Evaluación del papel inmunoregulador de sST2 en células mononucleares de sangre periférica durante la infección ex vivo con virus dengue
dc.contributor.advisor | Castellanos Parra, Jaime Eduardo | |
dc.contributor.advisor | Delgado Tiria, Felix Giovanni | |
dc.contributor.author | Pérez Acosta, Adriana Marisol | |
dc.date.accessioned | 2023-03-02T15:37:58Z | |
dc.date.available | 2023-03-02T15:37:58Z | |
dc.description.abstract | El dengue grave se caracteriza por altos niveles de citocinas como TNFα e IL-6, que pueden inducir aumento en la permeabilidad vascular, debido específicamente a un efecto pro-inflamatorio/vasodilatador sobre las células del endotelio vascular. Recientemente, se ha reportado que pacientes con dengue presentan niveles elevados de la isoforma soluble de ST2 (sST2) en el suero, sugiriendo que esta proteína podría jugar un papel importante durante la inmunopatogénesis de la enfermedad. Por otro lado, se ha reportado que sST2, un miembro de la familia de receptores de IL-1, inhibe la producción de citocinas proinflamatorias en macrófagos estimulados con lipopolisacárido (LPS). El presente trabajo tuvo como propósito establecer un modelo de infección in vitro, empleando células mononucleares de sangre periférica (CMSP) no fraccionadas infectadas con virus dengue serotipo 2 (DENV-2), que permitiera identificar la célula diana permisiva a la infección con el virus y aquellas células responsables de la producción de TNFα e IL-6, para así evaluar efecto de la proteína recombinante sST2-Fc sobre la producción de estas citocinas proinflamatorias. Como resultado, se encontró que las CMSP fueron permisivas a la infección y los monocitos CD14+, pero no linfocitos CD3+ o CD19+, fue la subpoblación celular preferencialmente infectada y responsable de la producción de TNFα e IL-6. Adicionalmente, las CMSP infectadas no produjeron sST2. Finalmente, la proteína recombinante sST2-Fc ejerció su efecto imunoregulador a una concentracion 10µg/mL sobre monocitos estimulados con LPS por 12 horas, pero este efecto no fue observado cuando los monocitos fueron infectados con DENV-2. Estos resultados podrían sugerir que la proteína sST2 no juega un papel en la regulación de la respuesta inmune durante la infección con DENV y que por el contrario, podría participar en el desarrollo del dengue grave. | spa |
dc.description.abstractenglish | Severe dengue is characterized by high levels of cytokines such as TNFα and IL-6, which can induce increased vascular permeability, specifically due to a pro-inflammatory/vasodilator effect on vascular endothelial cells. Recently, it has been reported that patients with dengue present elevated levels of the soluble isoform of ST2 (sST2) in serum, suggesting that this protein could play an important role during the immunopathogenesis of the disease. On the other hand, it has been reported that sST2, a member of the IL-1 receptor family, inhibits the production of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. The present work had the purpose of establishing an in vitro infection model, using unfractionated peripheral blood mononuclear cells (PBMC) infected with dengue virus serotype 2 (DENV-2), that would allow the identification of the target cell permissive to infection with the virus and those cells responsible for the production of TNFα and IL-6, in order to evaluate the effect of the recombinant protein sST2-Fc on the production of these proinflammatory cytokines. As a result, it was found that PBSCs were permissive to infection and CD14+ monocytes, but not CD3+ or CD19+ lymphocytes, was the cell subpopulation preferentially infected and responsible for TNFα and IL-6 production. Additionally, infected PBSCs did not produce sST2. Finally, the recombinant sST2-Fc protein exerted its imunoregulatory effect at a concentration of 10µg/mL on monocytes stimulated with LPS for 12 hours, but this effect was not observed when monocytes were infected with DENV-2. These results may suggest that the sST2 protein does not play a role in the regulation of the immune response during DENV infection and, on the contrary, may be involved in the development of severe dengue. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/10093 | |
dc.language.iso | spa | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Acosta C, Gómez I. Biología y métodos diagnósticos del dengue. Rev Biomed 2005; 16:113-37. | spa |
dc.relation.references | Allison SL, Schalich J, Stiasny K, Mandl CW, Heinz FX. Mutational Evidence for an Internal Fusion Peptide in Flavivirus Envelope Protein E. J Virol 2001; 75: 4268-75 | spa |
dc.relation.references | Anderson R, Wang S, Osiowy C, Issekutz AC. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J Virol 1997; 71: 4226–32. | spa |
dc.relation.references | Atrasheuskaya A, Petzelbauer P, Fredeking T, Ignatyev G. Anti-TNFα antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol 2003; 35:33–42. | spa |
dc.relation.references | Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K, et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 2006; 193: 1078–88 | spa |
dc.relation.references | Azeredo EL, Zagne SM, Santiago MA, Gouvea AS, Santana AA, Neves-Souza PC, et al. Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology 2001; 204: 494-507. | spa |
dc.relation.references | Azeredo EL, Neves-Souza PC, Alvarenga AR, Reis SR, Torrentes-Carvalho A, Zagne SM, et al. Differential regulation of toll-like receptor-2, toll-like receptor-4, CD16 and human leucocyte antigen-DR on peripheral blood monocytes during mild and severe dengue fever. Immunol 2010; 130: 202-16. | spa |
dc.relation.references | Baran J, Kowalczyk D, Ozog M, Zembala M. Three-Color Flow Cytometry Detection of Intracellular Cytokines in Peripheral Blood Mononuclear Cells: Comparative Analysis of Phorbol Myristate Acetate-Ionomycin and Phytohemagglutinin Stimulation. Clin Diagn Lab Immunol. 2001; 8: 303-13 | spa |
dc.relation.references | Bazan JF, Fletterick RJ. Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virol 1989; 171: 637-9. | spa |
dc.relation.references | Becerra A, Warke RV, Bosch N, Rothman AL, Bosch I. Elevated levels of soluble ST2 protein in dengue virus infected patients. Cytokine 2008; 41:114-20 | spa |
dc.relation.references | Bergers G, Reikerstorfer A, Braselmann S, Graninger P, Busslinger M. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO J 1994; 13: 1176–88 | spa |
dc.relation.references | Bhamarapravati N, Tuchinda P, Boonyapaknavik V. Pathology of Thailand hemorrhagic fever: A study of 100 autopsy cases. Ann Trop Med Parasitol 1967; 61: 500-10. | spa |
dc.relation.references | Blok J, Kay BH, Hall RA, Gorman BM. Isolation and characterization of dengue virus serotype 1 from an epidemic in northern Queensland, Australia. Arch Virol 1988; 100: 213–20. | spa |
dc.relation.references | Brooks AJ, Johansson M, John AV, Xu Y, Jans DA, Vasudevan SG. The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin beta 1 and importin alpha/betarecognized nuclear localization signals. J Biol Chem 2002; 277: 36399-407. | spa |
dc.relation.references | Brunner M, Krenn C, Roth G, Moser B, Dworschak M, Jensen-jarolim E, et al. Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med. 2004; 30: 1468–73 | spa |
dc.relation.references | Cabrera-Hernandez A, Thepparit C, Suksanpaisan L,Smith DR. Dengue virus entry into liver(HepG2) cells is independent of hsp90 and hsp70. J Med Virol 2007; 79: 386–92. | spa |
dc.relation.references | Cardier JE, Mariño E, Romano E, Taylor P, Liprandi F, Bosch N, et al. Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-alpha in endothelial cell damage in dengue. Cytokine 2005; 30: 359–65. | spa |
dc.relation.references | Carr JM, Hocking H, Bunting K, Wright PJ, Davidson A, Gamble J, et al. Supernatants from dengue virus type-2 infected macrophages induce permeability changes in endothelial cell monolayers. J Med Virol 2003; 69: 521–28. | spa |
dc.relation.references | Chao YC, Huang CS, Lee CN, Chang SY, King CC, Kao CL. Higher Infection of Dengue Virus Serotype 2 in Human Monocytes of Patients with G6PD Deficiency. PLoS ONE. 2008; 3: e1557 | spa |
dc.relation.references | Chareonsirisuthigul T, Kalayanarooj S, Ubol S. Dengue virus (DENV) antibody dependent enhancement of infection upregulates the production of anti-inflamatory cytokines, but suppresses anti-dengue virus free radical and pro-inflammatory cytokines production, in THP-1 cells. J Gen Virol 2007; 88: 365-75. | spa |
dc.relation.references | Chaturvedi UC, Najar R, Shrivastava R. Macrophage & dengue virus: Friend or foe? Indian J Med Res. 2006; 124: 23-40 | spa |
dc.relation.references | Chaturvedi UC, Raghupathy R, Pacsa AS, Elbishbishi EA, Agarwal R, Nagar R, et al. Shift from a Th1-type response to Th2-Type in dengue haemorrhagic fever. Curr Sci 1999; 76: 63-9 | spa |
dc.relation.references | Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol. 2000; 28:183-8 | spa |
dc.relation.references | Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 1997; 3: 866-71. | spa |
dc.relation.references | Chen YC, Wang SY. Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. J Virol 2002; 76: 9877-87. | spa |
dc.relation.references | Chien LJ, Liao TL, Shu PY, Huang JH, Gubler DJ, Chang GU. Development of Real-Time Reverse Transcriptase PCR Assays To Detect and Serotype Dengue Viruses. J Clin Microbiol 2006; 44:1295–304 | spa |
dc.relation.references | Chu JJ, Ng ML. Infectious Entry of West Nile Virus Occurs through a ClathrinMediated Endocytic Pathway. J Virol 2004;78: 10543-55 | spa |
dc.relation.references | Chua J, Bhuvanakantham R, Chow V, Ng M. Recombinant non-structural 1 (NS1) protein of dengue-2 virus interacts with human STAT3 beta protein. Virus Res 2005; 112:85–94. | spa |
dc.relation.references | Cologna R, Rico-Hesse R. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 2003; 77: 3929-38. | spa |
dc.relation.references | Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. Infection of Human Cells by Dengue Virus Is Modulated by Different Cell Types and Viral Strains. J Virol 2000; 74: 7814-23 | spa |
dc.relation.references | Durbin AP, Vargas MJ, Wanionek K, Hammond SN, Gordon A, Rocha C, et al. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology 2008; 376:429-35. | spa |
dc.relation.references | Fagundes CT, Amaral FA, Souza A, Vieira AT, Xu D, Liew FY, et al. ST2, an IL-1R family member, attenuates inflammation and lethality after intestinal ischemia and reperfusion. J Leukoc Biol 2007; 81:492–9. | spa |
dc.relation.references | Fernandez Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z. TNFalpha-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens 2004; 64: 469-72. | spa |
dc.relation.references | Fink J, Gu F, Vasuderan SG. Role of Tcells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol 2006; 16: 263-75 | spa |
dc.relation.references | Fung CP, Lee YM, Kuo BI, Yang SP, ChanYJ , Liu CY, et al,. Using buffy coat for reverse transcriptase-polymerase chain reaction in the diagnosis of dengue virus infection: preliminary study. J Microbiol Immunol Infect 2000; 33: 217-22. | spa |
dc.relation.references | Gachter T, Werenskiold AK, Klemenz R. Transcription of the interleukin‑1 receptor‑related T1 gene is initiated at different promoters in mast cells and fibroblasts. J Biol Chem 1996; 271: 124–9. | spa |
dc.relation.references | Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4+ cytotoxic T lymphocyte clones. J Virol 1999; 73: 3623-29. | spa |
dc.relation.references | Guía de Atención Clínica Integral del Paciente con Dengue. Ministerio de la protección social Colombia 2010. | spa |
dc.relation.references | Guzmán M, Alvarez M, Rodríguez R, Rosario D, Vázquez S, Vald s L, et al. Fatal dengue hemorrhagic fever in Cuba, 1997. International Journal of Infectious Diseases 1999; 3:130-5 | spa |
dc.relation.references | Guzmán M.G, Kouri G. Dengue: an update. Lancet Infect Dis, 2002; 2: 33-42. | spa |
dc.relation.references | Halstead SB, O'Rourke EJ. Dengue viruses and mononuclear phagocytes Infection enhancement by non-neutralizing antibody. J Exp Med 1977; 146: 201–17. | spa |
dc.relation.references | Halstead SB. Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 2003; 60:421-67 | spa |
dc.relation.references | Henchal E, Putnak J. The Dengue viruses. Clin Microbiol Rev 1990; 3: 376-96 44. Hober D, Poli L, Roblin B, Gestas P, Chungue E, Granic G, et al. Serum levels of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta) in dengue-infected patients. Am J Trop Med Hyg 1993; 48:324-31 | spa |
dc.relation.references | Houghton-Triviño N, Salgado DM, Rodriguez JA, Bosch I, Castellanos J. Levels of soluble ST2 in serum associated with severity of dengue due to tumour necrosis factor alpha stimulation. J Gen Virol 2010; 91: 697-706 | spa |
dc.relation.references | Huang YH, Lei HY, Liu HS, Lin YS, Chen SH, Liu CC, et al. Tissue plasminogen activator induced by dengue virus infection of human endothelial cells. J Med Virol 2003; 70:610–16. | spa |
dc.relation.references | Igarashi A. Isolation of a Singh’s Aedes albopictuscell clone sensitive to dengue and chikungunya viruses. J Gen Virol 1978; 40: 531-44. | spa |
dc.relation.references | Iwahana H, Hayakawa M, Kuroiwa K, Tago K, Yanagisawa K, Noji S, et al. Molecular cloning of the chicken ST2 gene and a novel variant form of the ST2 gene product, ST2LV. Biochim Biophys Acta 2004; 1681: 1–14 | spa |
dc.relation.references | Jacobs M, Levin M. An improved endothelial barrier model to investigate dengue hemorrhagic fever. J Virol Methods 2002; 104: 173–85. | spa |
dc.relation.references | Jessie K, Fong MY, Devi S, Lam SK, Wong KT. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 2004; 189: 1411–18. | spa |
dc.relation.references | Jindadamrongwech S, Thepparit C, Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 2004; 149: 915-27. | spa |
dc.relation.references | Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov 2008; 7: 827-40. | spa |
dc.relation.references | King AD, Nisalak A, Kalayanrooj S, Myint KS, Pattanapanyasat K, Nimmannitya S, et al. B cells are the principal circulating mononuclear cells infected by dengue virus. Southeast Asian J Trop Med Public Health 1999; 30: 718-28 | spa |
dc.relation.references | Kittigul L, Meethien N, Sujirarat D, Kittigul C, Vasanavat S. Comparison of dengue virus antigens in sera and peripheral blood mononuclear cells from dengue infected patients. Asian Pac J Allergy Immunol 1997; 15: 187–91. | spa |
dc.relation.references | Kou Z, Quinn M, Chen H, Rodrigo WW, Rose RC, Schlesinger JJ, et al,. Monocytes, But Not T or B Cells, Are the Principal Target Cells for Dengue Virus (DV) Infection Among Human Peripheral Blood Mononuclear Cells J Med Virol 2008; 80:134–46 | spa |
dc.relation.references | Kumar S, Tzimas MN, Griswold DE, Young PR. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. Biochem Biophys Res Commun 1997; 235: 474–78. | spa |
dc.relation.references | Lambeth CR, White LJ, Johnston RE, Silva AM. Flow Cytometry-Based Assay for Titrating Dengue Virus. J Clin Microbiol 2005; 43: 3267–72 | spa |
dc.relation.references | Leung B, Xu D, Culshaw S, McInnes IB, Liew FY. A novel therapy of murine collagen-induced arthritis with soluble T1/ST2. J Immunol 2004; 173: 145–50. | spa |
dc.relation.references | Lin YW, Wang KJ, Lei HY, Lin YS, Yeh TM, Liu HS, et al,. Virus replication and cytokine production in dengue virus-infected human B lymphocytes. J Virol 2002; 76: 12242-49. | spa |
dc.relation.references | Löhning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos J, et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci USA 1998; 95: 6930–5. | spa |
dc.relation.references | Mahnke YD, Roederer M. Optimizing a Multi-colour Immunophenotyping Assay. Clin Lab Med 2007; 27: 469–v. | spa |
dc.relation.references | Marchette N, Halstead SB, Falkler WA, Stenhouse J, Nash D. Studies on the pathogenesis of dengue infection in monkeys. III. Sequential distribution of virus in primary and heterologous infections. J Infect Dis 1973; 128: 23–30. | spa |
dc.relation.references | Martínez E. Dengue. Estudos Avançados 2008; 22:33- 52 | spa |
dc.relation.references | Maruo N, Morita I, Shirao M, Murota S. IL-6 increased endothelial permeability in vitro. Endocrinology 1992; 131:710–14 | spa |
dc.relation.references | Mentor NA, Kurane I. Dengue virus infection of human T lymphocytes. Acta Virol 1997; 41: 175-6 | spa |
dc.relation.references | Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008; 8: 4 (2):e17. | spa |
dc.relation.references | Miller S, Sparacio S, Bartenschlager R. Subcellular Localization and Membrane Topology of the Dengue Virus Type 2 Non-structural Protein 4B. J Biol Chem 2006; 281: 8854–63 | spa |
dc.relation.references | Morens DM, Marchette NJ, Chu MC, Halstead SB. Growth of dengue type 2 virus isolates in human peripheral blood leukocytes correlates with severe and mild dengue disease. Am J Trop Med Hyg 1991; 45: 644–51. | spa |
dc.relation.references | Mori Y, Okabayashi T, Yamashita T, Zhao Z, Wakita T, Yasui K, et al. Nuclear Localization of Japanese Encephalitis Virus Core Protein Enhances Viral Replication J Virol 2005; 79: 3448–58 | spa |
dc.relation.references | Muñoz-Jordán JL, Laurent-Rolle M, Ashour J, Martínez-Sobrido L, Ashok M, Lipkin WI, et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 2005; 79: 8004-13. | spa |
dc.relation.references | Muñoz-Jordán JL, Sánchez-Burgos G, Laurent-Rolle M, García-Sastre A. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U. S. A. 2003; 100:14333-38. | spa |
dc.relation.references | Nathan MB, Dayal-Drager R. Recent epidemiological trends, the global strategy and public health advances in dengue. Report of the Scientific Working Group on Dengue. World Health Organization, Geneva, Switzerland. 2006 | spa |
dc.relation.references | Neves-Souza PL, Azeredo EL, Zagne SM, Valls-de-Souza R, Reis SR, Cerqueira D, et al. Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection. BMC Infect Dis 2005; 5: 64 | spa |
dc.relation.references | Nielsen DG. The relationship of interacting immunological components in dengue pathogenesis. Virol J 2009; 6: 211. | spa |
dc.relation.references | Oshikawa K, Kuroiwa K, Tago K, Iwahana H, Yanagisawa K, Ohno S, et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am J Resp Crit Care Med 2001A; 164: 277–81. | spa |
dc.relation.references | Oshikawa K, Kuroiwa K, Tokunaga T, Kato T, Hagihara SI, Tominaga SI, et al. Acute eosinophilic pneumonia with increased soluble ST2 in serum and bronchoalveolar lavage fluid Respir Med 2001B; 95: 532–33. | spa |
dc.relation.references | Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. Expression and function of the ST2 gene in a murine model of allergic airway inflammation. Clin Exp Allergy 2002B; 32: 1520–6. | spa |
dc.relation.references | Oshikawa K, Yanagisawa K, Tominaga S, Sugiyama Y. ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation. Biochem Biophys Res Commun 2002A; 299: 18–24. | spa |
dc.relation.references | Pérez A, García G, Sierra B, Álvarez M, Vázquez S, Cabrera M, et al. Producción ex vivo de TNFα y óxido nítrico por células sanguíneas en presencia de virus dengue. Rev Cubana Med Trop 2008;60:31-6 | spa |
dc.relation.references | Pfaffl M. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45 | spa |
dc.relation.references | Courageot MD, Frenkiel MP, Dos Santos CD, Deubel V, Despres P. α-Glucosidase Inhibitors Reduce Dengue Virus Production by Affecting the Initial Steps of Virion Morphogenesis in the Endoplasmic Reticulum. J Virol 2000; 74: 564-72 | spa |
dc.relation.references | Pinto LM, Oliveira SA, Braga EL, Nogueira RM, Kubelka CF. Increased proinflammatory cytokines (TNFα And IL-6) and anti-inflammatory compounds (sTNFRp75 and sTNFRp55) in Brazilian patients during exanthematic dengue fever. Mem Inst Oswaldo Cruz 1999; 94: 387-94. | spa |
dc.relation.references | Rabablert J, Wasi C, Kinney R, Kasisith J, Pitidhammabhorn D, Ubol S. Attenuating characteristics of DENV-2 PDK53 in flavivirus-naïve peripheral blood mononuclear cells. Vaccine 2007; 25: 3896-905 | spa |
dc.relation.references | Ray D, Shi P. Recent Advances in Flavivirus Antiviral Drug Discovery and Vaccine Development. Recent Pat Antiinfect Drug Discov 2006; 1: 45-55 | spa |
dc.relation.references | Reis SR, Sampaio AV , Henriques MG , Gandini M, Azeredo EL , Kubelka CF. An in vitro model for dengue virus infection that exhibits human monocyte infection, multiple cytokine production and dexamethasone immunomodulation. Mem Ins Oswaldo Cruz. 2007; 102: 983-90. | spa |
dc.relation.references | Reyes-Del Valle J, Chávez-Salina S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 2005; 79: 4557-67. | spa |
dc.relation.references | Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 2010; 67: 2773-86 | spa |
dc.relation.references | Rossler U, Thomassen E, Hultner L, Baier S, Danescu J, Werenskiold A. Secreted and membrane-bound isoforms of T1, an orphan receptor related to IL-1binding proteins, are differently expressed in vivo. Dev Biol 1995; 168: 86–97. | spa |
dc.relation.references | Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest 2007; 117: 1538–49. | spa |
dc.relation.references | Scott RM, Nisalak A, Cheamudon U, Seridhoranakul S, Nimmannitya S. Isolation of dengue viruses from peripheral blood leukocytes of patients with hemorrhagic fever. J Infect Dis 1980; 141: 1–6. | spa |
dc.relation.references | Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E. Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 2006; 80:10208–217. | spa |
dc.relation.references | Soga F, Katoh N, Inoue T, Kishimoto S. Serotonin Activates Human Monocytes and Prevents Apoptosis. J Invest Dermatol. 2007; 127: 1947–55 | spa |
dc.relation.references | Sweet MJ, Leung BP, Kang D, Sogaard M. Schulz K. Trajkovic V, et al. A novel pathway regulating lipopolysaccharide‑induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J Immunol 2001; 166: 6633–39. | spa |
dc.relation.references | Sydow FF, Santiago MA, Neves-Souza PC, Cerqueira DI, Gouvea AS, Lavatori MF, et al. Comparison of Dengue Infection in Human Mononuclear Leukocytes with Mosquito C6/36 and Mammalian Vero Cells Using Flow Cytometry to Detect Virus Antigen. Mem Ins Oswaldo Cruz 2000; 95: 483-89 | spa |
dc.relation.references | Tajima S, Oshikawa K, Tominaga S, Sugiyama Y. The increase in serum soluble ST2 protein upon acute exacerbation of idiopathic pulmonary fibrosis. Chest 2003; 124: 1206–14. | spa |
dc.relation.references | Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 2003; 13: 387–98. | spa |
dc.relation.references | Takezako N, Hayakawa M, Hayakawa H, Aoki S, Yanagisawa K, Endo H, et al. ST2 suppresses IL-6 production via the inhibition of IκB degradation induced by the LPS signal in THP-1 cells. Biochem Biophys Res Commun 2006; 341:425–32 | spa |
dc.relation.references | Tan B, Fu J, Sugrue RJ, Yap EH, Chan YC, Tan YH. Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits ARN dependent ARN polymerase activity. Virology 1996; 216: 317-25. | spa |
dc.relation.references | Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, et al. DC-SIGN (CD209) Mediates Dengue Virus Infection of Human Dendritic Cells. J Exp Med 2003; 197: 823–9 | spa |
dc.relation.references | Tominaga S, Kuroiwa K, Tago K, Iwahana H, Yanagisawa K, Komatsu N. Presence and expression of a novel variant form of ST2 gene product in human leukemic cell line UT-7/GM. Biochem Biophys Res Commun1999; 264: 14–8 | spa |
dc.relation.references | Tominaga S. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett 1989; 258: 301–04. | spa |
dc.relation.references | Torrentes-Carvalho A, Azeredo EL, Reis SR, Miranda AS, Gandini M, Barbosa LS, Kubelka CF. Dengue-2 infection and the induction of apoptosis in human primary monocytes. Mem Inst Oswaldo Cruz, Rio de Janeiro 2009; 104: 1091-99 | spa |
dc.relation.references | Tsai YT, Chang SY, Lee CN, Kao CL. Human TLR3 recognizes dengue virus and modulates viral replication in vitro Cell Microbiol 2009; 11: 604–15 | spa |
dc.relation.references | van ’t Veer C, van den Pangaart PS, van Zoelen MA, de Kruif M, Birjmohun RS, Stroes ES, et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J Immunol 2007; 179: 7110–20 | spa |
dc.relation.references | van Der Bruggen T, Nijenhuis S, Van Raaij E, Verhoef J, Van Asbeck BS. Lipopolysaccharide-Induced Tumor Necrosis Factor Alpha Production by Human Monocytes Involves the Raf-1/MEK1-MEK2/ERK1-ERK2 Pathway. Infect Immun 1999;67: 3824–29 | spa |
dc.relation.references | van der Schaar HM, Wilschut JC, Smit JM. Role of antibodies in controlling dengue virus infection. Immunobiology 2009; 214: 613-29 | spa |
dc.relation.references | Wagenaar JF, Gasem MH, Goris MG, Leeflang M, Hartskeerl RA, van der Poll T, et al. Soluble ST2 Levels Are Associated with Bleeding in Patients with Severe Leptospirosis. PLoS Negl Trop Dis 2009; 3: e453. | spa |
dc.relation.references | Walzl G, Matthews S, Kendall S, Gutierrez-Ramos JC, Coyle AJ, Openshaw PJ, et al. Inhibition of T1/ST2 during respiratory syncytial virus infection prevents T helper cell type 2 (Th2) but not Th1-driven immunopathology. J Exp Med 2001; 193:785-92. | spa |
dc.relation.references | Wang S, He R, Anderson R. PrM- and Cell-Binding Domains of the Dengue Virus E Protein. J Virol 1999; 73:2547-51 | spa |
dc.relation.references | Wang WK, Lee CN, Kao CL, Lin YL, and King CC. Quantitative competitive reverse transcription-PCR for quantification of dengue virus ARN. J Clin Microbiol 2000; 38: 3306-10. | spa |
dc.relation.references | Wang WK, Sung TL, Tsai YC, Kao CL, Chang SM, King CC. Detection of Dengue Virus Replication in Peripheral Blood Mononuclear Cells from Dengue Virus Type 2-Infected Patients by a Reverse Transcription–Real-Time PCR Assay. J Clin Microb 2002; 40: 4472–78 | spa |
dc.relation.references | Warke R. Molecular Dissection of the Cellular Response to Dengue Virus Infection. Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of doctor of philosophy in immunology and virology. University of Massachusetts. 2008 | spa |
dc.relation.references | Waterman SH, Kuno G, Gubler DJ, Sather GE. Low rate of antigen detection and dengue virus isolation from the peripheral blood leukocytes of dengue fever patients. Am J Trop Med Hyg 1985; 34: 380–84. | spa |
dc.relation.references | Wengler G, Wengler G, Nowak T, Castle E. Description of a procedure which allows isolation of viral nonstructural proteins from BHK vertebrate cells infected with the West Nile flavivirus in a state which allows their direct chemical characterization. Virology 1990; 177: 795-801. | spa |
dc.relation.references | Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, et al. Human skin Langerhans cells are targets of dengue virus infection. Nature Med 2000; 6: 816-20. | spa |
dc.relation.references | Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrafita D, et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med 1998; 187: 787–94. | spa |
dc.relation.references | Yabar C. Rol de las proteínas no estructurales en los eventos de replicación del ARN del virus dengue: propuesta de un modelo de replicación del ARN. Rev. Perú. Med. Exp. Salud Pública 2003; 20: 51-57. | spa |
dc.relation.references | Yang KD, Lee CS, Hwang KP, Chu ML, Shaio MF. A model to study cytokine profiles in primary and heterologously secondary dengue-2 virous infections. Acta Virol 1995; 39:19-22. | spa |
dc.relation.references | Yin H, Huang BJ, Yang H, Huang YF, Xiong P, Zheng F. Pretreatment with soluble ST2 reduces warm hepatic ischemia/reperfusion injury. Biochem Biophys Res Commun 2006; 351: 940–6. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_14cb | |
dc.rights.local | Acceso cerrado | spa |
dc.subject.nlm | W 50 | |
dc.title | Evaluación del papel inmunoregulador de sST2 en células mononucleares de sangre periférica durante la infección ex vivo con virus dengue | spa |
dc.title.translated | Evaluation of the immunoregulatory role of sST2 in peripheral blood mononuclear cells during ex vivo dengue virus infection | |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Evaluación del papel inmunoregulador de sST2 en células mononucleares de sangre periférica durante la infección ex vivo con virus dengue
- Tamaño:
- 1.48 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Evaluación del papel inmunoregulador de sST2 en células mononucleares de sangre periférica durante la infección ex vivo con virus dengue
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: