Implementación de un sistema de benchmarking predictivo con IA para optimizar estrategias de Marketing Digital
dc.contributor.advisor | Gonzalez Brinez, Mario | |
dc.contributor.author | Alba Lazaro Laura Juliana, Laura Juliana Alba | |
dc.contributor.author | Villamil Sanchez, Eduardo Villamil | |
dc.date.accessioned | 2024-10-21T13:04:52Z | |
dc.date.available | 2024-10-21T13:04:52Z | |
dc.date.issued | 2024-08 | |
dc.description.abstract | En este trabajo, se busca hacer evidente la dificultad a la que se enfrentan las empresas para anticipar y responder eficazmente a las estrategias de marketing de sus competidores en el entorno digital. Se propone solucionarlo mediante la implementación de un sistema de benchmarking predictivo utilizando inteligencia artificial. Las herramientas avanzadas, como los algoritmos de aprendizaje automático y el análisis de datos en tiempo real, permitirán prever los movimientos de los competidores y recomendar de forma precisa las estrategias proactivas de marketing. Las principales conclusiones destacan que esta metodología puede proporcionar una ventaja competitiva sostenible al permitir a las empresas tomar decisiones informadas y estratégicas antes que sus competidores. | |
dc.description.abstractenglish | In this work, we aim to highlight the difficulty companies face in anticipating and effectively responding to their competitors' marketing strategies in the digital environment. We propose to solve this through the implementation of a predictive benchmarking system using artificial intelligence. Advanced tools, such as machine learning algorithms and real-time data analysis, will allow for the prediction of competitors' moves and the precise recommendation of proactive marketing strategies. The main conclusions emphasize that this methodology can provide a sustainable competitive advantage by enabling companies to make informed and strategic decisions before their competitors. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Profesional en Marketing y Transformación Digital | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13079 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias Económicas y Administrativas | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Marketing y Transformación Digital | spa |
dc.relation.references | Aaker, D. A. (2012). Win the brand relevance battle and then build competitor barriers. California Management Review, 54(2), 43-57. Recuperado de https://cmr.berkeley.edu/2012/02/54-2-win-the-brand-relevance-battle-and-then-build-competitor-barriers/ | |
dc.relation.references | Anderson, C. (2006). The long tail: Why the future of business is selling less of more. Hyperion. | |
dc.relation.references | Deloitte. (2020). Digital Transformation Survey 2020. Recuperado de Deloitte Insights. | |
dc.relation.references | Dekkers, R. (2014). Benchmarking for strategic learning: Continuous improvement in knowledge-intensive organizations. Journal of Management Studies, 51 (7), 1142-1166. https://onlinelibrary.wiley.com/doi/10.1111/joms.12129 | |
dc.relation.references | Davenport, T. & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96 (1), 108-116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world | |
dc.relation.references | Ducon, D. (2024, julio 10). Blockbuster vs. Netflix: La innovación en el modelo de negocio. LinkedIn. https://www.linkedin.com/pulse/blockbuster-vs-netflix-la-innovación-en-el-modelo-de-negocio-ducon/ | |
dc.relation.references | Forrester Research. (2022). Data Into Dollars: Can You Turn Your Data into Revenue? Recuperado de https://www.forrester.com/blogs/data-into-dollars-can-you-turn- your-data-into-revenue/ | |
dc.relation.references | Forrester Research. (2022). The State of The Insights-Driven Business, 2022. Recuperado de https://www.forrester.com/report/the-state-of-the-insights-driven-business-2022/RES177600 | |
dc.relation.references | Hotjar. (2024). How to Compare Website Traffic [Tools + Benchmarks].https://www.hotjar.com/blog/how-to-compare-website-traffic/ | |
dc.relation.references | Kadagidze, A., & Chkhaidze, N. (2023). AI in hospitality industry: A comprehensive study on its impact on operations, customer experience, and revenue management. | |
dc.relation.references | Katz, E., & Lazarsfeld, P. F. (1955). Personal influence: The part played by people in the flow of mass communications. Free Press. | |
dc.relation.references | Morán, C. (09 de septiembre de 2014). Anticipación: clave para un marketing transicional exitoso. Forbes México. https://www.forbes.com.mx/anticipacion-clave-para-un-marketing-transicional-exitoso | |
dc.relation.references | Pérez, A. (25 de abril de 2021). Estrategia competitiva: definición, tipos y planteamiento. | |
dc.relation.references | OBS Business School. https://www.obsbusiness.school/blog/estrategia-competitiva-definicion-tipos-y-planteamiento | |
dc.relation.references | Project Management Institute, & Economist Intelligence Unit. (2017). Pulse of the Profession 2017: Success Rates Rise. Project Management Institute. https://www.pmi.org/learning/thought-leadership/pulse | |
dc.relation.references | Tafesse, W., & Wien, A. (2018). Setting the future of digital and social media marketing research. Journal of Business Research. | |
dc.relation.references | Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80 (6), 97-121. https://doi.org/10.1509/jm.15.0413 | |
dc.relation.references | Wong, H. Y., & Merrilees, B. (2008). The performance benefits of being brand orientated. Journal of Product & Brand Management. | |
dc.relation.references | Zairi, M. (2000). The transfer of best practices: how to build a culture of benchmarking and continuous learning – part 1. Benchmarking: An International Journal. | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.accessrights | http://purl.org/coar/access_right/c_14cb | |
dc.rights.local | Acceso cerrado | spa |
dc.subject | Análisis de datos | |
dc.subject | Benchmarking predictivo | |
dc.subject | Estrategias competitivas | |
dc.subject | Inteligencia artificial | |
dc.subject | Marketing digital | |
dc.subject.ddc | 382 | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | Competitive strategies | |
dc.subject.keywords | Data analysis | |
dc.subject.keywords | Digital marketing | |
dc.subject.keywords | Predictive benchmarking | |
dc.title | Implementación de un sistema de benchmarking predictivo con IA para optimizar estrategias de Marketing Digital | |
dc.title.translated | Implementation of a predictive benchmarking system with AI to optimize digital marketing strategies | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |