Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum

dc.contributor.advisorVelandia Paris, María Angélica
dc.contributor.authorGalindo Galindo, Angie Catalina
dc.contributor.authorVera Ruiz, Cristhian Felipe
dc.contributor.authorPatiño Achury, Alejandra
dc.date.accessioned2024-04-18T01:35:15Z
dc.date.available2024-04-18T01:35:15Z
dc.date.issued2023-11-03
dc.description.abstractEl parkinson es una enfermedad neurodegenerativa que causa el deterioro acelerado de las neuronas dopaminérgicas de la vía nigroestriada. Esta enfermedad trae consigo síntomas que empeoran con el tiempo entre los cuales encontramos: temblores, deterioro cognitivo, movimientos involuntarios, demencia, etc. El parkinson no tiene cura, no obstante, existen tratamientos como el levodopa-carbidopa que puede reducir y aliviar los síntomas. Este medicamento actúa aumentando la síntesis de dopamina en el cerebro y es el tratamiento de primera línea para esta patología. Pese a esto, se ha reportado en literatura que posee reacciones adversas como lo son el vómito, náuseas, paranoia, irritabilidad, entre otros. Motivo por el cual, se han buscado alternativas que puedan disminur dichos efectos adversos. En la literatura, se ha reportado que la canela tiene diferentes metabolitos activos como el cinamaldehído, ácido cinámico y diferentes polifenoles (Kaempferol, Catequina, entre otros) que tienen efectos neuroprotectores, antiapoptóticos y antiparkinsonianos. El presente trabajo tuvo como fin contribuir al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum verum. Para ello, se evaluaron dos metodologías de extracción para la obtención del extracto (reflujo y ultrasonido) y se determinó cual de ellos fue el más eficiente en términos del contenido total de polifenoles. Los resultados mostraron que la metodología con mayor contenido de polifenoles fue el ultrasonido. Adicionalmente, se caracterizó el nanosistema en términos de potencial zeta (-34,8 mV), tamaño y distribución de partícula (181,0 nm), eficiencia de encapsulación (44,37%) capacidad de carga (1,65%). En cuanto al perfil de liberación, se obtuvo un perfil sostenido de liberación donde el mecanismo de liberación fue de difusión. En conclusión, el presente trabajo desarrolló una metodología que permite la obtención de un extracto de canela con buen rendimiento en términos de contenido de polifenoles totales y una metodología que permite encapsular dicho extracto en nanopartículas sólidas lipídicas con buenos parámetros farmacotécnicos.
dc.description.abstractenglishParkinson's disease is a neurodegenerative disease that causes the accelerated deterioration of dopaminergic neurons of the nigrostriatal pathway. This disease brings with it symptoms that worsen with time, among which we find: tremors, cognitive impairment, involuntary movements, dementia, etc. Parkinson's disease has no cure, however, there are treatments such as levodopa-carbidopa that can reduce and alleviate symptoms. This drug acts by increasing the synthesis of dopamine in the brain and is the first-line treatment for this pathology. Despite this, it has been reported in literature that it has adverse reactions such as vomiting, nausea, paranoia, irritability, among others. For this reason, alternatives have been sought to reduce these adverse effects. In the literature, it has been reported that cinnamon has different active metabolites such as cinnamaldehyde, cinnamic acid and different polyphenols (Kaempferol, Catechin, among others) that have neuroprotective, antiapoptotic and antiparkinsonian effects. The present work aims to contribute to the development of a formulation of lipidic solid nanoparticles loaded with an extract of Cinnamomum verum. For this purpose, two extraction methodologies for obtaining the extract (reflux and ultrasound) were evaluated and it was determined which of them was the most efficient in terms of total polyphenol content. The results showed that the methodology with the highest polyphenol content was ultrasound. Additionally, the nanosystem was characterized in terms of zeta potential (-34.8 mV), particle size and distribution (181.0 nm), encapsulation efficiency (44.37%) and loading capacity (1.65%). Regarding the release profile, a sustained release profile was obtained where the release mechanism was diffusion. In conclusion, the present work developed a methodology that allows obtaining a cinnamon extract with good performance in terms of total polyphenol content and a methodology that allows encapsulating this extract in solid lipid nanoparticles with good pharmacotechnical parameters.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12074
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.referencesA. Blainski, G. Lopes, and J. de Mello, “Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L.,” Molecules, vol. 18, no. 6, pp. 6852–6865, Jun. 2013, doi: 10.3390/molecules18066852.
dc.relation.referencesA. D. Yahaya et al., “Development of cinnamon essential oil blends microemulsion as natural preservatives for topping creams”, IOP Conf. Ser. Earth Environ. Sci., vol. 736, núm. 1, p. 012070, 2021.
dc.relation.referencesAbdulrasheed, M., Ibrahim, I. H., Luka, A., Maryam, A. A., Hafsat, L., Ibrahim, S., ... & Gidado, M. B. (2019). Antibacterial effect of Cinnamon (Cinnamomum zeylanicum) bark extract on different bacterial isolates. Journal of Environmental Microbiology and Toxicology, 7(1), 16-20.
dc.relation.referencesAkhtar Siddiqui, Alaadin Alayoubi, Yasser El-Malah & Sami Nazzal (2014) Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM), Pharmaceutical Development and Technology, 19:3, 342-346, DOI: 10.3109/10837450.2013.784336
dc.relation.referencesAndreetta, H. A. (2003). Fármacos de acción prolongada: mecanismos de liberación. Usos de distintos modelos. Acta Farmaceutica Bonaerense, 22(4), 355-364.
dc.relation.referencesAngelopoulou, E., Paudel, Y. N., Piperi, C., & Mishra, A. (2021). Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. Journal of Biochemical and Molecular Toxicology, 35(4).
dc.relation.referencesBelwal T, Ezzat SM, Rastrelli L et al (2018) A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC Trends Anal Chem 100:82–102. https://doi.org/10.1016/J.TRAC.2017.12.018
dc.relation.referencesBhattacharjee S. (2016). DLS and zeta potential - What they are and what they are not?. Journal of controlled release : official journal of the Controlled Release Society, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
dc.relation.referencesBulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., & Öktem, H. A. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp.(Chlorophyta) extracted with different solvents. Journal of Applied Phycology, 31, 1675-1683.
dc.relation.referencesCarrera, C., Ruiz-Rodríguez, A., Palma, M., & Barroso, C. G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 732, 100-104.
dc.relation.referencesCostas Demetzos & Natassa Pippa (2014) Advanced drug delivery nanosystems (aDDnSs): a mini-review, Drug Delivery, 21:4, 250-257, DOI: 10.3109/10717544.2013.844745
dc.relation.referencesDanaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057
dc.relation.referencesD'Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the polyphenols: status and controversies. International journal of molecular sciences, 11(4), 1321–1342. https://doi.org/10.3390/ijms11041321
dc.relation.referencesDent, M., Dragović-Uzelac, V., Penić, M., Brnčić, M., Bosiljkov, T., & Levaj, B. (2013). The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technology and Biotechnology, 51, 84-91.
dc.relation.referencesDobrinčić, A., Repajić, M., Garofulić, I. E., Tuđen, L., Dragović-Uzelac, V. y Levaj, B. ( 2020 ). Comparación de diferentes métodos de extracción para la recuperación de polifenoles de hojas de olivo. Procesos, 8( 9 ), 1008. https://doi.org/10.3390/pr8091008
dc.relation.referencesEkambaram, P., Sathali, A.A., & Priyanka, K. (2012). SOLID LIPID NANOPARTICLES: A REVIEW. Scientific Reviews and Chemical Communications, 2.
dc.relation.referencesFernández-Agulló, A., Freire, M. S., & González-Álvarez, J. (2015). Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 64, 105-113.
dc.relation.referencesG. K. Jayaprakasha & L. Jagan Mohan Rao (2011) Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum, Critical Reviews in Food Science and Nutrition, 51:6, 547-562, DOI: 10.1080/10408391003699550
dc.relation.referencesGandhi, K. R., & Saadabadi, A. (2022). Levodopa (l-dopa). In StatPearls [Internet]. StatPearls Publishing.
dc.relation.referencesGhasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences, 13(4), 288.
dc.relation.referencesHamid Mollazadeh, & Hosseinzadeh, H. (2016). Cinnamon effects on metabolic syndrome: a review based on its mechanisms. PubMed, 19(12), 1258–1270.
dc.relation.referencesHernández Suárez, & D Carlos Brito. (2020). EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA. Infoanalítica (Quito - Impresa), 8(1), 83–97. https://doi.org/10.26807/ia.v8i1.98
dc.relation.referencesJosiah, S. S., Famusiwa, C. D., Crown, O. O., Lawal, A. O., Olaleye, M. T., Akindahunsi, A. A., & Akinmoladun, A. C. (2022). Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 90, 158–171. https://doi.org/10.1016/j.neuro.2022.03.004
dc.relation.referencesKoller, W. C., & Rueda, M. G. (1998). Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology, 50(6 Suppl 6), S11-S14.
dc.relation.referencesKolling, W. M. (2004). Handbook of pharmaceutical excipients. American Journal of Pharmaceutical Education, 68(1-5), BF1.
dc.relation.referencesKujawska, M., & Jodynis-Liebert, J. (2018). Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients, 10(5), 642. https://doi.org/10.3390/nu10050642
dc.relation.referencesL. Ford, K. Theodoridou, G. N. Sheldrake, and P. J. Walsh, “A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds,” Phytochemical Analysis, vol. 30, no. 6, pp. 587–599, Jun. 2019, doi: 10.1002/pca.2851.
dc.relation.referencesL. S. Chua, N. A. Latiff, and M. Mohamad, “Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract,” Journal of Applied Research on Medicinal and Aromatic Plants, vol. 3, no. 2, pp. 64–70, May 2016, doi: 10.1016/j.jarmap.2016.01.004.
dc.relation.referencesLee, H. G., Jo, Y., Ameer, K., & Kwon, J. H. (2018). Optimization of green extraction methods for cinnamic acid and cinnamaldehyde from Cinnamon (Cinnamomum cassia) by response surface methodology. Food science and biotechnology, 27(6), 1607–1617. https://doi.org/10.1007/s10068-018-0441-y
dc.relation.referencesLi, C., Zhang, Y., Su, T., Feng, L., Long, Y., & Chen, Z. (2012). Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. International journal of nanomedicine, 7, 5995–6002. https://doi.org/10.2147/IJN.S38043
dc.relation.referencesLourenco, C., Teixeira, M., Simões, S., & Gaspar, R. (1996). Steric stabilization of nanoparticles: size and surface properties. International journal of pharmaceutics, 138(1), 1-12.
dc.relation.referencesLozano Estevan, M., Córdoba Díaz, M., & Córdoba Díaz, D. (2014). Manual de tecnología farmacéutica. 1o.
dc.relation.referencesLyu, F., Thomas, M., Hendriks, W. H., & Van der Poel, A. F. B. (2020). Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology, 261, 114347.
dc.relation.referencesM. Suárez H. y C. Brito D., “EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA”, Infoanalítica (Quito - Impresa), vol. 8, núm. 1, pp. 83–97, 2020.
dc.relation.referencesMa, Y., Meng, A., Liu, P., Chen, Y., Yuan, A., Dai, Y., Ye, K., Yang, Y., Wang, Y., & Li, Z. (2022). Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules (Basel, Switzerland), 27(2), 362. https://doi.org/10.3390/molecules27020362
dc.relation.referencesMartins S, Silva AC, Ferreira DC, Souto EB. Improving oral absorption of Salmon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol. 2009 Feb;5(1):76-83. doi: 10.1166/jbn.2009.443. PMID: 20055109.
dc.relation.referencesMartins, S., Sarmento, B., Souto, E. B., & Ferreira, D. (2007). Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 69(4), 725–731. https://doi.org/10.1016/j.carbpol.2007.02.012
dc.relation.referencesMelike Üner & Gülgün Yener (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives, International Journal of Nanomedicine, 2:3, 289-300, DOI: 10.2147/IJN.S2.3.289
dc.relation.referencesMesa Vanegas, A. M., (2017). Una visión histórica en el desarrollo de fármacos a partir de productos naturales. Revista Mexicana de Ciencias Farmacéuticas, 48(3), 16-27.
dc.relation.referencesMinisterio de Salud y Protección Social (2021) Día Mundial del Parkinson: Colombia se destaca en atención. https://www.minsalud.gov.co/Paginas/Dia-Mundial-del-Parkinson-Colombia-se-destaca-en-atencion.aspx
dc.relation.referencesMonteiro, M., Santos, R. A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., ... & Díaz-Rosales, P. (2020). Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology, 32, 349-362.
dc.relation.referencesMusielak, E., Feliczak-Guzik, A., & Nowak, I. (2022). Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules, 27(7), 2202. https://doi.org/10.3390/molecules27072202
dc.relation.referencesNagy, B., & Simándi, B. (2008). Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3), 293-298.
dc.relation.referencesOluwaseun Ruth Alara, Nour Hamid Abdurahman, & Chinonso Ishamel Ukaegbu. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
dc.relation.referencesOvallath, S., & Sulthana, B. (2017). Levodopa: History and Therapeutic Applications. Annals of Indian Academy of Neurology, 20(3), 185–189. https://doi.org/10.4103/aian.AIAN_241_17
dc.relation.referencesP. Li, L. Tian, y T. Li, “Study on ultrasonic-assisted extraction of essential oil from cinnamon bark and preliminary investigation of its antibacterial activity”, en Lecture Notes in Electrical Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 349–360.
dc.relation.referencesPan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140–104140. https://doi.org/10.1016/j.jff.2020.104140
dc.relation.referencesPasupuleti Visweswara Rao, & Siew Hua Gan. (2014). Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complementary and Alternative Medicine, 2014, 1–12.
dc.relation.referencesPaz, J. E. W., Contreras, C. R., Munguía, A. R., Aguilar, C. N., & Inungaray, M. L. C.. (2018). Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Brazilian Journal of Microbiology, 49(3), 656–661. https://doi.org/10.1016/j.bjm.2017.03.018
dc.relation.referencesPlatzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants, 10(5), 811. https://doi.org/10.3390/antiox10050811
dc.relation.referencesR. Barrio, “NANOPARTÍCULAS LIPÍDICAS COMO SISTEMAS DE ADMINISTRACIÓN DE SUSTANCIAS ACTIVAS: ASPECTOS TECNOLÓGICOS Y APLICACIONES TERAPÉUTICAS,” 2020.
dc.relation.referencesRainer H. Müller, Karsten Mäder, Sven Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, Volume 50, Issue 1, 2000, Pages 161-177, ISSN 0939-6411.
dc.relation.referencesRanasinghe, P., Perera, S., Gunatilake, M., Abeywardene, E., Gunapala, N., Premakumara, S., Perera, K., Lokuhetty, D., & Katulanda, P. (2012). Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy research, 4(2), 73–79. https://doi.org/10.4103/0974-8490.94719
dc.relation.referencesRowland, M., Noe, C. R., Smith, D. A., Tucker, G. T., Crommelin, D. J., Peck, C. C., Rocci, M. L., Jr, Besançon, L., & Shah, V. P. (2012). Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. Journal of pharmaceutical sciences, 101(11), 4075–4099. https://doi.org/10.1002/jps.23295
dc.relation.referencesShashikant B. Bagade & Mayur Patil (2021) Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review, Critical Reviews in Analytical Chemistry, 51:2, 138-149, DOI: 10.1080/10408347.2019.1686966
dc.relation.referencesShekunov, B. Y., Chattopadhyay, P., Tong, H. H., & Chow, A. H. (2007). Particle size analysis in pharmaceutics: principles, methods and applications. Pharmaceutical research, 24(2), 203–227. https://doi.org/10.1007/s11095-006-9146-7
dc.relation.referencesShi, L., Zhao, W., Yang, Z. et al. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res 29, 81112–81129 (2022). https://doi.org/10.1007/s11356-022-23337-6
dc.relation.referencesShimohama, S., Sawada, H., Kitamura, Y., & Taniguchi, T. (2003). Disease model: Parkinson's disease. Trends in molecular medicine, 9(8), 360-365.
dc.relation.referencesStetefeld, J., McKenna, S.A. & Patel, T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8, 409–427 (2016). https://doi.org/10.1007/s12551-016-0218-6
dc.relation.referencesSveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson's disease. Journal of neurochemistry, 139, 318-324.
dc.relation.referencesThe United States Pharmacopeia USP Chapter <1236> Solubility Measurements. United States Pharmacopeial Convention, Rockville, MD, 2017, 43 (2)
dc.relation.referencesUrbano, C. (2016) Validación del método analítico para la cuantificación de polifenoles totales en productos elaborados con té verde por método colorimétrico folin ciocalteu.
dc.relation.referencesVelandia M,A., “Diseño y desarrollo de un sistema microparticular lipopolimérico para la Administración de un péptido sintético modelo de naturaleza hidrofílica,” 2021.
dc.relation.referencesVillafuerte R., L., García F., B., Garzón S., M. D., Hernández L., A., & Vázquez R., M. L. (2008). Nanopartículas lipídicas sólidas. Revista Mexicana de Ciencias Farmacéuticas, 39(1), 38-52.
dc.relation.referencesWhitfield, A. C., Moore, B. T., & Daniels, R. N. (2014). Classics in chemical neuroscience: levodopa. ACS chemical neuroscience, 5(12), 1192-1197.
dc.relation.referencesXu, Q., Chen, Z., Zhu, B., Wang, G., Jia, Q., Li, Y., & Wu, X. (2020). A-Type Cinnamon Procyanidin Oligomers Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice Through Inhibiting the P38 Mitogen-Activated Protein Kinase/P53/BCL-2 Associated X Protein Signaling Pathway. The Journal of nutrition, 150(7), 1731–1737. https://doi.org/10.1093/jn/nxaa128
dc.relation.referencesY. Duan et al., “A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems”, RSC Adv., vol. 10, núm. 45, pp. 26777–26791, 2020.
dc.relation.referencesYadav, N., Khatak, S., & Sara, U. S. (2013). Solid lipid nanoparticles-a review. Int. J. Appl. Pharm, 5(2), 8-18.
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectParkinson
dc.subjectCanela
dc.subjectNanopartículas sólidas lipídicas
dc.subject.ddc615.19
dc.subject.keywordsParkinson's disease
dc.subject.keywordsCinnamon
dc.subject.keywordsSolid lipid nanoparticles
dc.titleAporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
dc.title.translatedContribution to the development of a solid lipid nanoparticle formulation loaded with an extract of Cinnamomum Verum.
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
1.26 MB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
Anexo 1 Acta de trabajo de grado.pdf
Tamaño:
536.19 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción: