Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
dc.contributor.advisor | Becerra Figueroa , Liliana Marcela | |
dc.contributor.author | Cruz Ramírez, Diana Vanessa | |
dc.date.accessioned | 2024-11-20T15:54:19Z | |
dc.date.available | 2024-11-20T15:54:19Z | |
dc.date.issued | 2024-10 | |
dc.description.abstract | Los fármacos antineoplásicos son compuestos utilizados en diversos procedimientos terapéuticos, siendo la quimioterapia uno de los tratamientos primarios para el cáncer. Sin embargo, el creciente uso de estos medicamentos ha generado preocupaciones ambientales, ya que pueden ingresar al medio ambiente a través de las aguas residuales de los hospitales. Asimismo, la detección de contaminantes anticancerígenos a concentraciones traza (ng/L) representa un desafío analítico debido a la falta de pruebas específicas y métodos estandarizados. Las técnicas más comúnmente utilizadas para el análisis son LC-MS/MS y HPLC-QqQ-MS. Entre los agentes citotóxicos de amplio espectro como la ciclofosfamida y la ifosfamida, clasificados, según la Directiva 93/67/EEC, como no tóxicos para ciertas especies acuáticas en pruebas agudas, pueden requerir activación enzimática para manifestar su toxicidad. Por un lado, el 5-fluorouracilo es altamente tóxico para varias especies acuáticas, incluidas bacterias, crustáceos y algas, con concentraciones efectivas medias (EC50) inferiores a 1 mg/L. Por el otro lado, el cisplatino representa un riesgo significativo debido a su capacidad para causar daño en el ADN y afectar el desarrollo celular, mientras que el tamoxifeno destaca por su potencial para inducir estrés oxidativo y bioacumularse en tejidos críticos como el hígado. | |
dc.description.abstractenglish | Antineoplastic drugs are compounds used in various therapeutic procedures, with chemotherapy being one of the primary treatments for cancer. However, the increasing use of these drugs has raised environmental concerns, as they can enter the environment through hospital wastewater. Furthermore, the detection of anticancer contaminants at trace concentrations (ng/L) represents an analytical challenge due to the lack of specific tests and standardized methods. The most commonly used techniques for analysis are LC-MS/MS and HPLC-QqQ-MS. Among broad-spectrum cytotoxic agents such as cyclophosphamide and ifosfamide, classified, according to Directive 93/67/EEC, as non-toxic for certain aquatic species in acute tests, they may require enzymatic activation to manifest their toxicity. On the one hand, 5-fluorouracil is highly toxic to several aquatic species, including bacteria, crustaceans and algae, with mean effective concentrations (EC50) less than 1 mg/L. On the other hand, cisplatin represents a significant risk due to its ability to cause DNA damage and affect cellular development, while tamoxifen stands out for its potential to induce oxidative stress and bioaccumulate in critical tissues such as the liver. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13268 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | A. for R. on Cancer, “Cancer today,” Disponible en linea: https://gco.iarc.fr/today/fact-sheets-cancers (Consultado 10 de julio de 2024) | |
dc.relation.references | R. Singh, A. Malhotra, and R. Bansal, Synthetic cytotoxic drugs as cancer chemotherapeutic agents. Elsevier Inc.,2023. pp. 3-6. | |
dc.relation.references | M. Mišík, M. Filipic, A. Nersesyan, M. Kundi, M. Isidori, and S. Knasmueller, “Environmental risk 949 assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate),” Water Res., vol. 164, 2019. p.p 3-7. | |
dc.relation.references | M. Jureczko and J. Kalka, “Cytostatic pharmaceuticals as water contaminants,” Eur. J. Pharmacol., vol. 866, no. November 2019, p. 172816, 2020. p.p 1-7 | |
dc.relation.references | S. N. Mahnik, B. Rizovski, M. Fuerhacker, and R. M. Mader, “Determination of 5-fluorouracil in hospital effluents,” Anal. Bioanal. Chem., vol. 380, no. 1, pp. 31–35, 2004. p.p 3-4. | |
dc.relation.references | M. Cevik et al., “Evaluation of Cytotoxicity and Mutagenicity of Wastewater from Istanbul: Data from Hospitals and Advanced Wastewater Treatment Plant,” Bull. Environ. Contam. Toxicol., 2020, vol. 104, no. 6, pp. 852–857. | |
dc.relation.references | S. N. Mahnik, K. Lenz, N. Weissenbacher, R. M. Mader, and M. Fuerhacker, “Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system,”, 2007.Chemosphere, vol. 66, no. 1, pp. 30–37 | |
dc.relation.references | N. Negreira, M. L. de Alda, and D. Barceló, “Cytostatic drugs and metabolites in municipal and hospital 962 wastewaters in Spain: Filtration, occurrence, and environmental risk,” Sci. Total Environ., 2014, vol. 497–498, pp. 68–77 | |
dc.relation.references | A. M. Wormington, M. De María, H. G. Kurita, J. H. Bisesi, N. D. Denslow, and C. J. Martyniuk, 965 “Antineoplastic Agents: Environmental Prevalence and Adverse Outcomes in Aquatic Organisms,” Environ. Toxicol. Chem., 2020. vol. 39, no. 5, pp. 967–985. | |
dc.relation.references | J. P. Besse, J. F. Latour, and J. Garric, “Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs?,” Environ. Int., 2012, vol. 39, no. 1, pp. 73–86. | |
dc.relation.references | B. de H. Aurélien, B. Sylvie, D. Alain, G. Jérôme, and P. Yves, “Ecotoxicological risk assessment linked to the discharge by hospitals of bio-accumulative pharmaceuticals into aquatic media: The case of mitotane,” Chemosphere, 2013, vol. 93, no. 10, pp. 2365–2372 | |
dc.relation.references | R. Kovács et al., “Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study,” Water Res. 2015, vol. 77, pp. 201–212. | |
dc.relation.references | K. Fent, A. A. Weston, and D. Caminada, “Ecotoxicology of human pharmaceuticals,” Aquat. Toxicol. 2006, vol. 76, no. 2, pp. 122–159. | |
dc.relation.references | K. Samal, S. Mahapatra, and M. Hibzur Ali, “Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health,” Energy Nexus. 2022, vol. 6, no. April, p. 100076, pp. 3-6 | |
dc.relation.references | N. Negreira, M. López de Alda, and D. Barceló, “Study of the stability of 26 cytostatic drugs and metabolites in wastewater under different conditions,” Sci. Total Environ. 2014, vol. 482–483, no. 1, pp. 389–398. | |
dc.relation.references | M. S. Chandraprasad, A. Dey, and M. K. Swamy, Introduction to cancer and treatment approaches. Elsevier Inc.,2021, pp. 4-6. | |
dc.relation.references | C. G. Olvera-Néstor, E. Morales-Avila, L. M. Gómez-Olivan, M. Galár-Martínez, S. García-Medina, and N. Neri-Cruz, “Biomarkers of Cytotoxic, Genotoxic and Apoptotic Effects in Cyprinus carpio Exposed to Complex Mixture of Contaminants from Hospital Effluents,” Bull. Environ. Contam. Toxicol. 2016, vol. 96, no. 3, pp. 326–332. | |
dc.relation.references | M. Isidori et al., “Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain,” Environ. Pollut. 2016, vol. 219, pp. 275–287 | |
dc.relation.references | L. Ferrando-Climent, S. Rodriguez-Mozaz, and D. Barceló, “Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples,” Anal. Bioanal. Chem. 2013, vol. 405, no. 18, pp. 5937–5952. | |
dc.relation.references | M. de Oliveira Klein et al., “Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology,” Environ. Pollut. 2021, vol. 268, pp. 2-5. | |
dc.relation.references | T. I. A. Gouveia, A. M. T. Silva, M. G. Freire, A. C. A. Sousa, A. Alves, and M. S. F. Santos, “Multi-target analysis of cytostatics in hospital effluents over a 9-month period,” J. Hazard. Mater. 2023, vol. 448. pp.2-6 | |
dc.relation.references | M. A. Vaudreuil, S. Vo Duy, G. Munoz, A. Furtos, and S. Sauvé, “A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS,” Talanta 2020, vol. 220. pp. 5-6 | |
dc.relation.references | J. Yin, B. Shao, J. Zhang, and K. Li, “A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China,” Bull. Environ. Contam. Toxicol. 2010, vol. 84, no. 1, pp. 39–45. | |
dc.relation.references | A. Tauxe-Wuersch, L. F. De Alencastro, D. Grandjean, and J. Tarradellas, “Trace determination of tamoxifen and 5-fluorouracil in hospital and urban wastewaters,” Int. J. Environ. Anal. Chem. 2006, vol. 86, no. 7, pp. 473–485 | |
dc.relation.references | K. Lenz et al., “Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge,” Sci. Total Environ. 2005, vol. 345, no. 1–3, pp. 141–152. | |
dc.relation.references | N. Vyas, A. Turner, and G. Sewell, “Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters,” Sci. Total Environ. 2014, vol. 493, pp. 324–329. | |
dc.relation.references | M. B. Vandegehuchte and C. R. Janssen, “Epigenetics and its implications for ecotoxicology,” Ecotoxicology, 2011, vol. 20, no. 3, pp. 607–624. | |
dc.relation.references | F. Ribeiro, L. Costa-Lotufo, S. Loureiro, and M. D. Pavlaki, “Environmental Hazard of Anticancer Drugs: State of the Art and Future Perspective for Marine Organisms,” Environ. Toxicol. Chem. 2022, vol. 41, no. 8, pp. 1793–1807 | |
dc.relation.references | L. Ferrando-Climent, S. Rodriguez-Mozaz, and D. Barceló, “Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment,” Environ. Pollut.2014, vol. 193, pp. 216–223. | |
dc.relation.references | C. Nassour, S. Nabhani-Gebara, S. J. Barton, and J. Barker, “Determination of Anticancer Drugs in the Aquatic Environment by SPE–LC–MS/MS—A Lebanese Case Study,” Water (Switzerland), 2023, vol. 15, no. 8, pp.2-5. | |
dc.relation.references | M. de O. Klein, L. F. V. Francisco, I. N. F. Gomes, S. V. Serrano, R. M. Reis, and H. C. S. Silveira, “Hazard assessment of antineoplastic drugs and metabolites using cytotoxicity and genotoxicity assays,” Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 2023, vol. 892, pp. 2-4 | |
dc.relation.references | T. Kosjek, N. Negreira, E. Heath, M. L. de Alda, and D. Barceló, “Biodegradability of the anticancer drug etoposide and identification of the transformation products,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14706–14717. | |
dc.relation.references | L. Ferrando-Climent, M. J. Reid, S. Rodriguez-Mozaz, D. Barceló, and K. V. Thomas, “Identification of markers of cancer in urban sewage through the use of a suspect screening approach,” J. Pharm. Biomed. Anal. 2016, vol. 129, pp. 571–580. | |
dc.relation.references | N. Negreira, N. Mastroianni, M. López De Alda, and D. Barceló, “Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography-electrospray-tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution,” Talanta, 2013, vol. 116, pp. 290–299. | |
dc.relation.references | M. Kundi, A. Parrella, M. Lavorgna, E. Criscuolo, C. Russo, and M. Isidori, “Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14771–14779. | |
dc.relation.references | S. Santana-Viera, P. Hernández-Arencibia, Z. Sosa-Ferrera, and J. J. Santana-Rodríguez, “Simultaneous and systematic analysis of cytostatic drugs in wastewater samples by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, vol. 1110–1111, pp. 124–132. | |
dc.relation.references | M. B. Cristóvão, A. Bento-Silva, M. R. Bronze, J. G. Crespo, and V. J. Pereira, “Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling,” Sci. Total Environ. 2021, vol. 786, p. 147477. | |
dc.relation.references | D. A. Skoog, F. James Holler, and S. R. Crouch, “Douglas A. Skoog & F. James Holler & Timothy A. Nieman - Principios de análisis instrumental (5ed, McGrawHill).pdf.” pp. 1–856, 2001. | |
dc.relation.references | P. Škvára, S. Santana-Viera, S. Montesdeoca-Esponda, E. Mordačíková, J. J. Santana-Rodríguez, and A. Vojs Staňová, “Determination of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine in hospital wastewater by liquid chromatography–mass spectrometry,” J. Sep. Sci. 2020, vol. 43, no. 15, pp. 3074–3082. | |
dc.relation.references | Y. Ghafuria, M. Yunesian, R. Nabizadeh, A. Mesdaghinia, M. H. Dehghani, and M. Alimohammadi, “Environmental risk assessment of platinum cytotoxic drugs: a focus on toxicity characterization of hospital effluents,” Int. J. Environ. Sci. Technol. 2018, vol. 15, no. 9, pp. 1983–1990. | |
dc.relation.references | M. Alzola-Andrés, S. Domingo-Echaburu, Y. Segura, Y. Valcárcel, G. Orive, and U. Lertxundi, “Pharmaceuticals in hospital wastewaters: an analysis of the UBA’s pharmaceutical database,” Environ. Sci. Pollut. Res. 2023, vol. 30, no. 44, pp. 99345–99361. | |
dc.relation.references | M. Mišík, C. Pichler, B. Rainer, M. Filipic, A. Nersesyan, and S. Knasmueller, “Acute toxic and genotoxic activities of widely used cytostatic drugs in higher plants: Possible impact on the environment,” Environ. Res. 2014, vol. 135, pp. 196–203. | |
dc.relation.references | C. Russo, M. Lavorgna, M. Česen, T. Kosjek, E. Heath, and M. Isidori, “Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples,” Environ. Pollut. 2018, vol. 233, pp. 356–363. | |
dc.relation.references | M. Jureczko and W. Przystaś, “Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment,” Ecotoxicol. Environ. Saf. 2019, vol. 172, pp. 210–215. | |
dc.relation.references | A. C. Johnson, M. D. Jürgens, R. J. Williams, K. Kümmerer, A. Kortenkamp, and J. P. Sumpter, “Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study,” J. Hydrol. 2008, vol. 348, no. 1–2, pp. 167–175. | |
dc.relation.references | G. V. Aguirre-Martínez, C. Okello, M. J. Salamanca, C. Garrido, T. A. Del Valls, and M. L. Martín-Díaz, “Is the step-wise tiered approach for ERA of pharmaceuticals useful for the assessment of cancer therapeutic drugs present in marine environment?,” Environ. Res. 2016, vol. 144, pp. 43–59. | |
dc.relation.references | R. Zounkova, L. Kovalova, L. Blaha, and W. Dott, “Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites,” Chemosphere, 2010, vol. 81, no. 2, pp. 253–260. | |
dc.relation.references | C. Mesak et al., “Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible?,” Environ. Sci.Pollut. Res. 2019, vol. 26, no. 6, pp. 6234–6243. | |
dc.relation.references | E. Ivantsova, M. Huang, A. S. Wengrovitz, C. L. Souders, and C. J. Martyniuk, “Molecular and behavioral assessment in larval zebrafish (Danio rerio) following exposure to environmentally relevant levels of the antineoplastic cyclophosphamide,” Environ. Toxicol. Pharmacol. 2022, vol. 90, p. 103809. | |
dc.relation.references | F. Orias, L. Simon, G. Mialdea, A. Clair, V. Brosselin, and Y. Perrodin, “Bioconcentration of 15N-tamoxifen at environmental concentration in liver, gonad and muscle of Danio rerio,” Ecotoxicol. Environ. Saf. 2015, vol. 120, pp. 457–462. | |
dc.relation.references | Q. Yu et al., “Tamoxifen-induced hepatotoxicity via lipid accumulation and inflammation in zebrafish,” Chemosphere, 2020, vol. 239, pp. 1–10.. | |
dc.relation.references | F. Orias et al., “Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems,” Chemosphere, 2015, vol. 128, pp. 79–84. | |
dc.relation.references | C. Venâncio, B. Monteiro, I. Lopes, and A. C. A. Sousa, “Assessing the risks of capecitabine and its active metabolite 5-fluorouracil to freshwater biota,” Environ. Sci. Pollut. Res. 2023, vol. 30, no. 20, pp. 58841–58854. | |
dc.relation.references | M. Mišík, M. Filipic, A. Nersesyan, K. Mišíková, S. Knasmueller, and M. Kundi, “Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14762–14770. | |
dc.relation.references | M. Kračun-Kolarević et al., “Effects of 5-Fluorouracil, Etoposide and CdCl2 in Aquatic Oligochaeta Limnodrilus udekemianus Claparede (Tubificidae) Measured by Comet Assay,” Water. Air. Soil Pollut. 2015, vol. 226, no. 8. | |
dc.relation.references | L. C. Mello, T. G. da Fonseca, and A. Denis Moledode de Souza, “Ecotoxicological assessment of chemotherapeutic agents using toxicity tests with embryos of Mellita quinquiesperforata,” Mar. Pollut. Bull. 2020, vol. 159, no. May, p. 111493. | |
dc.relation.references | C. Trombini, T. Garcia da Fonseca, M. Morais, T. L. Rocha, J. Blasco, and M. J. Bebianno, “Toxic effects of cisplatin cytostatic drug in mussel Mytilus galloprovincialis,” Mar. Environ. Res. 2016, vol. 119, pp. 12–21 | |
dc.relation.references | A. Parrella, M. Lavorgna, E. Criscuolo, C. Russo, V. Fiumano, and M. Isidori, “Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans,” Chemosphere, 2024, vol. 115, no. 1, pp. 59–66. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.subject | Fármacos antineoplásicos | |
dc.subject | Cáncer | |
dc.subject | Técnica analítica | |
dc.subject | Aguas residuales | |
dc.subject | Medio ambiente | |
dc.subject | Toxicidad | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | Antineoplastic drugs | |
dc.subject.keywords | Cancer | |
dc.subject.keywords | Analytical technique | |
dc.subject.keywords | Wastewater | |
dc.subject.keywords | Environmental | |
dc.subject.keywords | Toxicity | |
dc.title | Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática | |
dc.title.translated | Antineoplastic drugs and their toxic effects on human health and aquatic organisms: systematic review | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 841.33 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Acta de aprobacion.pdf
- Tamaño:
- 1.59 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 227.75 KB
- Formato:
- Adobe Portable Document Format
- Descripción: