Pharma 4.0: Explorando la Transformación Digital en la Industria Farmacéutica a través del Aprendizaje Automático, Big Data y Realidad Aumentada en la Industria Colombiana

dc.contributor.advisorVarón Orozco, Julieta
dc.contributor.authorAvila Mojica , Juan Sebastian
dc.contributor.authorParra Silva, Oscar Julian
dc.date.accessioned2024-11-21T13:34:13Z
dc.date.available2024-11-21T13:34:13Z
dc.date.issued2024-10
dc.description.abstractLa Industria 4.0, también conocida como la Cuarta Revolución Industrial, transforma la operación, diseño, producción y distribución de productos mediante tecnologías avanzadas como IA, ML, Big Data, IoT y computación en la nube. En la industria farmacéutica, esta transformación se denomina Pharma 4.0, buscando aumentar la eficiencia, reducir costos y mejorar resultados para los pacientes. En Colombia, la implementación de Pharma 4.0 presenta oportunidades significativas para mejorar la eficiencia, calidad y competitividad, aunque enfrenta desafíos como la inversión en tecnología, gestión de datos, formación del personal y cooperación entre actores del sector. La adopción de un enfoque estratégico y la integración de tecnologías pueden posicionar a Colombia como líder en la fabricación de medicamentos innovadores y de alta calidad. Los beneficios incluyen la reducción del tiempo para desarrollar nuevos medicamentos, personalización de tratamientos y mejora en la adherencia de los pacientes. La colaboración entre empresas farmacéuticas, proveedores de tecnología, instituciones académicas, organismos reguladores y políticas públicas es crucial para el éxito de Pharma 4.0 en Colombia. La revisión de literatura mediante la metodología PRISMA destaca que tecnologías emergentes como IA, ML, Big Data, IoT y computación en la nube mejoran significativamente los procesos de investigación, desarrollo, fabricación y cadena de suministro en la industria farmacéutica, permitiendo una producción más eficiente y segura.
dc.description.abstractenglishIndustry 4.0, also known as the Fourth Industrial Revolution, transforms the operation, design, production and distribution of products through advanced technologies such as AI, ML, Big Data, IoT and cloud computing. In the pharmaceutical industry, this transformation is called Pharma 4.0, seeking to increase efficiency, reduce costs and improve patient outcomes. In Colombia, the implementation of Pharma 4.0 presents significant opportunities to improve efficiency, quality and competitiveness, although it faces challenges such as investment in technology, data management, staff training and cooperation between sector actors. Adopting a strategic approach and integrating technologies can position Colombia as a leader in the manufacture of innovative and high-quality medicines. Benefits include reduced time to develop new medicines, personalization of treatments and improved patient adherence. Collaboration between pharmaceutical companies, technology providers, academic institutions, regulatory bodies and public policies is crucial to the success of Pharma 4.0 in Colombia. The literature review using the PRISMA methodology highlights that emerging technologies such as AI, ML, Big Data, IoT and cloud computing significantly improve research, development, manufacturing and supply chain processes in the pharmaceutical industry, enabling more efficient and safer production.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13306
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.references1. León-García, O.A.; Bermúdez-Segura, M.Y. Barreras y Fuerzas Impulsoras de La Implementación de La Industria 4.0 En Las Organizaciones: Un Estado Del Arte. Rev. Investig. Desarro. E Innov. 2021, 11, 451–466, doi:10.19053/20278306.v11.n3.2021.13343.
dc.relation.references2. Gómez, C.M.P. Implementación y desarrollo de la industria 4.0 en siete países desarrollados y Colombia.
dc.relation.references3. Naciones Unidas Industria 4.0. Oportunidades y desafíos para el desarrollo productivo de la provincia de Santa Fe. 2019.
dc.relation.references4. Szajna, A.; Stryjski, R.; Woźniak, W.; Chamier-Gliszczyński, N.; Królikowski, T. The Production Quality Control Process, Enhanced with Augmented Reality Glasses and the New Generation Computing Support System. Procedia Comput. Sci. 2020, 176, 3618–3625, doi:10.1016/j.procs.2020.09.024.
dc.relation.references5. Analyzing the $1.4 Trillion Global Pharmaceutical Industry 2022 - ResearchAndMarkets.Com Available online: https://www.businesswire.com/news/home/20221130005610/en/Analyzing-the-1.4-Trillion-Global-Pharmaceutical-Industry-2022---ResearchAndMarkets.com (accessed on 2 September 2024).
dc.relation.references6. Debnath, B.; Shakur, M.S.; Bari, A.B.M.M.; Saha, J.; Porna, W.A.; Mishu, M.J.; Islam, A.R.M.T.; Rahman, M.A. Assessing the Critical Success Factors for Implementing Industry 4.0 in the Pharmaceutical Industry: Implications for Supply Chain Sustainability in Emerging Economies. PLOS ONE 2023, 18, e0287149, doi:10.1371/journal.pone.0287149.
dc.relation.references7. Voinea, G.-D.; Gîrbacia, F.; Duguleană, M.; Boboc, R.G.; Gheorghe, C. Mapping the Emergent Trends in Industrial Augmented Reality. Electronics 2023, 12, 1719, doi:10.3390/electronics12071719.
dc.relation.references8. Bourgois, X.; Herwig, C. 2 ACNUR Estrategia Mundial Para La Salud Pública 2021-2025.
dc.relation.references9. Global Strategy on Digital Health 2020-2025.
dc.relation.references10. Babatunde, A.O.; Togunwa, T.O.; Awosiku, O.; Siddiqui, M.F.; Rabiu, A.T.; Akintola, A.A.; Dauda, B.J.; Aborode, A.T. Internet of Things, Machine Learning, and Blockchain Technology: Emerging Technologies Revolutionizing Universal Health Coverage. Front. Public Health 2022, 10, 1024203, doi:10.3389/fpubh.2022.1024203.
dc.relation.references11. Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689, doi:10.1186/s12909-023-04698-z.
dc.relation.references12. Naciones Unidas Tecnologías digitales para un nuevo futuro. 2022.
dc.relation.references13. Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial Intelligence in Drug Discovery and Development. Drug Discov. Today 2021, 26, 80–93, doi:10.1016/j.drudis.2020.10.010.
dc.relation.references14. 4. Supervised Learning: Models and Concepts - Machine Learning and Data Science Blueprints for Finance [Book] Available online: https://www.oreilly.com/library/view/machine-learning-and/9781492073048/ch04.html (accessed on 2 September 2024).
dc.relation.references15. Singh, S.; Kaur, N.; Gehlot, A. Application of Artificial Intelligence in Drug Design: A Review. Comput. Biol. Med. 2024, 179, 108810, doi:10.1016/j.compbiomed.2024.108810.
dc.relation.references16. Alizadehsani, R.; Oyelere, S.S.; Hussain, S.; Jagatheesaperumal, S.K.; Calixto, R.R.; Rahouti, M.; Roshanzamir, M.; De Albuquerque, V.H.C. Explainable Artificial Intelligence for Drug Discovery and Development: A Comprehensive Survey. IEEE Access 2024, 12, 35796–35812, doi:10.1109/ACCESS.2024.3373195.
dc.relation.references17. Saldivar-González, F.I.; Gortari, E.F.; Medina-Franco, J.L. Inteligencia artificial en el diseño de fármacos: hacia la inteligencia aumentada. Educ. Quím. 2023, 34, 17–25, doi:10.22201/fq.18708404e.2023.2.83233.
dc.relation.references18. Rossetti, C.L.; Handfield, R.; Dooley, K.J. Forces, Trends, and Decisions in Pharmaceutical Supply Chain Management. Int. J. Phys. Distrib. Logist. Manag. 2019, 41, 601–622, doi:10.1108/09600031111147835.
dc.relation.references19. Morgan, J.; Halton, M.; Qiao, Y.; Breslin, J.G. Industry 4.0 Smart Reconfigurable Manufacturing Machines. J. Manuf. Syst. 2021, 59, 481–506, doi:10.1016/j.jmsy.2021.03.001.
dc.relation.references20. Poongodi, T.; Lucia Agnesbeena, T.; Janarthanan, S.; Balusamy, B. Chapter 5 - Accelerating Data Acquisition Process in the Pharmaceutical Industry Using Internet of Things. In An Industrial IoT Approach for Pharmaceutical Industry Growth; Balas, V.E., Solanki, V.K., Kumar, R., Eds.; Academic Press, 2020; pp. 117–152 ISBN 978-0-12-821326-1.
dc.relation.references21. Akhtar, Z. Artificial Intelligence (AI) within Manufacturing: An Investigative Exploration for Opportunities, Challenges, Future Directions. Metaverse 2024, 5, 2731, doi:10.54517/m.v5i2.2731.
dc.relation.references22. Bhalode, P.; Metta, N.; Chen, Y.; Ierapetritou, M. Efficient Data-Based Methodology for Model Enhancement and Flowsheet Analyses for Continuous Pharmaceutical Manufacturing. In Computer Aided Chemical Engineering; Pierucci, S., Manenti, F., Bozzano, G.L., Manca, D., Eds.; 30 European Symposium on Computer Aided Process Engineering; Elsevier, 2020; Vol. 48, pp. 127–132.
dc.relation.references23. Jelsch, M.; Roggo, Y.; Kleinebudde, P.; Krumme, M. Model Predictive Control in Pharmaceutical Continuous Manufacturing: A Review from a User’s Perspective. Eur. J. Pharm. Biopharm. 2021, 159, 137–142, doi:10.1016/j.ejpb.2021.01.003.
dc.relation.references24. Li, Y.; Dai, J.; Cui, L. The Impact of Digital Technologies on Economic and Environmental Performance in the Context of Industry 4.0: A Moderated Mediation Model. Int. J. Prod. Econ. 2020, 229, 107777, doi:10.1016/j.ijpe.2020.107777.
dc.relation.references25. Aguirre-Cortés, J.M.; Moral-Rodríguez, A.I.; Bailón-García, E.; Davó-Quiñonero, A.; Pérez-Cadenas, A.F.; Carrasco-Marín, F. 3D Printing in Photocatalysis: Methods and Capabilities for the Improved Performance. Appl. Mater. Today 2023, 32, 101831, doi:10.1016/j.apmt.2023.101831.
dc.relation.references26. da Silva, R.B.; de Mattos, C.A. Critical Success Factors of a Drug Traceability System for Creating Value in a Pharmaceutical Supply Chain (PSC). Int. J. Environ. Res. Public. Health 2019, 16, 1972, doi:10.3390/ijerph16111972.
dc.relation.references27. Alfian, G.; Syafrudin, M.; Farooq, U.; Maarif, M.; Syaekhoni, A.; Fitriyani, N.L.; Lee, J.; Rhee, J. Improving Efficiency of RFID-Based Traceability System for Perishable Food by Utilizing IoT Sensors and Machine Learning Model. Food Control 2020, 110, 107016, doi:10.1016/j.foodcont.2019.107016.
dc.relation.references28. Weraikat, D.; Zanjani, M.K.; Lehoux, N. Improving Sustainability in a Two-Level Pharmaceutical Supply Chain through Vendor-Managed Inventory System. Oper. Res. Health Care 2019, 21, 44–55, doi:10.1016/j.orhc.2019.04.004.
dc.relation.references29. Jain, A.; Sharma, D.K. Chapter 3 - Transforming Pharma Logistics with the Internet of Things. In An Industrial IoT Approach for Pharmaceutical Industry Growth; Balas, V.E., Solanki, V.K., Kumar, R., Eds.; Academic Press, 2020; pp. 55–85 ISBN 978-0-12-821326-1.
dc.relation.references30. Alike, K.; Rexhausen, D.; Seyfert, A. Supply Chain 4.0 in Consumer Goods | McKinsey Available online: https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/supply-chain-4-0-in-consumer-goods (accessed on 2 September 2024).
dc.relation.references31. Agarwal, S.; Glenton, C.; Henschke, N.; Tamrat, T.; Bergman, H.; Fønhus, M.S.; Mehl, G.L.; Lewin, S. Tracking Health Commodity Inventory and Notifying Stock Levels via Mobile Devices: A Mixed Methods Systematic Review. Cochrane Database Syst. Rev. 2020, 2020, CD012907, doi:10.1002/14651858.CD012907.pub2.
dc.relation.references32. Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129, doi:10.1016/j.jii.2020.100129.
dc.relation.references33. Zhang, H.; Fan, T.; Chen, W.; Li, Y.; Wang, B. Recent Advances of Two-Dimensional Materials in Smart Drug Delivery Nano-Systems. Bioact. Mater. 2020, 5, 1071–1086, doi:10.1016/j.bioactmat.2020.06.012.
dc.relation.references34. Franco, C.; Alfonso-Lizarazo, E. Optimization under Uncertainty of the Pharmaceutical Supply Chain in Hospitals. Comput. Chem. Eng. 2020, 135, 106689, doi:10.1016/j.compchemeng.2019.106689.
dc.relation.references35. Fatemi, M.S.; Ghodratnama, A.; Tavakkoli-Moghaddam, R.; Kaboli, A. A Multi-Functional Tri-Objective Mathematical Model for the Pharmaceutical Supply Chain Considering Congestion of Drugs in Factories. Res. Transp. Econ. 2022, 92, 101094, doi:10.1016/j.retrec.2021.101094.
dc.relation.references36. Goodarzian, F.; Hosseini-Nasab, H.; Muñuzuri, J.; Fakhrzad, M.-B. A Multi-Objective Pharmaceutical Supply Chain Network Based on a Robust Fuzzy Model: A Comparison of Meta-Heuristics. Appl. Soft Comput. 2020, 92, 106331, doi:10.1016/j.asoc.2020.106331.
dc.relation.references37. Mahmud, H.; Islam, A.K.M.N.; Ahmed, S.I.; Smolander, K. What Influences Algorithmic Decision-Making? A Systematic Literature Review on Algorithm Aversion. Technol. Forecast. Soc. Change 2022, 175, 121390, doi:10.1016/j.techfore.2021.121390.
dc.relation.references38. Fosso Wamba, S.; Queiroz, M.M. Responsible Artificial Intelligence as a Secret Ingredient for Digital Health: Bibliometric Analysis, Insights, and Research Directions. Inf. Syst. Front. 2023, 25, 2123–2138, doi:10.1007/s10796-021-10142-8.
dc.relation.references39. Chen, X.; Yang, H.; Wang, X. Effects of Price Cap Regulation on the Pharmaceutical Supply Chain. J. Bus. Res. 2019, 97, 281–290, doi:10.1016/j.jbusres.2018.01.030.
dc.relation.references40. Chen, X.; Li, S.; Wang, X. Evaluating the Effects of Quality Regulations on the Pharmaceutical Supply Chain. Int. J. Prod. Econ. 2020, 230, 107770, doi:10.1016/j.ijpe.2020.107770.
dc.relation.references41. Hailu, R.; Gizaw, T.; Berhanu, N.; Mulugeta, T.; Boche, B.; Gudeta, T. Exploring the Role of ICT in Pharmaceutical Supply Chain Practices and Operational Performance in Ethiopia: A Structural Equation Modeling Approach. BMC Health Serv. Res. 2023, 23, 634, doi:10.1186/s12913-023-09627-w.
dc.relation.references42. Balkhi, B.; Alshahrani, A.; Khan, A. Just-in-Time Approach in Healthcare Inventory Management: Does It Really Work? Saudi Pharm. J. SPJ 2022, 30, 1830–1835, doi:10.1016/j.jsps.2022.10.013.
dc.relation.references43. Lee, I.; Mangalaraj, G. Big Data Analytics in Supply Chain Management: A Systematic Literature Review and Research Directions. Big Data Cogn. Comput. 2022, 6, 17, doi:10.3390/bdcc6010017.
dc.relation.references44. Pham, Q. Council Post: Using Big Data And Data Analytics For Better Business Decisions Available online: https://www.forbes.com/councils/forbesbusinessdevelopmentcouncil/2022/08/29/using-big-data-and-data-analytics-for-better-business-decisions/ (accessed on 2 September 2024).
dc.relation.references45. Timothy, A. SUPPLY CHAIN FINANCE and THE CHALLENGES OF MODERN SUPPLY CHAINS; 2022;
dc.relation.references46. Hurtado, P.L.D.; Castellanos, J.D.G.; Gómez, I.D.O. Análisis bibliométrico de la investigación en big data y cadena de suministro. Rev. CEA 2023, 9.
dc.relation.references47. Golgeci, I.; Yildiz, H.; Andersson, U. The Rising Tensions between Efficiency and Resilience in Global Value Chains in the Post-COVID-19 World. Transnatl. Corp. 2020, 27, 127–141, doi:10.18356/99b1410f-en.
dc.relation.references48. Gölgeci, I.; Kuivalainen, O. Does Social Capital Matter for Supply Chain Resilience? The Role of Absorptive Capacity and Marketing-Supply Chain Management Alignment. Ind. Mark. Manag. 2020, 84, 63–74, doi:10.1016/j.indmarman.2019.05.006.
dc.relation.references49. Dashpute, S.; Pansare, J.; Pansare, M.; Sonawane, P.; Jadhav, S. Artificial Intelligence and Machine Learning in the Pharmaceutical Industry. Int. J. Pharm. Pharm. Res. 2023, 28, 111–131.
dc.relation.references50. Lange, C. The Future of Performance Marketing: Strategies for Measuring and Optimizing Your Campaigns Available online: https://www.linkedin.com/pulse/future-performance-marketing-strategies-measuring-optimizing-lange (accessed on 3 September 2024).
dc.relation.references51. Kumar, V.; Ashraf, A.R.; Nadeem, W. AI-Powered Marketing: What, Where, and How? Int. J. Inf. Manag. 2024, 77, 102783, doi:10.1016/j.ijinfomgt.2024.102783.
dc.relation.references52. Jiménez, A. Inteligencia artificial en salud: perspectiva local y regional. Medicina (Mex.) 2021, 43, 620–630, doi:10.56050/01205498.1650.
dc.relation.references53. Hoja-de-Ruta-Adopcion-Etica-y-Sostenible-de-Inteligencia-Artificial-Colombia-1.
dc.relation.references54. Nace una nueva Política Nacional de Inteligencia Artificial (IA) Available online: https://www.dnp.gov.co:443/Prensa_/Noticias/Paginas/nace-una-nueva-politica-nacional-de-inteligencia-artificial-ia.aspx (accessed on 3 September 2024).
dc.relation.references55. Caribe, C.E. para A.L. y el Industria farmacéutica y sistemas de salud en la Argentina, el Brasil, Chile, México y el Uruguay: estructura, desempeño y políticas; Comisión Económica para América Latina y el Caribe, 2023;
dc.relation.references56. Exploring New Interregional Opportuni­ties for Pharmaceutical Supply Chains Available online: https://www.swp-berlin.org/publikation/exploring-new-interregional-opportunities-for-pharmaceutical-supply-chains (accessed on 3 September 2024).
dc.relation.references57. www.areaw3.com, A.- Uruguay se consolida como el hub logístico y de innovación en la industria Farma - Noticias Available online: https://www.uruguayxxi.gub.uy/es/noticias/articulo/uruguay-se-consolida-como-el-hub-logistico-y-de-innovacion-en-la-industria-farma/ (accessed on 3 September 2024).
dc.relation.references58. Pérez, D.; Guillén, A.; Ugarte, V.; Duarte, R.; Vidal, M.; Echagüe, T.; Garrido, G. Director Nacional de Empleo.
dc.relation.references59. Porta, F.; Suárez, D.; Angelis, J.D.; Zurbriggen, C.; González, M. Nombres de los miembros del equipo de investigación:
dc.relation.references60. Global-AI-Index-Methodology-201203.Pdf.
dc.relation.references61. Santiso, C.; Jaramillo, M.I.M. Víctor Manuel Muñoz Rodríguez.
dc.relation.references62. Chile Primera y Colombia Sexta En Inteligencia Artificial | Uniandes Available online: https://uniandes.edu.co/es/noticias/ingenieria/chile-primera-y-colombia-sexta-en-inteligencia-artificial (accessed on 3 September 2024).
dc.relation.references63. Minsalud Presentó Hoja de Ruta Para La Transformación Digital Del Sector Available online: https://www.minsalud.gov.co/Paginas/Minsalud-presento-hoja-de-ruta-para-la-transformacion-digital-del-sector.aspx (accessed on 3 September 2024).
dc.relation.references64. DE-PORTADA-BIG-DATA-HOSPITALARIA-137-JUNIO-10.Pdf.
dc.relation.references65. Betancurth Loaiza, D.P.; Vélez Álvarez, C.; Sanchez Palacio, N. Georeferencing at a Health Service,: an Experience from Community Assets. ÁNFORA 2023, 30, 236–253, doi:10.30854/anf.v30.n54.2023.912.
dc.relation.references66. Modelo de Gobernanza de La Infraestructura de Datos Para El Estado Colombiano.
dc.relation.references67. Dos Años de Posicionamiento de La Telemedicina En Colombia Available online: https://www.minsalud.gov.co/Paginas/Dos-anos-de-posicionamiento-de-la-telemedicina-en-Colombia.aspx (accessed on 3 September 2024).
dc.relation.references68. Colombia | Ministerio de Relaciones Exteriores, Comercio Internacional y Culto Available online: https://cancilleria.gob.ar/es/colombia-0 (accessed on 3 September 2024).
dc.relation.references69. Contexto Para La Inversión En El Sector Farmacéutico En Colombia 2024.
dc.relation.references70. ANDI - Noticias Available online: https://www.andi.com.co/Home/Noticia/17274-radiografia-del-mercado-farmaceutico-co (accessed on 3 September 2024).
dc.relation.references71. A 12,6% Cayeron Los Costos Logísticos de Las Empresas Frente a Sus Ventas Available online: https://2022.dnp.gov.co/Paginas/A-12,6-cayeron-los-costos-logisticos-de-las-empresas-frente-a-sus-ventas.aspx (accessed on 3 September 2024).
dc.relation.references72. Carrillo Barreto, I.Y.; Jiménez Tocasuche, A.M.; Colorado Gonzalez, A.J.; Durán Sanjuán, M.F.; Santos Hernández, A.F. Digital Transformation of Planning in the Pharmaceutical Sector. 2022, doi:10.15480/882.4695.
dc.relation.references73. GUÍA PARA LA IMPLEMENTACIÓN DE ESTRATEGIAS DE MEDICAMENTOS GENÉRICOS EN LOS PAÍSES DE AMÉRICA LATINA Y EL CARIBE COMO MECANISMO PARA MEJORAR EL ACCESO A MEDICAMENTOS.Pdf.
dc.relation.references74. AVANCES PLAN DE NEGOCIOS DEL SECTOR FARMACÉUTICO Así va La Hoja de Ruta de La Industria a 2032.Pdf.
dc.relation.references75. S.A.S, E.L.R. “La falta de inversión en la infraestructura limita la conectividad y aumenta los costos” Available online: https://www.larepublica.co/especiales/logistica-sostenible/la-falta-de-inversion-en-infraestructura-limita-la-conectividad-y-sube-costos-3716914 (accessed on 3 September 2024).
dc.relation.references76. Periódico UNAL - Así Ha Evolucionado El Sistema de Salud En Colombia Available online: https://www.periodico.unal.edu.co/articulos/asi-ha-evolucionado-el-sistema-de-salud-en-colombia (accessed on 3 September 2024).
dc.relation.references77. Tarazona, D.L.V. Análisis del Proceso de Desindustrialización en Colombia, una visión contextual.
dc.relation.references78. Aspectos Basicos de La Industria 4.0.Pdf.
dc.relation.references79. 6 formas para liberar el poder de la IA en la manufactura Available online: https://es.weforum.org/agenda/2024/01/es-asi-como-podemos-liberar-el-poder-de-la-ia-en-la-manufactura/ (accessed on 3 September 2024).
dc.relation.references80. Ramirez, S.A.M. ANÁLISIS RELACIÓN COSTO/BENEFICIO DE LA IMPLEMENTACIÓN DEL PROYECTO DE RENOVACIÓN TECNOLÓGICA (PRI II) EN EL GRUPO EMPRESARIAL COOMEVA USANDO EL MODELO TOTAL COST OF OWNERSHIP (TCO).
dc.relation.references81. Gaviria, J.E.M. Tecnologías 4.0: Una revolución industrial en marcha. Cent. Cienc. Tecnol. Antioquia - CTA 2024.
dc.relation.references82. Hosono, A. Industrial Development and Transformation: Insights from Outstanding Cases. In SDGs, Transformation, and Quality Growth: Insights from International Cooperation; Hosono, A., Ed.; Springer: Singapore, 2022; pp. 39–73 ISBN 9789811697487.
dc.relation.references83. Ertz, M.; Gasteau, F. Role of Smart Technologies for Implementing Industry 4.0 Environment in Product Lifetime Extension towards Circular Economy: A Qualitative Research. Heliyon 2023, 9, e16762, doi:10.1016/j.heliyon.2023.e16762.
dc.relation.references84. Banur, O.; Patle, B.; Pawar, S. Integration of Robotics and Automation in Supply Chain: A Comprehensive Review. Robot. Syst. Appl. 2024, 4, doi:10.21595/rsa.2023.23349.
dc.relation.references85. Aquino, Y.S.J.; Rogers, W.A.; Jacobson, S.L.S.; Richards, B.; Houssami, N.; Woode, M.E.; Frazer, H.; Carter, S.M. Defining Change: Exploring Expert Views about the Regulatory Challenges in Adaptive Artificial Intelligence for Healthcare. Health Policy Technol. 2024, 13, 100892, doi:10.1016/j.hlpt.2024.100892.
dc.relation.references86. QS World University Rankings for Data Science and Artificial Intelligence 2024 Available online: https://www.topuniversities.com/university-subject-rankings/data-science-artificial-intelligence (accessed on 3 September 2024).
dc.relation.references87. Wang, C.; Chen, X.; Yu, T.; Liu, Y.; Jing, Y. Education Reform and Change Driven by Digital Technology: A Bibliometric Study from a Global Perspective. Humanit. Soc. Sci. Commun. 2024, 11, 1–17, doi:10.1057/s41599-024-02717-y.
dc.relation.references88. Chao, K.; Sarker, M.N.I.; Ali, I.; Firdaus, R.B.R.; Azman, A.; Shaed, M.M. Big Data-Driven Public Health Policy Making: Potential for the Healthcare Industry. Heliyon 2023, 9, e19681, doi:10.1016/j.heliyon.2023.e19681.
dc.relation.references89. OECD Ready for the Next Crisis? Investing in Health System Resilience; OECD Health Policy Studies; OECD, 2023; ISBN 978-92-64-79463-4.
dc.relation.references90. Anawade, P.A.; Sharma, D.; Gahane, S. A Comprehensive Review on Exploring the Impact of Telemedicine on Healthcare Accessibility. Cureus 2024, 16, doi:10.7759/cureus.55996.
dc.relation.references91. Marco_de_interoperabilidad_para_gobierno_digital.Pdf.
dc.relation.references92. Ortiz-Ospina, E.; Roser, M. The Rise of Social Media. Our World Data 2024.
dc.relation.references93. Aprovechamiento_de_datos_para_la_toma_de_decisiones_en_el_sector_publico.Pdf.
dc.relation.references94. S.A.S, E.L.R. Colombia es el que menos profesionales de la salud tiene por cada 1.000 habitantes Available online: https://www.larepublica.co/globoeconomia/numero-de-medicos-y-enfermeras-por-cada-1-000-habitantes-en-paises-ocde-3553043 (accessed on 3 September 2024).
dc.relation.references95. Flessa, S.; Huebner, C. Innovations in Health Care—A Conceptual Framework. Int. J. Environ. Res. Public. Health 2021, 18, 10026, doi:10.3390/ijerph181910026.
dc.relation.references96. Nielsen, T.L.; Kruse, N.B.; Haahr, A.; Hjelle, E.G.; Bragstad, L.K.; Palmar‐Santos, A.; Navarta‐Sánchez, M.V.; Pedraz‐Marcos, A.; Pires, S.B.; Roberts, H.C.; et al. Exploring Health and Social Services in Denmark, Norway, Spain and the United Kingdom for the Development of Parkinson’s Care Pathways. A Document Analysis. Health Soc. Care Community 2022, 30, e3507–e3518, doi:10.1111/hsc.13970.
dc.relation.references97. Digitalización de la salud en el país: oportunidades y retos 2023.
dc.relation.references98. Misha, F.; Imtiaz, S.H.; Faiza, A.; Rashid, S.F.; Jiménez, M.B.; Guerrero-C, J.; González-Uribe, C. Digital Health and Rights.
dc.relation.references99. Ministerio de Salud y Protección Social. (2024). Ley 2386 de 2024: Por la cual se establecen disposiciones para la regulación de la atención en salud en Colombia. Recuperado de https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/ley-2386-de-2024.pdf.
dc.relation.references100. Congreso de la República de Colombia. (2023). Ley 2294 de 2023: Por la cual se modifican disposiciones relacionadas con la función pública en Colombia. Recuperado de https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=209510
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectPharma 4.0
dc.subjectCadena de suministro
dc.subjectInteligencia artificial
dc.subjectBig data
dc.subjectIndustria farmacéutica
dc.subjectColombia
dc.subjectLatino ámerica
dc.subject.ddc615.19
dc.subject.keywordsPharma 4.0
dc.subject.keywordsSupply chain
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsBig data
dc.subject.keywordsPharmaceutical industry
dc.subject.keywordsColombia
dc.subject.keywordsLatin america
dc.titlePharma 4.0: Explorando la Transformación Digital en la Industria Farmacéutica a través del Aprendizaje Automático, Big Data y Realidad Aumentada en la Industria Colombiana
dc.title.translatedPharma 4.0: Exploring Digital Transformation in the Pharmaceutical Industry through Machine Learning, Big Data and Augmented Reality in the Colombian Industry
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
652.21 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Acta de grado.pdf
Tamaño:
180.06 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de Autorizacion.pdf
Tamaño:
163.89 KB
Formato:
Adobe Portable Document Format
Descripción: