J. (2004). Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelin. Journal of Dental Research, 83(4), 278-282. https://doi.org/10.1177/154405910408300402spa
dc.relation.referencesBromley, K. M., Kiss, A. S., Lokappa, S. B., Lakshminarayanan, R., Fan, D., Ndao, M., . . . Moradian-Oldak, J. (2011). Dissecting amelogenin protein nanospheres: Characterization of metastable oligomers. Journal of Biological Chemistry, 286(40), 34643-34653. https://doi.org/10.1074/jbc.M111.250928spa
dc.relation.referencesBronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893. https://doi.org/10.1177/0022034509343280spa
dc.relation.referencesCastiblanco, G. A., Rutishauser, D., Ilag, L. L., Martignon, S., Castellanos, J. E., & Mejía, W. (2015). Identification of proteins from human permanent erupted enamel. European Journal of Oral Sciences, 123(6), 390-395. https://doi.org/10.1111/eos.12214spa
dc.relation.referencesCarey, C. M. (2014). Focus on fluorides: Update on the use of fluoride for the prevention of dental caries. Journal of Evidence Based Dental Practice, 14, 95-102. https://doi.org/10.1016/j.jebdp.2014.02.004spa
dc.relation.referencesFincham, A. G., Belcourt, A. B., Termine, J. D., Butler, W. T., & Cothran, W. C. (1981). Dental enamel matrix: Sequences of two amelogenin polypeptides. Bioscience Reports, 1(10), 771-778. https://doi.org/10.1007/BF01114799spa
dc.relation.referencesFincham, A. G., Moradian-Oldak, J., & Simmer, J. P. (1999). The structural biology of the developing dental enamel matrix. Journal of Structural Biology, 126(3), 270-299. https://doi.org/10.1006/jsbi.1999.4130spa
dc.relation.referencesGallon, V., Chen, L., Yang, X., & Moradian-Oldak, J. (2013). Localization and quantitative co-localization of enamelin with amelogenin. Journal of Structural Biology, 183(2), 239-249. https://doi.org/10.1016/j.jsb.2013.03.014spa
dc.relation.referencesHu, J. C. -., Zhang, C. H., Yang, Y., Kärrman-MÅrdh, C., Forsman-Semb, K., & Simmer, J. P. (2001). Cloning and characterization of the mouse and human enamelin genes. J Dent Res., 80(3), 898-902. https://doi.org/10.1177/00220345010800031001spa
dc.relation.referencesHu, J. C. -., Hu, Y., Lu, Y., Smith, C. E., Lertlam, R., Wright, J. T., . . . Simmer, J. P. (2014). Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS ONE, 9(3), e89303. https://doi.org/10.1371/journal.pone.0089303spa
dc.relation.referencesHu, Y., Smith, C. E., Richardson, A. S., Bartlett, J. D., Hu, J. C. C., & Simmer, J. P. (2016). MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Molecular Genetics & Genomic Medicine, 4(2), 178-196. https://doi.org/10.1002/mgg3.194spa
dc.relation.referencesKidd, E., & Fejerskov, O. (2016). Essentials of dental caries. p. 6. Oxford: OUP Oxford.spa
dc.relation.referencesLacruz, R. S., Smith, C. E., Kurtz, I., Hubbard, M. J., & Paine, M. L. (2012). New paradigms on the transport functions of maturation-stage ameloblasts. Journal of Dental Research, 92(2), 122-129. https://doi.org/10.1177/0022034512470954spa
dc.relation.referencesLacruz, R. S., Habelitz, S., Timothy Wright, J., & Paine, M. L. (2017). Dental enamel formation and implications for oral health and disease. Physiological Reviews, 97(3), 939-993. https://doi.org/10.1152/physrev.00030.2016spa
dc.relation.referencesLe Norcy, E., Kwak, S., Wiedemann-Bidlack, F. B., Beniash, E., Yamakoshi, Y., Simmer, J. P., & Margolis, H. C. (2011). Leucine-rich amelogenin peptides regulate mineralization in vitro. Journal of Dental Research, 90(9), 1091-1097. https://doi.org/10.1177/0022034511411301spa
dc.relation.referencesLu, Y., Papagerakis, P., Yamakoshi, Y., Hu, J., Bartlett, J., & Simmer, J. (2008). Functions of KLK4 and MMP-20 in dental enamel formation. Biological Chemistry, 389(6), 695-700. https://doi.org/10.1515/BC.2008.080spa
dc.relation.referencesMargolis, H. C., Beniash, E., & Fowler, C. E. (2006). Role of macromolecular assembly of enamel matrix proteins in enamel formation. Journal of Dental Research, 85(9), 775-793. https://doi.org/10.1177/154405910608500902spa
dc.relation.referencesMoradian-Oldak, J. (2012). Protein- mediated enamel mineralization. Frontiers in Bioscience : A Journal and Virtual Library, 17, 1996-2023.spa
dc.relation.referencesNagano, T., Kakegawa, A., Yamakoshi, Y., Tsuchiya, S., Hu, J. C. -., Gomi, K., . . . Simmer, J. P. (2009). Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. Journal of Dental Research, 88(9), 823-828. https://doi.org/10.1177/0022034509342694spa
dc.relation.referencesSharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: How pH modulates toxicity. - PLoS ONE, 5(- 5), -e10895. https://doi.org/10.1371/journal.pone.0010895spa
dc.relation.referencesSimmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108. https://doi.org/10.1177/10454411950060020701spa
dc.relation.referencesSire, J., Delgado, S., Frometin, D., & Girondot, M. (2005). Amelogenin: Lessons from evolution. Archives of Oral Biology, (- 2), 205-212. https://doi.org/10.1016/j.archoralbio.2004.09.004spa
dc.relation.referencesTeepe, J. D., Schmitz, J. E., Hu, Y., Yamada, Y., Fajardo, R. J., Smith, C. E., & Chun, Y. P. (2014). Correlation of ameloblastin with enamel mineral content. Connect Tissue Res, 55, 38-42. https://doi.org/10.3109/03008207.2014.923871spa
dc.relation.referencesVeis, A., & Dorvee, J. (2013). Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matrices. Calcified Tissue International, 93(4), 307-315. https://doi.org/10.1007/s00223-012-9678-2spa
dc.relation.referencesWeatherell, J., Deutsch, D., Robinson, C., & Hallsworth, A. (1975). Fluoride concentrations in developing enamel. Nature, 256(5514), 230-232. https://doi.org/10.1038/256230a0spa
dc.relation.referencesAkiva, A., Kerschnitzki, M., Pinkas, I., Wagermaier, W., Yaniv, K., Fratzl, P., .Weiner, S. (2016). Mineral formation in the larval zebrafish tail bone occurs via an acidic disordered calcium phosphate phase. Journal of the American Chemical Society, 138(43), 14481-14487. https://doi.org/10.1021/jacs.6b09442spa
dc.relation.referencesAlvares, K. (2014). The role of acidic phosphoproteins in biomineralization. Connective Tissue Research, 55(1), 34-40. https://doi.org/10.3109/03008207.2013.867336spa
dc.relation.referencesArana-Chavez, V. E., & Massa, L. F. (2004). Odontoblasts: The cells forming and maintaining dentine. Int J Biochem Cell Biol, 36(8), 1367-1373 https://doi.org/10.1016/j.biocel.2004.01.006spa
dc.relation.referencesBeniash, E. (2011). Biominerals-hierarchical nanocomposites: The example of bone. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 3(1), 47-69 https://doi.org/10.1002/wnan.105spa
dc.relation.referencesBertassoni, L., & Swain, M. (2017). Removal of dentin non-collagen structures results in the unraveling of microfibril bundless in collagen type I. Connect Tissue Res, 58(5), 414-423. https://doi.org/10.1080/03008207.2016.1235566spa
dc.relation.referencesBertassoni, L. E., Orgel, J. P. R., Antipova, O., & Swain, M. V. (2012). The dentin organic matrix – limitations of restorative dentistry hidden on the nanometer scale. Acta Biomaterialia, 8(7), 2419-2433. https://doi.org/10.1016/j.actbio.2012.02.022spa
dc.relation.referencesBertassoni, L. E., Habelitz, S., Kinney, J. H., Marshall, S. J., & Marshall Jr., G. W. (2009). Biomechanical perspective on the remineralization of dentin. Caries Research, 43(1), 70-77. https://doi.org/0.1159/000201593spa
dc.relation.referencesBertassoni, L. E. (2017). Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dental Materials, 33, 637-649. https://doi.org/10.1016/j.dental.2017.03.008spa
dc.relation.referencesBleicher, F. (2014). Odontoblast physiology. Exp Cell Res, 325(2), 65-71. https://doi.org/10.1016/j.yexcr.2013.12.012spa
dc.relation.referencesBonar, L. C., Lees, S., & Mook, H. A. (1985). Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol, 181(2), 265-270. https://doi.org/10.1016/0022-2836(85)90090-7spa
dc.relation.referencesBonucci, E. (2002). Crystal ghost and biological mineralization: Fancy spectres in an old castle, or negelcted structures worthy of belief. J. Bone. Miner. Metab, 20(5), 249-265. https://doi.org/10.1007/s007740200037spa
dc.relation.referencesBoonrungsiman, S., Gentleman, E., Carzaniga, R., Evans, N. D., McComb, D. W., Porter, A. E., & Stevens, M. M. (2012). The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A., 109(35), 14170-14175. https://doi.org/10.1073/pnas.1208916109spa
dc.relation.referencesButler, W. T., Brunn, J. C., & Qin, C. (2003). Dentin extracellular matrix (ECM) proteins: Comparison to bone ECM and contribution to dynamics of dentinogenesis. Connective Tissue Research, 44(1), 171-178. https://doi.org/10.1080/03008200390152287spa
dc.relation.referencesCao, Y. C., Mei, L. M., Li, Q., Lo, C. E., & Chu, H. C. (2015). Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci, 16(3), 4615-4627. https://doi.org/10.3390/ijms16034615spa
dc.relation.referencesColfen, H. (2010). Biomineralization: A crystal-clear view. Nat Mater, 9(12), 960-961. https://doi.org/10.1038/nmat2911spa
dc.relation.referencesDorozhkin, S. V. (2017). Hydroxyapatite and other calcium orthophosphates: Nanodimensional, multiphasic and amorphous formulations. New York: Nova Science Publishers, Inc. Retrieved from https://ezproxy.javeriana.edu.co:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=e000xww&AN=1530704&lang=es&site=ehost-livespa
dc.relation.referencesEmbery, G., Hall, R., Waddington, R., Septier, D., & Goldberg, M. (2001). Proteoglycans in dentinogenesis. Crit Rev Oral Biol & Med, 12(4), 331-349. https://doi.org/10.1177/10454411010120040401spa
dc.relation.referencesFisher, L. W., & Fedarko, N. S. (2003). Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res, 44(Suppl 1), 33-40.spa
dc.relation.referencesGericke, A., Qin, C., Sun, Y., Redfern, R., Redfern, D., Fujimoto, Y., . . . Boskey, A. L. (2010). Different forms of DMP1 play distinct roles in mineralization. J Dent Res, 89(4), 355-359. https://doi.org/10.1177/0022034510363250spa
dc.relation.referencesGoldberg, M., Kulkarni, A., Young, M., & Boskey, A. (2011). Dentin: Structure, composition and mineralization. Front Biosci, 3(2), 711-735. https://doi.org/10.2741/e281spa
dc.relation.referencesHao, J., Zou, B., Narayanan, K., & George, A. (2004). Differential expression patterns of the dentin matrix proteins during mineralized tissue formation. Bone, 34(6), 921-932 https://doi.org/10.1016/j.bone.2004.01.020spa
dc.relation.referencesHe, G., Dahl, T., Veis, A., & George, A. (2003). Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater, 2(8), 552-558. https://www.nature.com/articles/nmat945spa
dc.relation.referencesHe, G., & George, A. (2004). Dentin matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem, 279(12), 11649-11656. https://doi.org/10.1074/jbc.M309296200spa
dc.relation.referencesHe, L., Hao, Y., Zhen, L., Liu, H., Shao, M., Xu, X., . . . van Loveren, C. (2019). Biomineralization of dentin. J Struct Biol, 207(2), 115-122. https://doi.org/10.1016/j.jsb.2019.05.010spa
dc.relation.referencesKalamajski, S., & Oldberg, Å. (2010). The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biology, 29(4), 248-253. https://doi.org/10.1016/j.matbio.2010.01.001spa
dc.relation.referencesKawasaki, K., & Weiss, K. M. (2008). SCPP gene evolution and the dental mineralization continuum. J Dent Res, 87(6), 520-531. https://doi.org/10.1177/154405910808700608spa
dc.relation.referencesKinney, J. H., Pople, J. A., Driessen, C. H., Breunig, T. M., Marshall, G. W., & Marshall, S. J. (2001). Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II (DI-II). J Dent Res, 80(6), 1555-1559. https://doi.org/10.1177/00220345010800061501spa
dc.relation.referencesLi, C., Jing, Y., Wang, K., Ren, Y., Liu, X., Wang, X., . . . Feng, J. Q. (2018). Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process. Int J Biol Sci, 14(7), 693-704. https://doi.org/10.7150/ijbs.25712spa
dc.relation.referencesLinde, A., & Robins, S. (1988). Quantitative assessment of collagen crosslinks in dissected predentin and dentin. Coll Relat Res, 8(5), 443-450. https://doi.org/10.1016/s0174-173x(88)80017-7spa
dc.relation.referencesLinde, A. (1989). Dentin matrix proteins: Composition and possible functions in calcification. The Anatomical Record, 224(2), 154-166. https://doi.org/10.1002/ar.1092240206spa
dc.relation.referencesNijhuis, A. W. G., Nejadnik, M. R., Nudelman, F., Walboomers, X. F., te Riet, J., Habibovic, P., . . . Leeuwenburgh, S. C. G. (2014). Enzymatic pH control for biomimetic deposition of calcium phosphate coatings. Acta Biomaterialia, 10(2), 931-939. https://doi.org/10.1016/j.actbio.2013.09.036spa
dc.relation.referencesNiu, L., Jee, S. E., Jiao, K., Tonggu, L., Li, M., Wang, L., . . . Tay, F. R. (2017). Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater, 16(3), 370-378. https://doi.org/10.1038/nmat4789spa
dc.relation.referencesNiu, L., Zhang, W., Pashley, D. H., Breschi, L., Mao, J., Chen, J., & Tay, F. R. (2013). Biomimetic remineralization of dentin. Dental Materials: Official Publication of the Academy of Dental Materials, 30(1), 77-96. https://doi.org/10.1016/j.dental.2013.07.013spa
dc.relation.referencesNudelman, F., Lausch, A. J., Sommerdijk, N. A. J. M., & Sone, E. D. (2013). In vitro models of collagen biomineralization. Journal of Structural Biology, 183(2), 258-269. https://doi.org/10.1016/j.jsb.2013.04.003spa
dc.relation.referencesOrgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences, 103(24), 9001-9005. https://doi.org/10.1073/pnas.0502718103spa
dc.relation.referencesPadovano, J. D., Ravindran, S., Snee, P. T., Ramachandran, A., Bedran-Russo, A., & George, A. (2015). DMP1-derived peptides promote remineralization of human dentin. J Dent Res., 94(4), 608-614. https://doi.org/10.1177/0022034515572441spa
dc.relation.referencesPrasad, M., Butler, W. T., & Qin, C. (2010). Dentin sialophosphoprotein (DSPP) in biomineralization. Connect Tissue Res, 51(5), 404-417. https://doi.org/10.3109/03008200903329789spa
dc.relation.referencesQin, C., Baba, O., & Butler, W. T. (2004). Post-translational modifications of SIBLING proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol & Med, 15(3), 126-136. https://doi.org/10.1177/154411130401500302spa
dc.relation.referencesRuch, J., Lesot, H., & Bègue-Kirn, C. (1995). Odontoblast differentiation. Int. J. Dev. BioI., 39(1), 51-68. https://pubmed.ncbi.nlm.nih.gov/7626422/#:~:text=Odontoblasts%20are%20post%2Dmitotic%2C%20neural,and%20secrete%20predentin%2Ddentin%20componentsspa
dc.relation.referencesScott, J. E. (1990). Proteoglycan:Collagen interactions and subfibrillar structure in collagen fibrils. implications in the development and ageing of connective tissues. Journal of Anatomy, 169, 23-35. https://pubmed.ncbi.nlm.nih.gov/2384335/spa
dc.relation.referencesTesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., & Fratzl, P. (2001). Graded microstructure and mechanical properties of human crowm dentine. Calcif Tissue Int, 69(3), 147-157. https://doi.org/10.1007/s00223-001-2012-zspa
dc.relation.referencesThesleff, I. (2003). Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci., 116(Pt 9), 1647-1648. https://doi.org/10.1242/jcs.00410spa
dc.relation.referencesToroian, D., Lim, J. E., & Price, P. A. (2007). The size exclusion characteristics of type I collagen: Implications for the role of noncollagenous bone constituents in mineralization. The Journal of Biological Chemistry, 282(31), 22437-22447. https://doi.org/10.1074/jbc.M700591200spa
dc.relation.referencesVeis, A., & Dorvee, J. (2013). Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matrices. Calcified Tissue International, 93(4), 307-315. https://doi.org/10.1007/s00223-012-9678-2spa
dc.relation.referencesYamakoshi, Y., & Simmer, J. P. (2018). Structural features, processing mechanism and gene splice variants of dentin sialophosphoprotein. Japanese Dental Science Review, 54(4), 183-196. https://doi.org/10.1016/j.jdsr.2018.03.006spa
dc.relation.referencesZhao, J., Liu, Y., Wei-bin Sun, & Yang, X. (2012). First detection, characterization, and application of amorphous calcium phosphate in dentistry. Journal of Dental Sciences, 7(4), 316-323. https://doi.org/10.1016/j.jds.2012.09.001spa
dc.relation.referencesAbabneh, K. T., Hall, R. C., & Embery, G. (1999). The proteoglycans of human cementum: Immunohistochemical localization in healthy, periodontally involved and ageing teeth. J Periodont Res, 34(2), 87-96. https://doi.org/10.1111/j.1600-0765.1999.tb02227.xspa
dc.relation.referencesAbou Neel, E., Aljabo, A., Strange, A., Ibrahim, S. (2016). Coathup M, Young A & Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanom 11, 4743-4763. https://doi.org/10.2147/IJN.S107624spa
dc.relation.referencesArzate, H., Zeichner-David, M., & Mercado-Celis, G. (2015). Cementum proteins: Role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 67(1), 211-233. https://doi.org/10.1111/prd.12062spa
dc.relation.referencesBeertsen, W., VandenBos, T., & Everts, V. (1999). Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: Inhibition of acellular cementum formation. J. Dent. Res 78(6), 1221-1229. https://doi.org/10.1177/00220345990780060501spa
dc.relation.referencesBerry, J. E., Zhao, M., Jin, Q., Foster, B. L., Viswanathan, H., & Somerman, M. J. (2003). Exploring the origins of cementoblasts and their trigger factors. Connect. Tissue Res 44(1), 97-102. https://pubmed.ncbi.nlm.nih.gov/12952181/spa
dc.relation.referencesChoi, H., Kim, T., Yang, S., Lee, J., You, H., & Cho, E. (2017). A reciprocal interaction between β-catenin and osterix in cementogenesis. Sci Rep 7, 8160. https://www.nature.com/articles/s41598-017-08607-5spa
dc.relation.referencesFoster, B., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., & Somerman, M. (2015). Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78, 150-164. https://doi.org/10.1016/j.bone.2015.05.007spa
dc.relation.referencesFoster, B. L. (2017). On the discovery of cementum. J Periodontal Res, 52(2), 666-685. https://doi.org/10.1111/jre.12444spa
dc.relation.referencesGottlieb, B. (1942). Biology of the cementum. J Periodontol 13, 13-19.spa
dc.relation.referencesHollis, A., Arundel, P., High, A., & Balmer, R. (2013). Current concepts in hypophosphatasia: Case report and literature review. Int J Paediatr Dent 23(3), 153-159. https://doi.org/10.1111/j.1365-263X.2012.01239.xspa
dc.relation.referencesIkezawa, K., Hart, C. E., Williams, D. C., & Narayanan, A. S. (1997). Characterization of cementum derived growth factor as an insulin-like growth factor-I like molecule. Connect Tissue Res 36(4), 309-319. https://doi.org/10.3109/03008209709160230spa
dc.relation.referencesKaipatur, N. R., Murshed, M., & McKee, M. D. (2008). Matrix Gla protein inhibition of tooth mineralization. J Dent Res 87(9), 839-844. https://doi.org/10.1177/154405910808700907spa
dc.relation.referencesListik, E., Azevedo Marques Gaschler, J., Matias, M., Neuppmann Feres, M. F., Toma, L., & Raphaelli Nahás-Scocate, A. C. (2019). Proteoglycans and dental biology: The first review. Carbohydr Polym 1;225:115199. https://doi.org/10.1016/j.carbpol.2019.115199spa
dc.relation.referencesMontoya, G., Arenas, J., Romo, E., Zeichner-David, M., Alvarez, M., Narayanan, A. S., & Arzate, H. (2014). Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo. Bone 69, 154-164. https://doi.org/10.1016/j.bone.2014.09.014spa
dc.relation.referencesMontoya, G., Correa, R., Arenas, J., Hoz, L., Romo, E., Arroyo, R., & Arzate, H. (2019). Cementum protein 1-derived peptide (CEMP 1-p1) modulates hydroxyapatite crystal formation in vitro. J Pept Sci 25, e3211. https://doi.org/10.1002/psc.3211spa
dc.relation.referencesNanci, A., & Bosshardt, D. D. (2006). Structure of periodontal tissues in health and disease*. Periodontol 2000, 40, 11-28. https://doi.org/10.1111/j.1600-0757.2005.00141.xspa
dc.relation.referencesOrimo, H. (2010). The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 77, 4-12. https://doi.org/10.1272/jnms.77.4spa
dc.relation.referencesPopowics, T., Foster, B., Swanson, E., Fong, H., & Somerman, M. (2005). Defining the roots of cementum formation. Cells Tissues Organs 181, 248-257. https://www.karger.com/Article/Pdf/91386spa
dc.relation.referencesTenório, D. M. H., Santos, M. F., & Zorn, T. M. T. (2003). Distribution of biglycan and decorin in rat dental tissue. Braz J Med Biol Res 36, 1061-1065. https://doi.org/10.1590/s0100-879x2003000800012spa
dc.relation.referencesvan den Bos, T., & Beertsen, W. (1999). Alkaline phosphatase activity in human periodontal ligament: Age effect and relation to cementum growth rate. J Periodontal Res 34, 1-6. https://doi.org/10.1111/j.1600-0765.1999.tb02215.xspa
dc.relation.referencesWatanabe, H., Umeda, M., Seki, T., & Ishikawa, I. (1993). Clinical and laboratory studies of severe periodontal disease in an adolescent associated with hypophosphatasia. A case report. J. Periodontol 64, https://doi.org/174-180. 10.1902/jop.1993.64.3.174spa
dc.relation.referencesWatanabe, K. (1990). Prepubertal periodontitis: A review of diagnostic criteria, pathogenesis, and differential diagnosis. J Periodontal Res 25, 31-48. https://doi.org/10.1111/j.1600-0765.1990.tb01205.xspa
dc.relation.referencesYamamoto, T., Domon, T., Takahashi, S., Arambawatta, A. K. S., & Wakita, M. (2004). Immunolocation of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars. Cell Tissue Res 317, 299-312. https://doi.org/10.1007/s00441-004-0896-4spa
dc.relation.referencesZeichner-David, M. (2006). Regeneration of periodontal tissues: Cementogenesis revisited. Periodontol 2000 41, 196-217. https://doi.org/10.1111/j.1600-0757.2006.00162.xspa
dc.relation.referencesAlam, I., Padgett, L. R., Ichikawa, S., Alkhouli, M., Koller, D. L., Lai, D. & Econs, M. J. (2014). SIBLING family genes and bone mineral density: Association and allele-specific expression in humans. Bone, 64, 166-172. https://doi.org/10.1016/j.bone.2014.04.013spa
dc.relation.referencesAubin, J. E. (1998). Advances in the osteoblast lineage. Biochem Cell Biol, 76, 899-910. https://pubmed.ncbi.nlm.nih.gov/10392704/spa
dc.relation.referencesBabaji, P., Devanna, R., Jagtap, K., Chaurasia, V. R., Jerry, J. J., Choudhury, B. K., & Duhan, D. (2017). The cell biology and role of resorptive cells in diseases: A review. Ann Afr Med, 16(2), 39-45. https://doi.org/10.4103/aam.aam_97_16spa
dc.relation.referencesBellido, T. (2013). Osteocytes and Their Role in Bone Remodeling. Actualizaciones En Osteología, 9(1), 56-64. https://osteologia.org.ar/files/pdf/rid32_Bellido.pdfspa
dc.relation.referencesBellido, T. (2014). Osteocyte-driven bone remodeling. Calcif Tissue Int, 94, 25-34. https://doi.org/10.1007/s00223-013-9774-yspa
dc.relation.referencesBeniash, E. (2011), Biominerals—hierarchical nanocomposites: the example of bone. WIREs Nanomed Nanobiotechnol, 3(1), 47-69. https://doi.org/10.1002/wnan.105spa
dc.relation.referencesBini, F., Pica, A., Marinozzi, A., & Marinozzi, F. (2017). 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone. Plos One. 12(12): e0189041. https://doi.org/10.1371/journal.pone.0189041spa
dc.relation.referencesBouleftour, W., Juignet, L., Bouet, G., Granito, R. N., Vanden-Bossche, A., Laroche, N. & Malaval, L. (2016). The role of the SIBLING, bone sialoprotein in skeletal biology — contribution of mouse experimental genetics. Matrix Biol 52-54, 60-77. https://doi.org/10.1016/j.matbio.2015.12.011spa
dc.relation.referencesBoyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658spa
dc.relation.referencesCompston, J. (2006). Bone quality: What is it and how is it measured? Arq Bras Endocrinol Metabol. 50(4), 579-585. https://doi.org/10.1590/s0004-27302006000400003spa
dc.relation.referencesD'Amico, L., & Roato, I. (2012). Osteoclasts, the major actors in bone resorption. In J. S. Walker, & A. J. Brown (Eds.), Osteoclasts: Morphology, functions & clinical implications (pp. 95-112). Hauppauge, [New York]: Nova Science Publishers, Inc.spa
dc.relation.referencesDeshpande, A. S., & Beniash, E. (2008). Bioinspired synthesis of mineralized collagen fibrils. Cryst Growth & Des, 8, 3084-3090. https://doi.org/10.1021/cg800252fspa
dc.relation.referencesDorozhkin, S. (2016). Calcium orthophosphates (CaPO4): Ocurrence and properties. Prog Biomater, 5, 9-70. https://doi.org/10.1007/s40204-015-0045-zspa
dc.relation.referencesDucy, P., & Karsenty, G. (1998). Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol, 10, 614-619. https://doi.org/10.1016/s0955-0674(98)80037-9spa
dc.relation.referencesDucy, P., Schinke, T., & Karsenty, G. (2000). The osteoblast: A sophisticated fibroblast under central surveillance. Science, 289, 1501-1504. https://doi.org/10.1126/science.289.5484.1501spa
dc.relation.referencesFoster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., Tran, A. B., Wimer, H. F., Zerfas, P. M., Nociti, F. H., Kantovitz, K. R., Quan, B. D., Sone, E. D., Goldberg, H. A., & Somerman, M. J. (2015). Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone, 78, 150-164. https://doi.org/10.1016/j.bone.2015.05.007spa
dc.relation.referencesGeorge, A., & Veis, A. (2008). Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev, 108, 4670-4693. https://doi.org/10.1021/cr0782729spa
dc.relation.referencesGorski, J. P. (2011). Biomineralization of bone: A fresh view of the roles of non-collagenous proteins. Front Biosci (Landmark Ed), 16, 2598-2621. https://doi.org/10.2741/3875spa
dc.relation.referencesIkeda, F., Nishimura, R., Matsubara, T., Tanaka, S., Inoue, J., Reddy, S. V., & Yoneda, T. (2004). Critical roles of c-jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest, 114, 475-484. https://doi.org/10.1172/JCI19657spa
dc.relation.referencesKagiya, T. (2016). Role of microRNAs in osteoclast differentiation and function. In C. Reeves (Ed.), Osteoclasts: Cell biology, functions and related diseases (pp. 1-18). New York: Nova Science Publishers, Inc.spa
dc.relation.referencesKanakamedala , A. K., Mahendra, J., Kareem, N., & Mahendra, L. (2019). Osteoclasts: Multifaceted molecule in vesicular trafficking. Journal of Clinical & Diagnostic Research 13(8), 1-5. https://doi.org/10.7860/JCDR/2019/40307.13064spa
dc.relation.referencesKanazawa, I. (2015). Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes, 6(18), 1345-1354. https://doi.org/10.4239/wjd.v6.i18.1345spa
dc.relation.referencesStaines, K. A., MacRae, V. E., & Farquharson, C. (2012). The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. The Journal of endocrinology, 214(3), 241–255. https://doi.org/10.1530/JOE-12-0143spa
dc.relation.referencesLandis, W. J., & Silver, F. H. (2009). Mineral deposition in the extracellular matrices of vertebrate tissues: Identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs, 189, 20-24. https://doi.org/10.1159/000151454spa
dc.relation.referencesLerner, U. H., Kindstedt, E., & Lundberg, P. (2019). The critical interplay between bone resorbing and bone forming cells. J Clin Periodontol, 46, 33-51. https://doi.org/10.1111/jcpe.13051spa
dc.relation.referencesMargolis, H. C., Kwak, S., & Yamazaki, H. (2014). Role of mineralization inhibitors in the regulation of hard tissue biomineralization: Relevance to initial enamel formation and maturation. Front Physiol, 5, 339-452. https://doi.org/10.3389/fphys.2014.00339spa
dc.relation.referencesMoser, S. C., & van der Eerden, B. C. J. (2019). Osteocalcin-A: Versatile bone-derived hormone. Front Endocrinol (Lausanne), 9, 794. https://doi.org/10.3389/fendo.2018.00794spa
dc.relation.referencesNeve, A., Corrado, A., & Cantatore, F. P. (2013). Osteocalcin: Skeletal and extra-skeletal effects. J Cell Physiol, 228(6), 1149-1153. https://doi.org/10.1002/jcp.24278spa
dc.relation.referencesNudelman, F., Lausch, A. J., Sommerdijk, N. A. J. M., & Sone, E. D. (2013). In vitro models of collagen biomineralization. J Struct Biol, 183(2), 258-269. https://doi.org/ 10.1016/j.jsb.2013.04.003spa
dc.relation.referencesOrgel, J. P. R. O., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A, 103(24), 9001-5. https://doi.org/10.1073/pnas.0502718103spa
dc.relation.referencesOu-Yang, H., Paschalis, E. P., Mayo, W. E., Boskey, A. L., & Mendelsohn, R. (2001). Infrared microscopic imaging of bone: Spatial distribution of CO3(2-). J Bone Miner Res, 16(5), 893-900. https://doi.org/10.1359/jbmr.2001.16.5.893spa
dc.relation.referencesPrice, P. A., Toroian, D., & Lim, J. E. (2009). Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. The Journal of biological chemistry, 284(25), 17092-17101. https://doi.org/10.1074/jbc.M109.007013spa
dc.relation.referencesQin, C., Baba, O., & Butler, W. T. (2004). Postranslational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol & Med, 15(3), 126-136. https://doi.org/10.1177/154411130401500302spa
dc.relation.referencesQin, C., D’Souza, R., & Feng, J. Q. (2007). Dentin matrix protein 1 (DMP1): New and important roles for biomineralization and phosphate homeostasis. J Dent Res, 86, 1134-1141. https://doi.org/10.1177/154405910708601202spa
dc.relation.referencesRitchie, H. (2018). The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci, 10, 31. https://doi.org/10.1038/s41368-018-0035-9spa
dc.relation.referencesSaito, T., Arsenault, A. L., Yamauchi, M., Kuboki, Y., & Crenshaw, M. A. (1999). Mineral induction by immobilized phosphoproteins. Bone, 21(4), 305-311. https://doi.org/10.1016/S8756-3282(97)00149-Xspa
dc.relation.referencesScheurer, H. (2013). Osteoblasts: Morphology, functions and clinical implications. New York: Nova Science Publishers, Inc.spa
dc.relation.referencesSingh, A., Gill, G., Kaur, H., Amhmed, M., & Jakhu, H. (2018). Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog Orthod 19(1), 18. https://doi.org/10.1186/s40510-018-0216-2spa
dc.relation.referencesStewart, S., Shea, D. A., Tarnowski, C. P., Morris, M. D., Wang, D., Franceschi, R. & Keller, E. (2002). Trends in early mineralization of murine calvarial osteoblastic cultures: A raman microscopic study. J Raman Spectrosc, 33(7), 536-543. https://doi.org/10.1002/jrs.892spa
dc.relation.referencesTavafoghi, M., & Cerruti, M. (2016). The role of amino acids in hydroxyapatite mineralization. J R Soc Interface, 13, 123. https://doi.org/10.1098/rsif.2016.0462spa
dc.relation.referencesTresguerres, F. G. F., Torres, J., López-Quiles, J., Hernández, G., Vega, J. A., & Tresguerres, I. F. (2020). The osteocyte: A multifunctional cell within the bone. Ann Anat, 227, 151422. https://doi.org/10.1016/j.aanat.2019.151422spa
dc.relation.referencesTsao, Y., Huang, Y., Wu, H., Liu, Y., Liu, Y., & Lee, K. O. (2017). Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int J Mol Sci, 18, 159. https://doi.org/10.3390/ijms18010159spa
dc.relation.referencesVeis, A., & Perry, A. (1967). The phosphoprotein of the dentin matrix. Biochemistry, 6(8), 2409-2416. https://doi.org/10.1021/bi00860a017spa
dc.relation.referencesVeschi, E. A., Bolean, M., Strzelecka-Kiliszek, A., Bandorowicz-Pikula, J., Pikula, S., Granjon, T., & Ciancaglini, P. (2020). Localization of annexin A6 in matrix vesicles during physiological mineralization. Int J Mol Sci, 21(4), 1367. https://doi.org/ 10.3390/ijms21041367spa
dc.relation.referencesZofkova, I. (2008). Involvement of bone in systemic endocrine regulation. Physiol Res, 67, 669-677. https://doi.org/10.33549/physiolres.933843spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttps://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-Nocomercial-SinDerivar 4.0 International*
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiomineralizaciónspa
dc.subjectCiencia de los materialesspa
dc.subjectCristalizaciónspa
dc.subjectBiomaterialesspa
dc.subjectCalcificaciónspa
dc.subject.keywordsBiomineralizationspa
dc.subject.keywordsMaterial sciencespa
dc.subject.keywordsCrystallizationspa
dc.subject.keywordsBiomaterialsspa
dc.subject.keywordsCalcificationspa
dc.titleBiomineralización de tejidos calcificadosspa
dc.typebook
dc.type.coarhttps://purl.org/coar/resource_type/c_2f33
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/book
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.localLibro completospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
9789587392760.pdf
Tamaño:
2.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Biomineralización de tejidos calcificados
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones