Evaluación de la excitotoxicidad por glutamato inducida por el virus dengue neuroadaptado D4MB-6

dc.contributor.advisorVelandia Romero, Myriam Lucia
dc.contributor.advisorCastellanos Parra, Jaime Eduardo
dc.contributor.authorCamacho Ortega, Sigrid Johanna
dc.date.accessioned2023-03-03T15:15:35Z
dc.date.available2023-03-03T15:15:35Z
dc.date.issued2015
dc.description.abstractEl virus de dengue (DENV), a pesar de ser clasificado como un virus no neurotrópico, induce durante la infección manifestaciones neurológicas como la alteración de la conciencia. Hasta el momento, los signos y síntomas neurológicos que aparecen durante la infección por DENV no se han asociado a un mecanismo en particular. Durante la infección con el JEV, WNV y el HIV se produce la disfunción y muerte de neuronas mediada por procesos excitatorios. Para Dengue, hasta el momento sólo se ha reportado en modelos in vivo e in vitro y en muestras post-mortem el daño del tejido y la perdida neuronal, sin embargo no se conoce si durante la infección con este virus suceden eventos excitotoxicos o si la la exacerbada respuesta inmune afecta la superviviencia neuronal En el presente estudio se planteó -utilizando el modelo de neuroinfección desarollado en nuestro laboratorio-, evaluar las posibles causas de alteración y muerte neuronal inducidas por la cepa D4MB-6 y el efecto de dos fármacos, ácido valproico (VPA) y MK-801 con el fin de. Para esto, se infectaron ratones Balb/C de 7 dpn con el D4MB-6 tratados o no tratados con VPA o MK 801. Los animales fueron observados y pesados diariamente por 3 o 6 dpi y sacrificados para la extracción del encéfalo y médula. De estos tejidos se obtuvieron homogenizados o cortes histológicos para evaluar la infección y producción viral, la morfología, la expresión de algunas proteínas pro y anti-apoptóticos. En los animales infectados no tratados, las manifestaciones clínicas fueron evidentes al 3er dpi y severas al 6to dpi, al igual que las alteraciones histológicas, caracterizadas por apoptosis, necrosis y espongiosis neuronal acompañadas de alteraciones vasculares como hemorragias, edema e infiltrado de células mononucleares. En esta misma, condición se observó astrogliosis, neurodegeneración y aumento en la expresión de proteínas pro-apoptóticas, como Casp 3, 8, y Bax. Por el contrario, en los animales infectados y tratados todas las manifestaciones y alteraciones neurológicas fueron reducidas, detectando sólo algunas células en apoptosis y neurodegeneración en el cerebelo de animales infectados y tratados con VPA y MK 801, al igual que la producción y transcritos pro- apoptóticos. Estos resultados sugieren que el virus D4MB-6 induce encefalitis y mielitis, como alteración vascular, así como muerte neuronal mediada por procesos excitotóxicos e inmunológicos. Dichas alteraciones son prevenidas de forma total o parcial con los fármacos MK 801 y VPA.spa
dc.description.abstractenglishThe dengue virus (DENV), despite being classified as a non-neurotropic virus during infection induces neurological symptoms such as impaired consciousness. So far, the neurological signs and symptoms that appear during DENV infection have not been associated to a particular mechanism. During infection with JEV, WNV and HIV dysfunction and neuronal death mediated excitatory process occurs. Dengue, so far only been reported in in vivo and in vitro models and samples postmortem tissue damage and neuronal loss, however not known whether during infection with this virus occur excitotoxic events or the exacerbated immune response affects neuronal survival. In the present study it raised -using neuroinfection model developed in our laboratory-, so evaluate potential causes of impairment and neuronal death induced D4MB-6 strain and the effect of two drugs, valproic acid (VPA) and MK 801. For this, Balb/C mice were infected with D4MB-6 treated or not treated with VPA or MK 801. The animals were observed and weighed daily for 3 or 6 dpi and sacrificed for the removal of the brain and spinal cord. These tissues homogenates or tissue sections to assess viral infection and production, morphology, expression of some pro and anti-apoptotic proteins were obtained. In infected untreated animals, the clinical manifestations were evident to 3rd and severe to the 6th dpi, as well as histological alterations, characterized by apoptosis, neuronal necrosis and spongiosis accompanied by vascular disorders such as bleeding, edema and infiltration of mononuclear cells. In the same, astrogliosis condition, neurodegeneration and increased expression of pro-apoptotic proteins such as Casp3, 8, and Bax it was observed. Conversely, infected and treated at all manifestations and neurological disorders animals were reduced by detecting only a few cells in apoptosis and neurodegeneration in the cerebellum of infected and treated with VPA and MK 801 animals, as the production and transcribed pro- apoptotic. These results suggest that the D4MB-6 virus induces encephalitis and myelitis, and vascular changes and mediated excitotoxic neuronal death and immunological processes. Such alterations are prevented in whole or in part with the MK 801 and VPA drug.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/10099
dc.language.isospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.referencesAlbensi BC. The NMDA receptor/ion channel complex: a drug target for modulating synaptic plasticity and excitotoxicity. Curr. Pharm. Des. 2007; 13:3185-94spa
dc.relation.referencesAlcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol. 2002; 40:376–381spa
dc.relation.referencesAmaral DC, Rachid MA, Vilela MC, Campos RD, Ferreira GP, Rodrigues DH, et al. Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflammation. 2011; 9;8-23spa
dc.relation.referencesAmorim JH, Alves RP, Boscardin SB, Ferreira LC. The dengue virus non-structural 1 protein: risks and benefits. Virus Res. 2014; 181:53-60spa
dc.relation.referencesAmorim JH, Pereira Bizerra RS, dos Santos Alves RP, Sbrogio-Almeida ME, Levi JE, Capurro ML, de Souza Ferreira LC. A genetic and pathologic study of a DENV2 clinical isolate capable of inducing encephalitis and hematological disturbances in immunocompetent mice. PLoS One. 2012; 7:e44984spa
dc.relation.referencesAn J, Zhou DS, Kawasaki K, Yasui K. The pathogenesis of spinal cord involvement in dengue virus infection. Virchows Arch. 2003; 442:472-81spa
dc.relation.referencesAraújo RMC, Sidrim JJC. Central nervous system involvement in dengue: a study in fatal cases from a dengue endemic area. Neurology. 2012;78:736–42spa
dc.relation.referencesAttwell D, Gibb A. Neuroenergetics and the kinetic design of excitatory synapses. Nat. Rev. Neurosci. 2005; 6:841-9spa
dc.relation.referencesAvirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K, et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis. 2006; 193:1078e88.spa
dc.relation.referencesAvirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, et al. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate. E. PLoS Pathog. 2007; 3: e183spa
dc.relation.referencesAye KS, Charngkaew K, Win N, Wai KZ, Moe K, Punyadee N, Thiemmeca S, Suttitheptumrong A, Sukpanichnant S, Prida M, Halstead SB. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum Pathol. 2014;45:1221-33spa
dc.relation.referencesBarger S, Goodwin M, Porter M, Beggs M. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J. Neurochem. 2007; 101:1205–13spa
dc.relation.referencesBeasley D, Li L, Suderman M, Barrett A. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virol. 2002; 296:17-23spa
dc.relation.referencesBeck K, Schachtrup C. Vascular damage in the central nervous system: a multifaceted role for vascular-derived TGF-β. Cell Tissue Res. 2012;347:187-201spa
dc.relation.referencesBhoopat L, Bhamarapravati N, Attasiri C, Yoksarn S, Chaiwun B, Khunamornpong S, Sirisanthana V. Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique. Asian Pac J Allergy Immunol. 1996;14:107-13spa
dc.relation.referencesBielecka A and Obuchowicz E. Antiapoptotic action of lithium and valproate. Pharmacol. Rep. 2008; 60:771-82spa
dc.relation.referencesBlakely P, Kleinschmidt-DeMasters B, Tyler K, Irani D. Disrupted Glutamate Transporter Expression in the Spinal Cord With Acute Flaccid Paralysis Due to West Nile Virus Infection. J. Neuropathol. Exp. Neurol. 2009; 68: 1061–72spa
dc.relation.referencesBlanchard F, Chipoy C. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug. Discov. Today. 2005; 10:197-204spa
dc.relation.referencesBliss TVP & Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–9spa
dc.relation.referencesBode K, Schroder K, Hume D, Ravasi T, Heeg K, Sweet M, Dalpke A. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunol. 2007; 122: 596-606spa
dc.relation.referencesBourgeois MA, Denslow ND, Seino KS, Barber DS, Long MT. Gene expression analysis in the thalamus and cerebrum of horses experimentally infected with West Nile virus. PLoS One. 2011;6:e24371spa
dc.relation.referencesBrunkhorst R, Pfeilschifter W, Foerch C. Astroglial proteins as diagnostic markers of acute intracerebral hemorrhage-pathophysiological background and clinical findings. Transl Stroke Res. 2010;1:246-51spa
dc.relation.referencesBrustovetsky T, Bolshakov A, Brustovetsky N. Calpain activation and Na+/Ca2+ exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate. J. Neurosci. Res. 2010; 88:1317-28spa
dc.relation.referencesCam BV, Fonsmark L, Hue NB, Phuong NT, Poulsen A, Heegaard ED. Prospective case‑control study of encephalopathy in children with dengue hemorrhagic fever. Am J Trop Med Hyg. 2001; 65: 848‑51spa
dc.relation.referencesCarmen J, Rothstein JD, Kerr DA. Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res. 2009;1263:143-54spa
dc.relation.referencesCastellanos JE, Neissa J, Camacho-Ortega S. La infección con virus dengue induce apoptosis en celulas de neuroblastoma humano SH-SY5Y.spa
dc.relation.referencesCastellanos J, Bello J, Velandia-Romero M. Manifestaciones neurológicas durante la infección por el virus del dengue. Infectio. 2014;18:167-76spa
dc.relation.referencesChang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ, Sawaya BE. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem. 2011;286:41125-34spa
dc.relation.referencesChateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol. 2010; Epub 2010 Jul 29spa
dc.relation.referencesChen C, Ou J, Chang C, Pan H, Liao S, Chen S, Raung S, Lai C. Glutamate Released by Japanese Encephalitis Virus-Infected Microglia Involves TNF-a Signaling and Contributes to Neuronal Death. Glia. 2012; 60:487–501spa
dc.relation.referencesChen CJ, Ou YC, Lin SY, Raung SL, Liao SL, Lai CY, Chen SY, Chen JH. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol. 2010; 91:1028-37spa
dc.relation.referencesChen L, Lei H, Liu C, Shiesh S, Chen S, Liu H, Lin Y, Wang S, Shyu H, Yeh T. Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am. J. Trop. Med. Hyg. 2006; 74:142-7spa
dc.relation.referencesCheng H, Lei H, Lin C, Luo Y, Wan S, Liu H, Yeh T, Lin Y. Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol. Immunol. 2009; 47:398-406spa
dc.relation.referencesCheng HJ, Luo YH, Wan SW, Lin CF, Wang ST, Hung NT, Liu CC, Ho TS, Liu HS, Yeh TM1, Lin YS. Correlation between serum levels of anti-endothelial cell autoantigen and anti-dengue virus nonstructural protein 1 antibodies in dengue patients. Am J Trop Med Hyg. 2015;92:989-95spa
dc.relation.referencesCollins RM, Zielke HR, Woody RC. Valproate increases glutaminase and decreases glutamine synthetase activities in primary cultures of rat brain astrocytes. J. Neurochem. 1994; 62, 1137-43spa
dc.relation.referencesCouvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Hénin D, et al. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol. 1999;30:1106-10spa
dc.relation.referencesCreson TK, Yuan P, Manji HK, Chen G. Evidence for involvement of ERK, PI3K, and RSK in induction of Bcl-2 by valproate. J Mol Neurosci. 2009;37:123-34spa
dc.relation.referencesDanbolt N. Glutamate uptake. Prog. Neurobiol. 2001; 65:1-105spa
dc.relation.referencesDarman J, Backovic S, Dike S, Maragakis NJ, Krishnan C, Rothstein JD, Irani DN, Kerr DA. Viral-induced spinal motor neuron death is non-cell-autonomous and involves glutamate excitotoxicity. J Neurosci. 2004;24:7566-75spa
dc.relation.referencesDarvishi M, Tiraihi T, Mesbah-Namin S, , Delshad A, Taheri T. Decreased GFAP Expression and Improved Functional Recovery in Contused Spinal Cord of Rats Following Valproic Acid Therapy. Neurochem. Res. 2014; 39:2319–33spa
dc.relation.referencesDawson. V, Dawson. T, Uhl. G, and Snyder. S. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc. Natl. Acad. Sci. U S A. 1993; 15: 3256-9spa
dc.relation.referencesde Sousa AM, Alvarenga MP, Alvarenga RM. A cluster of transverse myelitis following dengue virus infection in the brazilian Amazon region. Trop Med Health. 2014; 42:115-20spa
dc.relation.referencesde Souza KP, Silva EG, de Oliveira Rocha ES, Figueiredo LB, de Almeida-Leite CM, Arantes RM, et al. Nitric oxide synthase expression correlates with death in an experimental mouse model of dengue with CNS involvement. Virol J. 2013;10:267spa
dc.relation.referencesDel Moral-Hernández O, Martínez-Hernández NE, Mosso-Pani MA, Hernández-Sotelo D, Illades-Aguiar B, Flores-Alfaro E, et al. Association DENV1 and DENV2 infection with high serum levels of soluble thrombomodulin and VEGF in patients with dengue fever and dengue hemorrhagic fever. Int J Clin Exp Med. 2014;7:370-8spa
dc.relation.referencesDesprés P, Flamand M, Ceccaldi P, Deubel V. Human Isolates of Dengue Type 1 Virus Induce Apoptosis in Mouse Neuroblastoma Cells. J. Virol. 1996; 70: 4090-6.spa
dc.relation.referencesDesprés P, Frenkiel M, Ceccaldi P, Dos Santos C, Deubel V. Apoptosis in the Mouse Central Nervous System in Response to Infection with Mouse-Neurovirulent Dengue Viruses. J. Virol. 1998; 72: 823-9.spa
dc.relation.referencesDing Y, Chang Z, Xie L, Chen Z, Ai H. Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca²⁺ overload and endoplasmic reticulum stress-induced apoptosis pathway. Chin Med J. 2014;127:3265-71spa
dc.relation.referencesDoble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 1999; 81:163-221spa
dc.relation.referencesDomínguez RB, Kuster GW, Onuki-Castro FL, Souza VA, Levi JE, Pannuti CS. Involvement of the central nervous system in patients with dengue virus infection. J. Neurol Sci. 2008; 267:3640spa
dc.relation.referencesDussart P, Petit L, Labeau B, Bremand L, Leduc A, Moua D, Matheus S, Baril L. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum. PLoS Negl Trop Dis. 2008;2:e280spa
dc.relation.referencesFatemi SH, Folsom TD, Reutiman TJ, Pandian T, Braun NN, Haug K. Chronic psychotropic drug treatment causes differential expression of connexin 43 and GFAP in frontal cortex of rats. Schizophr Res. 2008;10:127-34spa
dc.relation.referencesLindenbach B, Thiel H, Rice C. Flavivirus: The virus and their replication. In: Knipe D, Howley Peter. Fields Virology. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 1101-52spa
dc.relation.referencesFoster AC, Gill R, Woodruff GN. Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. J. Neurosci. 1988; 8:4745-54spa
dc.relation.referencesGavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the betaarrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223-34spa
dc.relation.referencesGebhard G, Filomatori C, Gamarnik A. Functional RNA elements in the dengue virus genome. Viruses. 2011;3:1739-56spa
dc.relation.referencesGhosh Roy S, Sadigh B, Datan E, Lockshin RA, Zakeri Z. Regulation of cell survival and death during Flavivirus infections. World J Biol Chem. 2014;5:93-105spa
dc.relation.referencesGo HS, Seo JE, Kim KC, Han SM, Kim P, Kang YS, Han SH, Shin CY, Ko KH. Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and up-regulation of Bcl-XL. J. Biomed. Sci. 2011:4; 18-48spa
dc.relation.referencesGonçalves D, de Queiroz Prado R, Almeida Xavier E, Cristina de Oliveira N, da Matta Guedes PM, da Silva JS, et al. Imunocompetent mice model for dengue virus infection. ScientificWorldJournal. 2012;2012:525947spa
dc.relation.referencesGöttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO. J. 2001; 20:6969-78spa
dc.relation.referencesGreene J, Greenemyre J. Bioenergetics and glutamate excitotoxicity. Prog Neurobiol. 1996; 48:613-34spa
dc.relation.referencesGulati S, Maheshwari A. Atypical manifestations of dengue. Trop. Med. Int. Health. 2007; 12:1087-95spa
dc.relation.referencesGupta M, Nayak R, Khwaja GA, Chowdhury D. Acute disseminated encephalomyelitis associated with dengue infection: a case report with literature review. J Neurol Sci. 2013;335:216-8spa
dc.relation.referencesGupta S, Knight A, Gupta A, Knapp E, Hauser K, Keller J, Bruce-Keller A. HIV Tat Elicits Microglial Glutamate Release: Role of NAPDH Oxidase and the Cystine-Glutamate Antiporter. Neurosci. Lett. 2010; 485:233–36spa
dc.relation.referencesGuzmán M, Kourí G. Dengue: an update. Lancet. Infect. Dis. 2009;2:33-42spa
dc.relation.referencesHalstead S, Mahalingam S, Marovich M, Ubol S, Mosser D. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet. Infect. Dis. 2010;10:712-22spa
dc.relation.referencesHan S, Lee J. Anti-inflammatory effect of Trichostatin-A on murine bone marrow-derived macrophages. Arch. Pharm. Res. 2009; 32:613-24spa
dc.relation.referencesHatch S, Endy T, Thomas S, Mathew A, Potts J, Pazoles P, Libraty D, Gibbons R, Rothman A. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J. Infect. Dis. 2011;203:1282-91spa
dc.relation.referencesHaughey N, Holden C, Nath A, Geiger J. Involvement of Inositol 1, 4, 5-TrisphosphateRegulated Stores of Intracellular Calcium in Calcium Dysregulation and Neuron Cell Death Caused by HIV-1 Protein Tat. J. Neurochem. 1999; 73:1363–74spa
dc.relation.referencesHober D, Poli L, Roblin B, Gestas P, Chungue E, Granic G, Imbert P, Pecarere J, Vergez-Pascal R, Wattre P. Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am. J. Trop. Med. Hyg. 1993;48:32431spa
dc.relation.referencesHollidge B, González-Scarano F, Soldan S. Arboviral Encephalitides: Transmission, Emergence, and Pathogenesis. Neuroimmune. Pharmacol. 2010; 5: 428–4spa
dc.relation.referencesHsu YL, Shi SF, Wu WL, Ho LJ, Lai JH. Protective roles of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in dengue virus infection of human lung epithelial cells. PLoS One. 2013;8:e79518spa
dc.relation.referencesHuang KJ, Li SY, Chen S, Liu HS, Lin YS, Yeh TM, et al. Manifestation of thrombocytopenia in dengue-2-virus-infected mice. J. Gen. Virol. 2000;81, 2177–82spa
dc.relation.referencesHuettner J, Bean B. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK801: Selective binding to open channels. Proc. Natl. Acad. Sci. U.S.A. 1988; 85:1307-11spa
dc.relation.referencesHwabejire JO, Jin G, Imam AM, Duggan M, Sillesen M, Deperalta D, Jepsen CH, Lu J, Li Y, deMoya MA, Alam HB. Pharmacologic modulation of cerebral metabolic derangement and excitotoxicity in a porcine model of traumatic brain injury and hemorrhagic shock. Surgery. 2013;154:234-43spa
dc.relation.referencesJeong HK, Ji KM, Min KJ, Choi I, Choi DJ, Jou I, Joe EH. Astrogliosis is a possible player in preventing delayed neuronal death. Mol Cells. 2014;37:345-55spa
dc.relation.referencesJeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS, Chuang DM. Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS. Lett. 2003; 542:74-78spa
dc.relation.referencesKanai H, Sawa A, Chen R-W, Leeds P, Chuang DM. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neuron. Pharmacogenomics. J. 2004; 4:336-44spa
dc.relation.referencesKaroli R, Siddiqi Z, Fatima J, Maini S. Was it a case of acute disseminated encephalomyelitis? A rare association following dengue fever. J Neurosci Rural Pract. 2013;4:318-21spa
dc.relation.referencesKhan MI, Anwar E, Agha A, Hassanien N, Ullah E, Syed I, Raja A. Factors predicting severe dengue in patients with dengue Fever. Mediterr J Hematol Infect Dis. 2013; 5:e2013014spa
dc.relation.referencesKhromykh AA, Sedlak PL, Westaway EG. Cis- and trans-acting elements in flavivirus RNA replication. J Virol. 2000;74:3253–63spa
dc.relation.referencesKlomporn P, Panyasrivanit M, Wikan N, Smith DR. Dengue infection of monocytic cells activates ER stress pathways, but apoptosis is induced through both extrinsic and intrinsic pathways. Virology. 2011;409:189-9spa
dc.relation.referencesKocahan S, Akillioglu K, Binokay S, Sencar L, Polat S. The effects of N-Methyl-D-Aspartate receptor blockade during the early neurodevelopmental period on emotional behaviors and cognitive functions of adolescent Wistar rats. Neurochem Res. 2013;38:989-96spa
dc.relation.referencesKocahan S, Babar E, Melik E, Akillioglu K. The effects of the interaction between N-Methyl- Aspartate receptor blockade and growth environment during the last maturation period of the nervous system on anxiety related behaviour in adulthood in the rat. Neurochem J. 2012;6:194201spa
dc.relation.referencesKou Z, Quinn M, Chen H, Rodrigo W, Rose R, Schlesinger J, Jin X. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J. Med. Virol. 2008; 80:134-46spa
dc.relation.referencesKrämer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, Göttlicher M. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO. J. 2003; 22:3411-20spa
dc.relation.referencesKroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3-11spa
dc.relation.referencesKroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009;16:3-11spa
dc.relation.referencesKumar R, Tripathi S, Tambe JJ, Arora V, Srivastava A, Nag VL. Dengue encephalopathy in children in Northern India: clinical features and comparison with non-dengue. J. Neurol. Sci. 2008; 269:41-8spa
dc.relation.referencesKurane I, Innis B, Nimmannitya S, Nisalak A, Meager A, Janus J, Ennis F. Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J. Clin. Invest. 1991; 88:1473-80spa
dc.relation.referencesLardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D. The epigenetics of aging and neurodegeneration. Prog Neurobiol. 2015 Jun 11spa
dc.relation.referencesLee E, Lobigs M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J. virol. 2000; 74:8867-75spa
dc.relation.referencesLeitmeyer K, Vaughn D, Watts D, Salas R, Villalobos I, Chacon D, Ramos C, Rico-Hesse R. Dengue virus structural differences that correlate with pathogenesis. J. virol. 1999; 73:4738-47spa
dc.relation.referencesLerma J. Receptores postsinápticos de neurotransmisores. Rev. R. Acad. Cienc. Exact. Fís. Nat. 1997; 91: 271-77spa
dc.relation.referencesLester RA, Jahr CE. NMDA channel behavior depends on agonist affinity. J. Neurosci. 1992; 12:635-43spa
dc.relation.referencesLéveillé F, Papadia S, Fricker M, Bell KF, Soriano FX, Martel MA, Puddifoot C, Habel M, Wyllie DJ, Ikonomidou C, Tolkovsky AM, Hardingham GE. Suppression of the intrinsic apoptosis pathway by synaptic activity. J. Neurosci. 2010; 17:2623-35spa
dc.relation.referencesLibraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis. 2002; 186:1165–68spa
dc.relation.referencesLim AL, Taylor DA, Malone DT. Consequences of early life MK-801 administration: long-term behavioural effects and relevance to schizophrenia research. Behav Brain Res. 2012;227:27686spa
dc.relation.referencesLin C, Lei H, Shiau A, Liu H, Yeh T, Chen S, Liu C, Chiu S, Lin Y. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J. Immunol. 2002; 169:657-64spa
dc.relation.referencesLin C, Lei H, Shiau L, Liu C, Liu H, Yeh T, Chen S, Lin Y. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J. Med. Virol. 2003; 69:82-90spa
dc.relation.referencesLind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A. 2013;110:E4678–87spa
dc.relation.referencesLindahl JS, Keifer J. Glutamate receptor subunits are altered in forebrain and cerebellum in rats chronically exposed to the NMDA receptor antagonist phencyclidine. Neuropsychopharmacol. 2004;29:2065-73spa
dc.relation.referencesLipton S, Yeh M, Dreyer E. Update on current models of HIV related neuronal injury: plateletactivating factor, arachidonic acid and nitric oxide. Adv. Neuroimmunol. 1994; 4: 181-88spa
dc.relation.referencesLong X, Li Y, Qi Y, Xu J, Wang Z, Zhang X, Zhang D, Zhang L, Huang J. XAF1 contributes to dengue virus-induced apoptosis in vascular endothelial cells. FASEB J. 2013 ;27:1062-73spa
dc.relation.referencesMannie M, Raymond L. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease. Prog. Neurobiol. 2007; 81:272-93spa
dc.relation.referencesMattson M, Haughey N, Nath A. Cell death in HIV dementia. Cell. Death. Differ. 2005; 12: 893–904spa
dc.relation.referencesMattson MP, Magnus T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci. 2006; 7:278-94spa
dc.relation.referencesMayer CA, Brunkhorst R, Niessner M, Pfeilschifter W, Steinmetz H, Foerch C. Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PLoS One. 2013;23:e62101spa
dc.relation.referencesMcBride W, Bielefeldt-Ohmann H. Dengue viral infections; pathogenesis and epidemiology. Microbes. Infect. 2000; 2:1041-50spa
dc.relation.referencesMiranda AS, Rodrigues DH, Amaral DC, de Lima Campos RD, Cisalpino D, Vilela MC, Lacerda Queiroz N, de Souza KP, Vago JP, Campos MA, Kroon EG, da Glória de Souza D, Teixeira MM, Teixeira AL, Rachid MA. Dengue-3 encephalitis promotes anxiety-like behavior in mice. Behav. Brain Res. 2012;230:237-42spa
dc.relation.referencesMisra UK, Kalita J, Singh AP. Role of vascular endothelial growth factor (VEGF) in the neurological manifestations of dengue: a preliminary study. Inflammation. 2014 ;37:611-4spa
dc.relation.referencesMisra UK, Kalita J, Syam UK, Dhole TN. Neurological manifestations of dengue virus infection. J. Neurol Sci. 2006; 244:117-22spa
dc.relation.referencesMullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116:201-11spa
dc.relation.referencesMuller DA, Young PR. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res. 2013; 98:192–208spa
dc.relation.referencesMurthy JM. Neurological complication of dengue infection. Neurol. India. 2010;58:581-4spa
dc.relation.referencesNadarajah J, Madhusudhan KS, Yadav AK, Gupta AK, Vikram NK. Acute hemorrhagic encephalitis: An unusual presentation of dengue viral infection. Indian J Radiol Imaging. 2015;25:52-5spa
dc.relation.referencesNagy JA, Dvorak AM, Dvorak HF. VEGF-A(164/165) and PlGF: roles in angiogenesis and arteriogenesis. Trends Cardiovasc Med. 2003;13:169-75spa
dc.relation.referencesNargi J, Griffin E. Sindbis Virus-Induced Neuronal Death Is both Necrotic and Apoptotic and Is Ameliorated by N-Methyl-D-Aspartate Receptor Antagonists. J. Virol. 2001; 75:7114-21spa
dc.relation.referencesNargi J, Havert M, Zhang M, Irani D, Rothstein J, Griffin D. Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann. Neurol. 2004; 55: 541- 9spa
dc.relation.referencesNeeraja M, Lakshmi V, Dash P, Parida M, Rao P. The clinical, serological and molecular diagnosis of emerging dengue infection at a tertiary care institute in southern, India. J. Clin. Diagn. Res. 2013;7:457-61spa
dc.relation.referencesNicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med. 2004; 4:149-77spa
dc.relation.referencesNilsson M, Hansson E, Rönnbäck L. Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem. Res. 1992; 17:327-32spa
dc.relation.referencesNizar K, Uhlirova H, Tian P, Saisan PA, Cheng Q, Reznichenko L, et al. In vivo stimulusinduced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase. J Neurosci. 2013;33:8411–22spa
dc.relation.referencesNoisakran S, Perng G. Alternate hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection. Exp. Biol. Med. 2008;233:4018spa
dc.relation.referencesOishi K, Saito M, Mapua C, Natividad F. Dengue illness: clinical features and pathogenesis. J. Infect. Chemother. 2007; 13:125-33spa
dc.relation.referencesOlney JW, McGeer PL, McGeer EG. Neurotoxicity of excitatory amino acids. 1978. Raven. Press. pp. 95–121spa
dc.relation.referencesOlney JW, Price M, Salles KS, Labruyere J, Friedrich G. MK-801 powerfully protects against Nmethyl-D-aspartate neurotoxicity. Eur. J. Pharmacol. 1987; 141:357-361spa
dc.relation.referencesOrganización Mundial de la Salud. Dengue guías para el diagnóstico, tratamiento, prevención y control. La Paz, Bolivia: OMG; 2009.spa
dc.relation.referencesOrganización Mundial de la Salud. Dengue y fiebre de dengue hemorrágico. Ginebra: Organización Mundial de la Salud, 2001.spa
dc.relation.referencesOrrenius S, Zhivotovsky B, Nicotera P. The role of calcium in apoptosis. Cell. Calcium. 1998; 23:173-80spa
dc.relation.referencesOtsu Y, Couchman K, Lyons DG, Collot M, Agarwal A, Mallet JM,Pfrieger FW, Bergles DE, Charpak S. Calcium dynamics in astrocyte processes during neurovascular coupling. Nat Neurosci. 2015;18:210–18spa
dc.relation.referencesPancharoen C, Thisyakorn U. Neurological manifestations in dengue patients. Southeast Asian J. Trop. Med. Public Health. 2001;32:341-5spa
dc.relation.referencesPandey S, Rathore C, Michael BD. Antiepileptic drugs for the primary and secondary prevention of seizures in viral encephalitis. Cochrane Database Syst Rev. 2014;10:CD010247spa
dc.relation.referencesPapadia S and Hardingham GE. The dichotomy of NMDA receptor signaling. Neuroscientist. 2007; 13: 572-9spa
dc.relation.referencesPetzold A, Groves M, Leis AA, Scaravilli F, Stokic DS. Neuronal and glial cerebrospinal fluid protein biomarkers are elevated after West Nile virus infection. Muscle Nerve. 2010;41:42-9spa
dc.relation.referencesPhelan P, Regan C, Kilty C, Dunne A. Sodium valproate stimulates the particulate form of glutamine synthetase in rat brain. Neuropharmacol. 1985; 24, 895-902spa
dc.relation.referencesPuccioni-Sohler M, Orsini M, Soares CN. Dengue: a new challenge for neurology. Neurol Int. 2012; 4:e15spa
dc.relation.referencesRamos C, Sánchez G, Pando RH, Baquera J, Hernández D, Mota J, Ramos J, Flores A, Llausás E. Dengue virus in the brain of a fatal case of hemorrhagic dengue fever. J. Neurovirol. 1998; 4:465-8spa
dc.relation.referencesRekling JC. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation. Neurosci. Lett. 2003; 335:167-70.spa
dc.relation.referencesRondouin G, Drian JM, Chicheportiche R, Kamenka JM, Privat A. Non-competitive antagonists of N-methyl-D-aspartate receptors protect cortical and hippocampal cell cultures against glutamate neurotoxicity. Neurosci. Lett. 1988; 91:199-203spa
dc.relation.referencesRudnicka D, Feldmann J, Porrot F, Wietgrefe S, Guadagnini S, Prévost MC, et al. Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol. 2009;83:6234-46spa
dc.relation.referencesSaito M, Oishi K, Inoue S, Dimaano E, Alera M, Robles A, Estrella BD Jr, Kumatori A, Moji K, Alonzo M, Buerano C, Matias R, Morita K, Natividad F, Nagatake T. Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clin. Exp. Neuroimmunol. 2004; 138:299-303spa
dc.relation.referencesSánchez-Burgos G, Hernández-Pando R, Campbell IL, Ramos-Castañeda J, Ramos C. Cytokine production in brain of mice experimentally infected with dengue virus. Neuroreport. 2004;15:37-42spa
dc.relation.referencesSchachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. J Neurosci. 2010;30:5843-54spa
dc.relation.referencesSejvar J, Leis A, Stokic D, Van Gerpen J, Marfin A, Webb R, Haddad M, Tierney B, Slavinski S, Polk J, Dostrow V, Winkelmann M, Petersen L. Acute flaccid paralysis and West Nile virus infection. Emerg. Infect. Dis. 2003; 9:788–93spa
dc.relation.referencesShakespear M, Halili M, Irvine K, Fairlie D, Sweet M. Histone deacetylases as regulators of inflammation and immunity. Trends. Immunol. 2011; 32: 335-43spa
dc.relation.referencesShresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine model for dengue virusinduced lethal disease with increased vascular permeability. J Virol. 2006;80:10208-17spa
dc.relation.referencesShrestha B, Gottlieb D, Diamond M. Infection and injury of neurons by West Nile encephalitis virus. J. virol. 2003;77:13203-13spa
dc.relation.referencesShrestha B, Pinto AK, Green S, Bosch I, Diamond MS. CD8+ T cells use TRAIL to restrict West Nile virus pathogenesis by controlling infection in neurons. J Virol. 2012 ;86:8937-48spa
dc.relation.referencesShrestha B, Samuel MA, Diamond MS. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol. 2006;80:119-29spa
dc.relation.referencesSilveira GF, Meyer F, Delfraro A, Mosimann AL, Coluchi N, Vasquez C, Probst CM, Báfica A, Bordignon J, Dos Santos CN. Dengue virus type 3 isolated from a fatal case with visceral complications induces enhanced proinflammatory responses and apoptosis of human dendritic cells. J Virol. 2011; 85: 5374-83spa
dc.relation.referencesSinn DI, Kim SJ, Chu K, Jung KH, Lee ST, Song EC, et al. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis. 2007;26:464-72spa
dc.relation.referencesSoares CN, Faria LC, Peralta JM, de Freitas MR, Puccioni-Sohler M. Dengue infection: neurological manifestations and cerebrospinal fluid (CSF) analysis. J Neurol Sci Turk. 2006; 249:19-24spa
dc.relation.referencesSolbrig MV, Perng GC. Current neurological observations and complications of dengue virus infection. Curr Neurol Neurosci Rep. 2015;15:29spa
dc.relation.referencesSolomon T, Dung NM, Vaughn DW, Kneen R, Thao LT, Raengsakulrach B, Loan HT, Day NP, Farrar J, Myint KS, Warrell MJ, James WS, Nisalak A, White NJ. Neurological manifestations of dengue infection. Lancet. 2000; 355:1053-9spa
dc.relation.referencesSornjai W, Khungwanmaythawee K, Svasti S, Fucharoen S, Wintachai P, Yoksan S, Ubol S, Wikan N, Smith DR. Dengue virus infection of erythroid precursor cells is modulated by both thalassemia trait status and virus adaptation. Virology. 2014;471:61-71spa
dc.relation.referencesSu HL, Lin YL, Yu HP, Tsao CH, Chen LK, Liu YT, Liao CL. The effect of human bcl-2 and bcl-X genes on dengue virus-induced apoptosis in cultured cells. Virology. 2001;282:141-53spa
dc.relation.referencesSzydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell. Calcium. 2010; 47:12229 Tan LT, Phan TQ, Do QH, Nguyen BH, Lam QB, Cam BV, Khanh H, Hien TT, Chau NVV, Tram TT, Hien VM, Nga TVT, Shultsz C, Farrar J, Doorn HR, Jong MD. Viral etiology of encephalitis in children in southern Vietnam: results of one-year prospective descriptive study. PLoS Negl Trop Dis. 2010; 4:e854.spa
dc.relation.referencesTaniura H, Sng JC, Yoneda Y. Histone modifications in the brain. Neurochem. Int. 2007; 51:8591spa
dc.relation.referencesTavazzi E, Morrison D, Sullivan P, Morgello S, Fischer T. Brain inflammation is a common feature of HIV-infected patients without HIV encephalitis or productive brain infection. Curr HIV Res. 2014;12:97-110spa
dc.relation.referencesTsiang H, Ceccaldi PE, Ermine A, Lockhart B, Guillemer S. Inhibition of rabies virus infection in cultured rat cortical neurons by an N-methyl-D-aspartate noncompetitive antagonist, MK-801. Antimicrob Agents Chemother. 1991;35:572-4spa
dc.relation.referencesUeda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp. Brain Res. 2000; 133:334-39spa
dc.relation.referencesUehara T, Sumiyoshi T, Seo T, Matsuoka T, Itoh H, Suzuki M, Kurachi M. Neonatal exposure to MK-801, an N-Methyl-DAspartate receptor antagonist, enhances methamphetamineinduced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats. Brain Res. 2010; 1352:223–30spa
dc.relation.referencesVan Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim. Biophys. Acta. 2006; 1762:1068-82spa
dc.relation.referencesvan der Most RG, Murali-Krishna K, Ahmed R. Prolonged presence of effector-memory CD8 T cells in the central nervous system after dengue virus encephalitis. Int Immunol. 2003;15:119-25spa
dc.relation.referencesVázquez-Calvo Á, Martín-Acebes MA, Sáiz JC, Ngo N, Sobrino F, de la Torre JC. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Res. 2013;99:172-9spa
dc.relation.referencesVázquez-Calvo A, Saiz JC, Sobrino F, Martín-Acebes MA. Inhibition of enveloped virus infection of cultured cells by valproic acid. J Virol. 2011;85:1267-74spa
dc.relation.referencesVelandia-Romero ML, Acosta-LosadaO, Castellanos JE. In vivo infection by a neuroinvasive neurovirulent dengue virus J Neurovirol., 2012; 18:374-87spa
dc.relation.referencesVelandia-Romero ML, Castellanos J. Virus del dengue: estructura y ciclo viral. Infectio. 2011; 15: 33-43spa
dc.relation.referencesWan S, Lin C, Yeh T, Liu C, Liu H, Wang S, et al. Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 2013; 112:3-11spa
dc.relation.referencesWan SW, Lu YT, Huang CH, Lin CF, Anderson R, Liu HS, Yeh TM, Yen YT, Wu-Hsieh BA, Lin YS. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One. 2014; 9:e92495spa
dc.relation.referencesWang C, Luan Z, Yang Y, Wang Z, Cui Y, Gu G. Valproic acid induces apoptosis in differentiating hippocampal neurons by the release of tumor necrosis factor-α from activated astrocytes. Neurosci Lett. 2011;497:122-7spa
dc.relation.referencesWang Z, Leng Y, Tsai LK, Leeds P, Chuang DM. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab. 2011;31:52-7spa
dc.relation.referencesWhitehead S, Blaney J, Durbin A, Murphy B. Prospects for a dengue virus vaccine. Nat. Rev. Microbiol. 2007; 5:518-28spa
dc.relation.referencesWilliams KL, Zompi S, Beatty PR, Harris E. A mouse model for studying dengue virus pathogenesis and immune response. Ann N Y Acad Sci. 2009;1171:E12-23spa
dc.relation.referencesWilson MA, Kinsman SL, Johnston MV. Expression of NMDA receptor subunit mRNA after MK 801 treatment in neonatal rats. Brain Res Dev Brain Res. 1998; 109:211–20spa
dc.relation.referencesWorld Health Organization: Dengue guidelines for diagnosis, treatment, prevention and control. Newth edition. Geneva: WHO; 2009.spa
dc.relation.referencesWu-Hsieh BA, Yen YT, Chen HC. Dengue hemorrhage in a mouse model. Ann N Y Acad Sci. 2009;1171 Suppl 1:E42-7spa
dc.relation.referencesXi D, Zhang W, Wang HX, Stradtman GG, Gao WJ. Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex. Int J Neuropsychopharmacol. 2009;12:1395-408spa
dc.relation.referencesXue QS, Yang C, Hoffman PM, Streit WJ. Microglial response to murine leukemia virus-induced encephalopathy is a good indicator of neuronal perturbations. Brain Res. 2010;1319:131-41spa
dc.relation.referencesYi JH, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006;48:394-403spa
dc.relation.referencesYong R, Mu-Jin L, Shinae H, Ji H, Jong-Keun K, and Choon S. Korean J. Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia. Physiol. Pharmacol. 2010; 14:435-40spa
dc.relation.referencesYoshizumi M, Eisenach JC, Hayashida K. Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury. J Pain. 2013;14:1485-91spa
dc.relation.referencesZhang Z, Zhang Z, Wu Y, Schluesener H. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience. 2012; 27:140-50spa
dc.relation.referencesZhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J. 2013;10:172spa
dc.relation.referencesZompi S, Harris E. Animal models of dengue virus infection. Viruses. 2012; 4:62-82spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons2015
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectDENVspa
dc.subjectExcitotoxicidadspa
dc.subjectVPAspa
dc.subjectMK 801spa
dc.subjectApoptosisspa
dc.subjectNeurodegeneraciónspa
dc.subject.keywordsDENVspa
dc.subject.keywordsExcitotoxicityspa
dc.subject.keywordsVPAspa
dc.subject.keywordsMK 801spa
dc.subject.keywordsApoptosisspa
dc.subject.keywordsNeurodegenerationspa
dc.subject.nlmW 50
dc.titleEvaluación de la excitotoxicidad por glutamato inducida por el virus dengue neuroadaptado D4MB-6spa
dc.title.translatedEvaluation of glutamate excitotoxicity induced by dengue virus neuroadapted D4MB -6spa
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Evaluación de la excitotoxicidad por glutamato inducida por el virus dengue neuroadaptado D4MB-6
Tamaño:
4.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Evaluación de la excitotoxicidad por glutamato inducida por el virus dengue neuroadaptado D4MB-6
Bloque de licencias
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorización
Tamaño:
2.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Carta autorización