NEUTRALIZACIÓN DE LOS VENENOS DE SERPIENTES CORALES Micrurus medemi, Micrurus sangilensis y Micrurus helleri POR EL ANTIVENENO ANTICORAL DEL INSTITUTO NACIONAL DE SALUD

dc.contributor.advisorRodríguez Vargas, Ariadna
dc.contributor.advisorLorena Corredor, Zayda
dc.contributor.authorTriana Ceron, Miguel Angel
dc.contributor.orcidTriana Ceron, Miguel Angel [0000-0002-5347-9989]
dc.date.accessioned2024-08-08T16:56:41Z
dc.date.available2024-08-08T16:56:41Z
dc.date.issued2024-07
dc.description.abstractIntroducción: El accidente ofídico es la lesión subsecuente a la mordedura de serpiente, en la que se inoculan componentes lesivos diversos causantes de alteraciones fisiopatológicas que pueden llevar a la muerte del afectado. El tratamiento del envenenamiento implica la administración de antivenenos de origen equino, que proveen inmunorreactividad directa o cruzada frente al veneno de múltiples especies de serpientes pertenecientes al mismo género. La presencia de isoformas en las principales toxinas de interés médico junto a la baja inmunogenicidad de algunas proteínas da por consiguiente la neutralización parcial por parte de los antivenenos y una respuesta farmacológica subóptima. Actualmente se desconoce la respuesta de antivenenos de uso comercial frente a la mordedura de serpientes poco investigadas como Micrurus medemi, Micrurus sangilensis y Micrurus helleri, que son endémicas de Colombia, distribuidas en territorios con gran incidencia de accidentes ofídicos, como la región Andina, Orinoquía y Amazonía. Objetivo y metodología: El presente trabajo pretende evaluar la eficacia de inmunorreconocimiento del antiveneno anticoral polivalente del Instituto Nacional de Salud contra el veneno de estas tres especies, a través de cromatografía de afinidad, ensayos de inmunoadsorción ligada a enzimas y Western blot, con previa caracterización de los venenos por medio de electroforesis uni y bidimensional, así como cromatografía en fase líquida de alta resolución. Resultados: Los venenos de las tres Micrurus spp. presentaron variaciones interespecíficas en características fisicoquímicas, como peso molecular, punto isoeléctrico y grado de hidrofobicidad. Estas variaciones influyeron en la capacidad de inmunorreactividad del antiveneno anticoral polivalente producido por el Instituto Nacional de Salud (INS). Aunque el antiveneno presentó reactividad cruzada frente a los venenos de M. helleri, M. medemi y M. sangilensis, se observó un reconocimiento variable hacia las toxinas de bajo peso molecular. Esto demarca la importancia de realizar estudios adicionales en serpientes del género Micrurus en las que se desconoce su grado de reactividad, especialmente en regiones con alta incidencia de ofidiotoxicosis, con el fin de mejorar la efectividad del antiveneno y ampliar su cobertura.
dc.description.abstractenglishIntroduction: Snakebite accident is defined as the inoculation of a great variety of harmful components that cause pathophysiological disturbances that can trigger the death of the victim. The treatment of this type of envenomations involves the administration of antivenoms of equine origin, which provide direct or cross immunoreactivity against the venom of multiple species of snakes belonging to the same genus, however the presence of isoforms of some toxins of medical interest together with the low immunogenicity of some low molecular weight proteins, results in partial neutralization of the antivenoms and a suboptimal pharmacological response. In Colombia, the response of commercial antivenoms against the venom of poorly investigated snakes such as Micrurus medemi, Micrurus sangilensis and Micrurus helleri remains unknown. These snakes are endemic and widely distributed in some of the territories with the highest incidence of snakebite accidents, such as the Andean, Orinoco, and Amazon regions. Objective and methodology: The purpose of this study is to evaluate the immunorecognition efficacy of the polyvalent anticoral antivenom of the National Institute of Health against the venom of these three species, through affinity chromatography, enzyme-linked immunoadsorption assays and Western blot, with previous characterization of the venoms by electrophoresis and chromatography techniques. Results: The venoms of the three Micrurus snakes presented interspecific variations in physicochemical characteristics, such as molecular weight, isoelectric point, and grade of hydrophobicity. These variations influenced the immunoreactivity capacity of the polyvalent anticoral antivenom produced by the National Institute of Health. Although the antivenom showed cross-reactivity with the venoms of M. helleri, M. medemi and M. sangilensis, variable recognition towards low molecular weight toxins was observed. This hightlight the importance of conducting additional studies in snakes of the genus Micrurus in which their degree of reactivity is unknown, especially in regions with a high incidence of bites, to improve the effectiveness of the antivenom and expand its coverage.
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.description.sponsorshipInstituto Nacional de Salud
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12851
dc.language.isoes
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.references1. Gómez JLG. Informe de evento Accidente Ofídico Periodo epidemiológico X de 2023. In: Bogota, editor. INS2023.
dc.relation.references2. Bárcenas AMR. ACCIDENTE OFÍDICO. Instituto Nacional de Salud; 2018.
dc.relation.references3. Sarmiento K, Torres I, Guerra M, Ríos C, Zapata C, Suárez F. Epidemiological characterization of ophidian accidents in a Colombian tertiary referral hospital. Retrospective study 2004-2014. Revista de la Facultad de Medicina. 2018;66(2):153-8.
dc.relation.references4. Gómez MAM. Accidente ofídico en el departamento de Sucre, Colombia. NOVA. 2015;13:39-46.
dc.relation.references5. SAVAGE JM. The colouration of the venomous coral snakes (family Elapidae) and their mimics (families Aniliidae and Colubridae. Biological Journal of the Linncon Society. 1990;45:235-54.
dc.relation.references6. Mochida K, Zhang WY, Toda M. The function of body coloration of the hai coral snake Sinomicrurus japonicus boettgeri. Zool Stud. 2015;54:e33.
dc.relation.references7. Casewell NR, Jackson TNW, Laustsen AH, Sunagar K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol Sci. 2020;41(8):570-81.
dc.relation.references8. Nelson Jorge da Silva Jr.a SDA. Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comparative Biochemistry and Physiology. 2001;128:425-56.
dc.relation.references9. Fernandez J, Alape-Giron A, Angulo Y, Sanz L, Gutierrez JM, Calvete JJ, et al. Venomic and antivenomic analyses of the Central American coral snake, Micrurus nigrocinctus (Elapidae). J Proteome Res. 2011;10(4):1816-27.
dc.relation.references10. Rey-Suarez P, Nunez V, Gutierrez JM, Lomonte B. Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J Proteomics. 2011;75(2):655-67.
dc.relation.references11. Nanjaraj A. N. Urs1 MY, Vikram Joshi1, A. Nataraju2, T. V. Gowda1, and B. S. Vishwanath1. Implications of phytochemicals in snakebite management: present status and future prospective. Toxin Rev. 2014;33:60-83.
dc.relation.references12. Laustsen AH, Maria Gutierrez J, Knudsen C, Johansen KH, Bermudez-Mendez E, Cerni FA, et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon. 2018;146:151-75.
dc.relation.references13. Mackessy SP. handbook of venoms and toxins of reptiles CRC Press2010.57
dc.relation.references14. Lomonte B, Rey-Suarez P, Fernandez J, Sasa M, Pla D, Vargas N, et al. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon. 2016;122:7-25.
dc.relation.references15. Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56(6):855-67.
dc.relation.references16. Davies EL, Arbuckle K. Coevolution of Snake Venom Toxic Activities and Diet: Evidence that Ecological Generalism Favours Toxicological Diversity. Toxins (Basel). 2019;11(12).
dc.relation.references17. Rodriguez-Vargas A, Franco-Vasquez AM, Bolivar-Barbosa JA, Vega N, ReyesMontano E, Arreguin-Espinosa R, et al. Unveiling the Venom Composition of the Colombian Coral Snakes Micrurus helleri, M. medemi, and M. sangilensis. Toxins (Basel). 2023;15(11).
dc.relation.references18. Gutierrez JM, Lomonte B, Sanz L, Calvete JJ, Pla D. Immunological profile of antivenoms: preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. J Proteomics. 2014;105:340-50.
dc.relation.references19. Sevilla-Sanchez MJ, Ayerbe-Gonzalez S, Bolanos-Bolanos E. Snakebite biomedical and epidemiological aspects in the department of Cauca, Colombia, 2009-2018. Biomedica. 2021;41(2):314-37.
dc.relation.references20. Lynch JD. EL CONTEXTO DE LAS SERPIENTES DE COLOMBIA CON UN ANÁLISIS DE LAS AMENAZAS EN CONTRA DE SU CONSERVACIÓN. Acad Colomb. 2012;140.
dc.relation.references21. Bolívar-Barbosa JA, Rodríguez-Vargas AL. Actividad neurotóxica del veneno de serpientes del género Micrurus y métodos para su análisis. Revisión de la literatura. Revista de la Facultad de Medicina. 2020;68(3).
dc.relation.references22. Dashevsky D, Fry BG. Ancient Diversification of Three-Finger Toxins in Micrurus Coral Snakes. J Mol Evol. 2018;86(1):58-67.
dc.relation.references23. Tanaka GD, Furtado Mde F, Portaro FC, Sant'Anna OA, Tambourgi DV. Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization. PLoS Negl Trop Dis. 2010;4(3):e622.
dc.relation.references24. Tanaka GD, Sant'Anna OA, Marcelino JR, Lustoza da Luz AC, Teixeira da Rocha MM, Tambourgi DV. Micrurus snake species: Venom immunogenicity, antiserum crossreactivity and neutralization potential. Toxicon. 2016;117:59-68.
dc.relation.references25. Isbister GK. Antivenom efficacy or effectiveness: the Australian experience. Toxicology. 2010;268(3):148-54.58
dc.relation.references26. Jowers MJ, Garcia Mudarra JL, Charles SP, Murphy JC. Phylogeography of West Indies Coral snakes (Micrurus): Island colonisation and banding patterns. Zoologica Scripta. 2019;48(3):263-76.
dc.relation.references27. Allen WL, Baddeley R, Scott-Samuel NE, Cuthill IC. The evolution and function of pattern diversity in snakes. Behavioral Ecology. 2013;24(5):1237-50.
dc.relation.references28. Davis Rabosky AR, Cox CL, Rabosky DL, Title PO, Holmes IA, Feldman A, et al. Coral snakes predict the evolution of mimicry across New World snakes. Nat Commun.2016;7:11484.
dc.relation.references29. Bellosánchez EA. Noteworthy dietary records of the Variable Coral Snake Micrurus diastema (Serpentes: Elapidae) in America. North-Western J Zool. 2021;17:100-5.
dc.relation.references30. Ferreira A, Reis VPD, Boeno CN, Evangelista JR, Santana HM, Serrath SN, et al. Increase in the risk of snakebites incidence due to changes in humidity levels: A time series study in four municipalities of the state of Rondonia. Rev Soc Bras Med Trop. 2020;53:e20190377.
dc.relation.references31. Mise YF, Lira-da-Silva RM, Carvalho FM. Agriculture and snakebite in Bahia, Brazil - An ecological study. Ann Agric Environ Med. 2016;23(3):416-9.
dc.relation.references32. Caicedo-Portilla JR, Lynch JD. Libro rojo de reptiles de Colombia. Sangileña C, editor. 2016. p. 106-8.
dc.relation.references33. Humboldt IdIdRBAv. Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt2015. 3 p.
dc.relation.references34. Juan C. Díaz-Ricaurte1, 3, Bruno Ferreto Fiorillo. Catálogo de anfibios y reptiles de Colombia. In: Laboratório de Ecologia EeCdAeR, editor. 2020.
dc.relation.references35. Mena G, Chaves-Araya S, Chacon J, Torok E, Torok F, Bonilla F, et al. Proteomic and toxicological analysis of the venom of Micrurus yatesi and its neutralization by an antivenom. Toxicon X. 2022;13:100097.
dc.relation.references36. Bedoya-Medina J, Mendivil-Perez M, Rey-Suarez P, Jimenez-Del-Rio M, Nunez V, Velez-Pardo C. L-amino acid oxidase isolated from Micrurus mipartitus snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism. Int J Biol Macromol. 2019;134:1052-62.
dc.relation.references37. Rincon-Filho S, Naves-de-Souza DL, Lopes-de-Souza L, Silvano-de-Oliveira J, Bonilla Ferreyra C, Costal-Oliveira F, et al. Micrurus surinamensis Peruvian snake venom: 59Cytotoxic activity and purification of a C-type lectin protein (Ms-CTL) highly toxic to cardiomyoblast-derived H9c2 cells. Int J Biol Macromol. 2020;164:1908-15.
dc.relation.references38. Soares TG, Santos JLD, Alvarenga VG, Santos JSC, Leclercq SY, Faria CD, et al. Biochemical and functional properties of a new l-amino acid oxidase (LAAO) from Micrurus lemniscatus snake venom. Int J Biol Macromol. 2020;154:1517-27.
dc.relation.references39. Ponnudurai N, Gnanapragasam A. The biological properties of venoms of some American coral snakes. Biochem Physiol. 1992;101b:471-4
dc.relation.references40. Salazar AM, Vivas J, Sanchez EE, Rodriguez-Acosta A, Ibarra C, Gil A, et al. Hemostatic and toxinological diversities in venom of Micrurus tener tener, Micrurus fulvius fulvius and Micrurus isozonus coral snakes. Toxicon. 2011;58(1):35-45.
dc.relation.references41. Burke JE, Dennis EA. Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res. 2009;50 Suppl(Suppl):S237-42.
dc.relation.references42. Hiu JJ, Yap MKK. Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans. 2020;48(2):719-31.
dc.relation.references43. Terra AL, Moreira-Dill LS, Simoes-Silva R, Monteiro JR, Cavalcante WL, Gallacci M, et al. Biological characterization of the Amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. Toxicon. 2015;103:1-11.
dc.relation.references44. Webb DR. Soluble Immune Response Suppressor (SIRS): Reassessing the immunosuppressant potential of an elusive peptide. Biochem Pharmacol. 2016;117:1-9.
dc.relation.references45. Chan YW, Tan CH, Heh CH, Tan KY. An immunoinformatic approach to assessing the immunogenic capacity of alpha-neurotoxins in elapid snake venoms. Front Pharmacol. 2023;14:1143437.
dc.relation.references46. Sanz L, Quesada-Bernat S, Ramos T, Casais ESLL, Correa-Netto C, Silva-Haad JJ, et al. New insights into the phylogeographic distribution of the 3FTx/PLA(2) venom dichotomy across genus Micrurus in South America. J Proteomics. 2019;200:90-101.
dc.relation.references47. Cardona-Ruda A, Rey-Suarez P, Nunez V. Anti-Neurotoxins from Micrurus mipartitus in the Development of Coral Snake Antivenoms. Toxins (Basel). 2022;14(4).
dc.relation.references48. Ciscotto PH, Rates B, Silva DA, Richardson M, Silva LP, Andrade H, et al. Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. J Proteomics. 2011;74(9):1810-25.
dc.relation.references49. Vargas AR. Guía para el Manejo de Emergencias Toxicológicas: Ministerio de Salud y Protección Social y la Organización Panamericana de la Salud; 2017. 50. MARTÍNEZ MLO. Protocolo de Vigilancia de Accidente ofídico. INSTITUTO NACIONAL DE SALUD; 2022. p. 5-24.60
dc.relation.references51. Zúñiga MGB. Accidente ofídico. Rev Med Costa Rica Centroam. 2014;611:539-50.
dc.relation.references52. Gómez Cardona JP, Gómez Cabal C, Gómez Cabal ML. Sueros antiofídicos enColombia: análisis de la producción, abastecimiento y recomendaciones para el mejoramiento de la red de producción. Biosalud. 2017;16(2):96-116.
dc.relation.references53. Ledsgaard L, Jenkins TP, Davidsen K, Krause KE, Martos-Esteban A, Engmark M, et al. Antibody Cross-Reactivity in Antivenom Research. Toxins (Basel). 2018;10(10).
dc.relation.references54. Instituto Nacional de Salud. Inserto Antiveneno Anticoral Polivalente. In: Instituto Nacional de Salud, editor. 2016.
dc.relation.references55. Bioclon. Ficha técnica Coralmyn. In: Bioclon, editor. 2022. p. 2.
dc.relation.references56. Instituto Clodomiro Picado. Suero Antiofídico Anti-Coral. In: Instituto Clodomiro Picado, editor. 2020. p. 1.
dc.relation.references57. Restrepo HC. El accidente micrúrico en Colombia. In: Probiol, editor. 2009. p. 9.
dc.relation.references58. de Roodt AR, Lanari LC, Ramirez JE, Gomez C, Barragan J, Litwin S, et al. Crossreactivity of some Micrurus venoms against experimental and therapeutic anti-Micrurus antivenoms. Toxicon. 2021;200:153-64.
dc.relation.references59. Pla D, Gutierrez JM, Calvete JJ. Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. Toxicon. 2012;60(4):688-99.
dc.relation.references60. Organización Mundial de la Salud. Anexo 5: Guías para la producción, control y regulación de inmunoglobulinas antiveneno de serpiente. 2021;10665/26724.
dc.relation.references61. Thermoscientific. Pierce™ BCA Protein Assay Kit Thermoscientific user guide. 2020;2161296.
dc.relation.references62. BioRad. A Guide to Polyacrylamide Gel Electrophoresis and Detection. 2006. p. 5- 86.
dc.relation.references63. BioRad. 2-D Electrophoresis Guide. 2009. p. 5-133.
dc.relation.references64. Lomonte B, Escolano J, Fernandez J, Sanz L, Angulo Y, Gutierrez JM, et al. Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii. J Proteome Res. 2008;7(6):2445-57.
dc.relation.references65. Bioradiations. Western Blot Detection without Interfering IgGs: A Mere Fantasy or a Real Possibility 2016 [
dc.relation.references66. Fernandez J, Vargas-Vargas N, Pla D, Sasa M, Rey-Suarez P, Sanz L, et al. Snake venomics of Micrurus alleni and Micrurus mosquitensis from the Caribbean region of Costa Rica reveals two divergent compositional patterns in New World elapids. Toxicon. 2015;107(Pt B):217-33.61
dc.relation.references67. Francis BR. Toxins isolated from the venom of the Brazilian coral snake (Micrurus frontalis frontalis) include hemorrhagic type phospholipases A, and postsynaptic neurotoxins. Toxicon. 1997;35:1193-203.
dc.relation.references68. Oliveira FDR, Noronha M, Lozano JLL. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis. Rev Soc Bras Med Trop. 2017;50(3):365-73.
dc.relation.references69. Barbosa JAB. CARACTERIZACIÓN BIOQUÍMICA PARCIAL DEL VENENO DE LAS ESPECIES Micrurus medemi, Micrurus sangilensis Y Micrurus lemniscatus DE COLOMBIA<nacho.pdf>: UniversidadNacional de Colombia; 2019.
dc.relation.references70. Castillo-Beltran MC, Hurtado-Gomez JP, Corredor-Espinel V, Ruiz-Gomez FJ. A polyvalent coral snake antivenom with broad neutralization capacity. PLoS Negl Trop Dis.2019;13(3):e0007250.
dc.relation.references71. Ramos HR, Vassao RC, de Roodt AR, Santos ESEC, Mirtschin P, Ho PL, et al. Cross neutralization of coral snake venoms by commercial Australian snake antivenoms. ClinToxicol (Phila). 2017;55(1):33-9.
dc.relation.references72. Sanz L, Pla D, Perez A, Rodriguez Y, Zavaleta A, Salas M, et al. Venomic Analysisof the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA(2) Dichotomy across Micrurus Venoms. Toxins (Basel). 2016;8(6).
dc.relation.references73. INVIMA. Procedimientos en línea (Internet). Bogotá: INVIMA; (citado 2024 jun 11). Disponible en: https://www.invima.gov.co/sites/default/files/tramites-en linea/PAG%20WEB%20VI.pdf
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectMicrurus medemi
dc.subjectMicrurus sangilensis
dc.subjectMicrurus helleri
dc.subjectVeneno
dc.subjectAntiveneno
dc.subject.keywordsMicrurus medemi
dc.subject.keywordsMicrurus sangilensis
dc.subject.keywordsMicrurus helleri
dc.subject.keywordsVenom
dc.subject.keywordsAntivenom
dc.subject.nlmW 50
dc.titleNEUTRALIZACIÓN DE LOS VENENOS DE SERPIENTES CORALES Micrurus medemi, Micrurus sangilensis y Micrurus helleri POR EL ANTIVENENO ANTICORAL DEL INSTITUTO NACIONAL DE SALUD
dc.title.translatedNeutralization of Coral Snake Venoms Micrurus medemi, Micrurus sangilensis, and Micrurus helleri by the Anticoral Antivenom of the National Institute of Health
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
1.59 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
224.69 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 Acta de aprobacion.pdf
Tamaño:
513.5 KB
Formato:
Adobe Portable Document Format
Descripción: