Cambio en el microbioma bacteriano intestinal de niños menores de 3 años después de un tratamiento con antibióticos
dc.contributor.advisor | Abril Riaño, Deisy Abril | |
dc.contributor.author | Peña Cardenas, Paola Andrea | |
dc.date.accessioned | 2024-07-29T18:41:59Z | |
dc.date.available | 2024-07-29T18:41:59Z | |
dc.date.issued | 2024-07 | |
dc.description.abstract | El microbioma es un conjunto de microorganismos que existen e interactúan en un entorno particular, y que comprende también sus genomas y metabolitos producidos; su diversidad y abundancia cambian de acuerdo con factores ambientales como la alimentación, consumo de medicamentos (antibióticos y muchos otros), respuesta del hospedero, estrés fisicoquímico y otros. Los estudios sobre el microbioma humano se han basado en cinco sitios principales, piel, vías respiratorias, cavidad oral, tracto vaginal e intestino, este último siendo uno de los más estudiados en todo el mundo por su relación con diversos tipos de infecciones y enfermedades. En Colombia, las investigaciones de microbioma intestinal en lactantes son escasas y se desconocen los cambios generados por el uso de antibióticos. Por ende, el objetivo de este estudio fue establecer los cambios en el microbioma intestinal de niños menores de 3 años y mayores de 6 meses, con infecciones bacterianas que requirieron el uso de antibióticos. Se reclutaron 32 pacientes que fueron atendidos en una institución de salud de tercer nivel y que requirieron tratamiento antibiótico. De cada uno de ellos, se obtuvieron tres muestras de material fecal a diferentes tiempos: antes del inicio del tratamiento (tiempo 0, pre-antibiótico), al finalizar el tratamiento (7 días) y 30 días después (recuperación post-antibiótico). Debido a la falta de estudios de microbioma en niños, una muestra de un grupo control de 30 niños fue incluida (tiempo 0). La diversidad del microbioma fue establecida por secuenciación de los genes 16S-ITS-23S-ARNr (PacBio). Las lecturas HiFi se analizaron usando SBanalyzer-Athena™ para clasificación de cepas y QIIME2-DADA2 (SILVA-RDP-GTDB) para especie, y los análisis estadísticos se realizaron con R, STAMP y Prisma-GraphPad. Los filos Bacillota (Firmicutes), Bacteroidota (Bacteroidetes), Pseudomonadota (Proteobacteria) y Actinomycetota fueron los más abundantes al inicio (33,0%, 42,6%, 10,9% y 12,5%, respectivamente) cuya composición fue similar al grupo sano; estos filos fueron los que presentaron los mayores cambios con el consumo de los antibióticos. Para destacar, el uso de antibióticos produjo una considerable disminución de Bifidobacterium spp. principalmente Bifidobacterium pseudocatenulatum (p=0,0018, DBM= 8.77), y que al mes no alcanzó una completa recuperación. La reducción observada de especies benéficas comensales por los antibióticos evidencia la perturbación del microbioma intestinal y la necesidad de evaluar la posible inclusión de probióticos durante o después del tratamiento antibiótico en población pediátrica. | |
dc.description.abstractenglish | The microbiome is a set of microorganisms that exist and interact in a particular environment, also including their genomes and produced metabolites; diversity and abundance changes according to environmental factors such as diet, medication consumption (antibiotics and many others), host response, physicochemical stress and others. Studies about human microbiome have been based on 5 main sites, skin, respiratory tract, oral cavity, vaginal tract and intestine, this latter being one of the most studied in the world due to its relationship with various types of infections and diseases. In Colombia, researches on infant gut microbiome are scarce and the changes generated by the use of antibiotics are unknown. Therefore, the aim of this study was to establish changes in gut microbiome of children younger than 3 years and older than 6 months, with bacterial infections that required use of antibiotics. 32 patients who were treated at a tertiary level health institution and who required antibiotic treatment were recruited. From each of them, three samples of fecal material were obtained at different times: before the beginning of treatment (time 0, pre-antibiotic), at the end of treatment (7 days) and 30 days later (postantibiotic, recovery). Due to the lack of microbiome studies in children, a control group sample of 30 children was included (time 0). Microbiome diversity was established by sequencing of the 16S-ITS-23S-rRNA genes (PacBio). HiFi reads were analyzed using SBanalyzer-Athena™ for strain classification and QIIME2-DADA2 (SILVA-RDP-GTDB) for species, and statistical analyzes were performed with R, STAMP, and Prisma-GraphPad. Phylum Bacillota (Firmicutes), Bacteroidota (Bacteroidetes), Pseudomonadota (Proteobacteria) and Actinomycetota were the most abundant at the beginning (33.0%, 42.6%, 10.9% and 12.5%, respectively) whose composition was similar to healthy group; these phylum were the ones that presented the greatest changes with the consumption of antibiotics. To highlight, use of antibiotics produced a considerable decrease in Bifidobacterium spp. mainly Bifidobacterium pseudocatenulatum (p=0.0018, DBM= 8.77), and after one month it did not achieve a complete recovery. The observed reduction of beneficial commensal species by antibiotics shows the disturbance of gut microbiome and needing to evaluate the possible inclusion of probiotics during or after antibiotic treatment in pediatric population. | |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.description.sponsorship | Los Cobos Medical Center | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12750 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Escobar JS, Klotz B, Valdes BE, Agudelo GM. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol 2015;14. https://doi.org/10.1186/s12866-014-0311-6. | spa |
dc.relation.references | Mobeen F, Sharma V, Prakash T. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. Bioinformation 2018;14:560–73. https://doi.org/10.6026/97320630014560. | spa |
dc.relation.references | Gupta VK, Paul S and Dutta C (2017) Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 8:1162. https://doi.org/10.3389/fmicb.2017.01162 | spa |
dc.relation.references | Álvarez J, Fernández Real JM, Guarner F, Gueimonde M, Rodríguez JM, Saenz de Pipaon M, et al. Gut microbes and health. Gastroenterol Hepatol 2021;44:519–35. https://doi.org/10.1016/j.gastrohep.2021.01.009. | spa |
dc.relation.references | de Jesús Michel Aceves R, Celia Izeta Gutiérrez A, Torres Alarcón G, Celia Margarita Michel Izeta A. La microbiota y el microbioma intestinal humano. (Entre las llaves del reino y una nueva caja de Pandora) Artículo de revisión. Vol. 71. No 5. Octubre 2017. P. 443-448. Rev Sanid Milit Mex. https://revistasanidadmilitar.org/index.php/rsm/article/view/123 | spa |
dc.relation.references | Solano-Aguilar G, Fernandez KP, Ets H, Molokin A, Vinyard B, Urban JF, et al. Characterization of fecal microbiota of children with imples in 2 locations in Colombia. J Pediatr Gastroenterol Nutr 2013;56:503–11. https://doi.org/10.1097/MPG.0b013e318282aa12. | spa |
dc.relation.references | Kann, S.; Eberhardt, K.; Hinz, R.; Schwarz, N.G.; Dib, J.C.; Aristizabal, A.; Mendoza, G.A.C.; Hagen, R.M.; Frickmann, H.; Barrantes, I.; Kreikemeyer, B. The Gut Microbiome of an Indigenous Agropastoralist Population in a Remote Area of Colombia with High Rates of Gastrointestinal Infections and Dysbiosis. Microorganisms 2023, 11, 625. https://doi.org/10.3390/microorganisms11030625 | spa |
dc.relation.references | Korpela K, Salonen A, Saxen H, Nikkonen A, Peltola V, Jaakkola T, et al. Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort. Pediatr Res 2020;88:438–43. https://doi.org/10.1038/s41390-020-0761-5. | spa |
dc.relation.references | Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ 2013;185:385–94. https://doi.org/10.1503/cmaj.121189. | spa |
dc.relation.references | Rutten NBMM, Rijkers GT, Meijssen CB, Crijns CE, Oudshoorn JH, van der Ent CK, et al. Intestinal microbiota composition after antibiotic treatment in early life: The INCA study. BMC Pediatr 2015;15. https://doi.org/10.1186/s12887-015-0519-0. | spa |
dc.relation.references | Savage JH, Lee-Sarwar KA, Sordillo JE, Lange NE, Zhou Y, O’Connor GT, et al. Diet during Pregnancy and Infancy and the Infant Intestinal Microbiome. Journal of Pediatrics 2018;203:47-54.e4. https://doi.org/10.1016/j.jpeds.2018.07.066. | spa |
dc.relation.references | Gasparrini AJ, Wang B, Sun X, Kennedy EA, Hernandez-Leyva A, Ndao IM, et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol 2019;4:2285–97. https://doi.org/10.1038/s41564-019-0550-2. | spa |
dc.relation.references | McDonnell L, Gilkes A, Ashworth M, Rowland V, Harries TH, Armstrong D, et al. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 2021;13:1–18. https://doi.org/10.1080/19490976.2020.1870402. | spa |
dc.relation.references | Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 2016;7. https://doi.org/10.1038/ncomms10410. | spa |
dc.relation.references | Shoreline Biome. Shoreline WaveTM for PacBio® Technical Manual. https://directus.biocat.com/uploads/biocat/originals/shoreline-wave-for-pacbio-technical-manual-v01.pdf | spa |
dc.relation.references | Kin Pin Chua. Nextflow pipeline using QIIME 2 to process CCS data via DADA2 plugin. Takes in demultiplexed 16S amplicon sequencing FASTQ file. 2023. PacBio. https://github.com/PacificBiosciences/pb-16S-nf | spa |
dc.relation.references | QIIME 2. Moving Pictures Tutorial. https://docs.qiime2.org/2023.7/tutorials/moving-pictures/ | spa |
dc.relation.references | GraphPad Software. Prism User Guide. https://www.graphpad.com/guides/prism/latest/user-guide/index.htm | spa |
dc.relation.references | Hendricks, S.A.; Vella, C.A.; New, D.D.; Aunjum, A.; Antush, M.; Geidl, R.; Andrews, K.R.; Balemba, O.B. High-Resolution Taxonomic Characterization Reveals Novel Human Microbial Strains with Potential as Risk Factors and Probiotics for Prediabetes and Type 2 Diabetes. Microorganisms 2023, 11, 758. https://doi.org/10.3390/microorganisms11030758 | spa |
dc.relation.references | Clavenna A, Bonati M. Drug prescriptions to outpatient children: a review of the literature. Eur J Clin Pharmacol. 2009 Aug;65(8):749-55. Doi: 10.1007/s00228-009-0679-7 | spa |
dc.relation.references | Hersh AL, Shapiro DJ, Pavia AT, Shah SS. Antibiotic prescribing in ambulatory pediatrics in the United States. Pediatrics 2011; 128: 1053–61. https://doi.org/10.1542/peds.2011-1337. | spa |
dc.relation.references | Potocki, M., Goette, J., Szucs, T.D. et al. Prospective Survey of Antibiotic Utilization in Pediatric Hospitalized Patients to Identify Targets for Improvement of Prescription. Infection 31, 398–403 (2003). https://doi.org/10.1007/s15010-003-4130-1 | spa |
dc.relation.references | Youngster I, Avorn J, Belleudi V, Cantarutti A, Díez-Domingo J, Kirchmayer U, et al. Antibiotic Use in Children – A Cross-National Analysis of 6 Countries. Journal of Pediatrics 2017;182:239-244.e1. https://doi.org/10.1016/j.jpeds.2016.11.027. | spa |
dc.relation.references | Leaño DS, Gutiérrez I, Navarro D, Higuera M, et al. Caracterización de la prescripción antibiótica en urgencias pediátricas de una clínica universitaria de III nivel. Universidad El Bosque. Bogotá D-C- Colombia. 2013. https://repositorio.unbosque.edu.co/handle/20.500.12495/5653 | spa |
dc.relation.references | Buendía JA, Feliciano-Alfonso JE. Inappropriate antibiotic prescribing for acute bronchiolitis in Colombia: a predictive model. J Pharm Policy Pract 2021;14. https://doi.org/10.1186/s40545-020-00284-6. | spa |
dc.relation.references | Lee Ventola C. The Antibiotic Resistance Crisis Part 1: Causes and Threats. Vol. 40. No. 4 Abril 2015. P&T. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/ | spa |
dc.relation.references | Mikkelsen KH, Allin KH, Knop FK. Effect of antibiotics on gut microbiota, imples metabolism and body weight regulation: A review of the andomized. Diabetes, Obesity and Metabolism. 2016;18:444–53. https://doi.org/10.1111/dom.12637. | spa |
dc.relation.references | Lewis S, Brazier J, Beard D, Nazem N, Proctor D. Effects of metronidazole and oligofructose on faecal concentrations of sulphate-reducing bacteria and their activity in human volunteers. Scandinavian Journal of Gastroenterology. 2005;40:1296–303. https://doi.org/10.1080/00365520510023585. | spa |
dc.relation.references | Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016;22:501–18. https://doi.org/10.3748/wjg.v22.i2.501. | spa |
dc.relation.references | Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol 2015;11:182–90. https://doi.org/10.1038/nrendo.2014.210. | spa |
dc.relation.references | Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends Microbiol 2019;27:131–47. https://doi.org/10.1016/j.tim.2018.09.008. | spa |
dc.relation.references | Reinhardt C, Reigstad CS, Bäckhed F. Intestinal Microbiota During Infancy and Its Implications for Obesity. Invited Review. J Pediatr Gastroenterol Nutr. 2009. Mar;48(3):249-56. Doi: https://doi.org/10.1097/mpg.0b013e318183187c | spa |
dc.relation.references | Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body imples in newborns. Proc Natl Acad Sci U S A 2010;107:11971–5. https://doi.org/10.1073/pnas.1002601107. | spa |
dc.relation.references | Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015;17:690–703. https://doi.org/10.1016/j.chom.2015.04.004. | spa |
dc.relation.references | Li N, Liang S, Chen Q, Zhao L, Li B, Huo G. Distinct gut microbiota and metabolite profiles induced by delivery mode in healthy Chinese infants. J Proteomics 2021;232. https://doi.org/10.1016/j.jprot.2020.104071. | spa |
dc.relation.references | Mohammadkhah AI, Simpson EB, Patterson SG, Ferguson JF. Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. Children 2018;5. https://doi.org/10.3390/children5120160. | spa |
dc.relation.references | Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 2012;9:565–76. https://doi.org/10.1038/nrgastro.2012.144. | spa |
dc.relation.references | Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511–21. https://doi.org/10.1542/peds.2005-2824. | spa |
dc.relation.references | Hales CM, Kit BK, Gu Q, Ogden CL. Trends in prescription medication use among children and adolescents-United States, 1999-2014. JAMA – Journal of the American Medical Association 2018;319:2009–20. https://doi.org/10.1001/jama.2018.5690. | spa |
dc.relation.references | Doan T, Arzika AM, Ray KJ, Cotter SY, Kim J, Maliki R, et al. Gut microbial diversity in antibiotic-I children after systemic antibiotic exposure: A randomized controlled trial. Clinical Infectious Diseases 2017;64:1147–53. https://doi.org/10.1093/cid/cix141. | spa |
dc.relation.references | Bejaoui S, Poulsen M. The implesa early life antibiotic use on atopic and metabolic disorders. Evol Med Public Health 2020;2020:279–89. https://doi.org/10.1093/EMPH/EOAA039. | spa |
dc.relation.references | Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 2015;135:617–26. https://doi.org/10.1542/peds.2014-3407. | spa |
dc.relation.references | Simonyté Sjödin K, Hammarström ML, Rydén P, Sjödin A, Hernell O, Engstrand L, et al. Temporal and long-term gut microbiota variation in allergic disease: A prospective study from infancy to school age. Allergy: European Journal of Allergy and Clinical Immunology 2019;74:176–85. https://doi.org/10.1111/all.13485. | spa |
dc.relation.references | Kilkkinen A, Virtanen SM, Klaukka T, Kenward MG, Salkinoja-Salonen M, Gissler M, et al. Use of antimicrobials and risk of type 1 diabetes in a population-based mother-child cohort. Diabetologia 2006;49:66–70. https://doi.org/10.1007/s00125-005-0078-2. | spa |
dc.relation.references | Laue HE, Korrick SA, Baker ER, Karagas MR, Madan JC. Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years. Sci Rep 2020;10. https://doi.org/10.1038/s41598-020-72386-9. | spa |
dc.relation.references | Bellaguarda E, Chang EB. IBD and the Gut Microbiota—from Bench to Personalized Medicine. Curr Gastroenterol Rep 2015;17. https://doi.org/10.1007/s11894-015-0439-z. | spa |
dc.relation.references | Schlender J, Behrens F, McParland V, Müller D, Wilck N, Bartolomaeus H, et al. Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Mol Cell Pediatr 2021;8. https://doi.org/10.1186/s40348-021-00126-8. | spa |
dc.relation.references | Bai L, Zhou P, Li D, Ju X. Changes in the gastrointestinal microbiota of children with acute lymphoblastic leukaemia and its association with antibiotics in the short term. J Med Microbiol 2017;66:1297–307. https://doi.org/10.1099/jmm.0.000568. | spa |
dc.relation.references | Elena Pérez-Cobas A, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach n.d. https://doi.org/10.1136/gutjnl-2012. | spa |
dc.relation.references | de la Cuesta-Zuluaga J, Kelley ST, Chen Y, Escobar JS, Mueller NT, Ley RE, et al. Age- and Sex-Dependent Patterns of Gut Microbial Diversity in Human Adults. Msystems 2019;4. https://doi.org/10.1128/msystems.00261-19. | spa |
dc.relation.references | Magne F, O’Ryan ML, Vidal R, Farfan M. The human gut microbiome of Latin America populations: A landscape to be discovered. Curr Opin Infect Dis 2016;29:528–37. https://doi.org/10.1097/QCO.0000000000000300. | spa |
dc.relation.references | Castañeda S, Muñoz M, Villamizar X, Hernández PC, Vásquez LR, Tito RY, et al. Microbiota characterization in Blastocystis-colonized and Blastocystis-free school-age children from Colombia. Parasit Vectors 2020;13. https://doi.org/10.1186/s13071-020-04392-9. | spa |
dc.relation.references | Gomez A, et al. Documento de análisis de situación de salud con el modelo de los determinantes sociales de salud para el Distrito Capital – 2022. Secretaria de Salud de Bogotá. 2023. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/asis-distrital-bogota-2022.pdf | spa |
dc.relation.references | Ovalle M, Duarte C, Prasca T. Vigilancia por WHONET de Resistencia Antimicrobiana en el ámbito hospitalario. Colombia, 2022. Instituto Nacional de Salud. Ministerio de Protección Social. 2023. Tomado de: https://www.ins.gov.co/BibliotecaDigital/vigilancia-por-whonet-de-resistencia-antimicrobiana-en-el-ambito-hospitalario-colombia-2022.pdf#search=whonet | spa |
dc.relation.references | WHO. Implementation manual to prevent and control the spread of carbapenem-resistant organisms at the national and health care facility level. 2019. https://www.who.int/publications/i/item/WHO-UHC-SDS-2019-6 | spa |
dc.relation.references | Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science (1979) 2012;336:1255–62. https://doi.org/10.1126/science.1224203. | spa |
dc.relation.references | Hernandez Sampieri Robeandomizedlogia de la investigación. Ed 6. McGraw Hill. Education. 2014. https://www.esup.edu.pe/wp-content/uploads/2020/12/2.%20Hernandez,%20Fernandez%20y%20Baptista-Metodolog%C3%Ada%20Investigacion%20Cientifica%206ta%20ed.pdf | spa |
dc.relation.references | Aggarwal R, Ranganathan P. Study designs: Part 4 – Interventional studies. Perspect Clin Res 2019;10:137. https://doi.org/10.4103/picr.picr_91_19. | spa |
dc.relation.references | Ministerio de salud. Resolución 8430 de 1993. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF | spa |
dc.relation.references | Ferdous, T., Jiang, L., Dinu, I. et al. The rise to power of the microbiome: power and sample size calculation for microbiome studies. Mucosal Immunol 15, 1060–1070 (2022). https://doi.org/10.1038/s41385-022-00548-1 | spa |
dc.relation.references | QIAGEN. QIAamp ® PowerFecal ® Pro DNA Kit Handbook. February 2020. https://www.qiagen.com/us/resources/resourcedetail?id=8896817a-253f-4952-b845-0aab796813ce&lang=en | spa |
dc.relation.references | IMPLEN. NanoPhotometer ® N120/NP80/N60/N50/C40 User Manual. Version 4.6.2. https://www.implen.de/wp-content/uploads/docs/Implen-NanoPhotometer-User-Manual-N120-NP80-N60-N50-C40.pdf | spa |
dc.relation.references | Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, et al. Advantages of imple sequencing by long-read sequencer using SMRT technology in medical imp. Hum Cell 2017;30:149–61. https://doi.org/10.1007/s13577-017-0168-8. | spa |
dc.relation.references | Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial imple assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–9. https://doi.org/10.1038/nmeth.2474. | spa |
dc.relation.references | QIAGEN. MinElute ® Handbook MinElute PCR Purification Kit. January 2020. https://www.qiagen.com/cn/resources/download.aspx?id=8f6b09b2-6dcd-4b55-bb4a-255ede40ca3b&lang=en | spa |
dc.relation.references | ThermoFisher Scientific. Qubit fluorometers and assays, Accurate, specific, and sensitive quantification of DNA, RNA, and protein imples. Invitrogen. 2021. https://assets.thermofisher.com/TFS-Assets/BID/brochures/qubit-fluorometers-assays-brochure.pdf | spa |
dc.relation.references | PacBio. Procedure & checklist – Preparing multiplexed amplicon libraries using SMRTbell prep kit 3.0.2022. https://www.pacb.com/wp-content/uploads/Procedure-checklist-Preparing-multiplexed-amplicon-libraries-using-SMRTbell-prep-kit-3.0.pdf | spa |
dc.relation.references | PacBio. Technical overview: Multiplexed amplicon library preparation using SMRTbell prep kit 3.0. Sequell II and Iie systems ICS 11.0 / SMRT Link V11.0. PN 102-395-900. Version 02 (July 2022). https://www.pacb.com/wp-content/uploads/Multiplexed-amplicon-library-preparation-using-SMRTbell-prep-kit-3.0-training.pdf | spa |
dc.relation.references | PacBio. SMRTLink user guide v12.0. Revio TM, Sequel II and Sequel Iie systems. P/N 102-877-300 Version 03 (April 2023). https://www.pacb.com/wp-content/uploads/SMRT_Link_User_Guide_v12.0.pdf | spa |
dc.relation.references | SORELINE BIOME. SbanalyzerTM Windows 10 Software Installation and Quick Start Guide. N.d. | spa |
dc.relation.references | Graf J, Ledala N, Caimano MJ, Jackson E, Gratalo D, Fasulo D, et al. High-resolution differentiation of enteric bacteria in premature infant fecal microbiomes using a novel rRNA amplicon. Mbio 2021;12:1–18. https://doi.org/10.1128/mBio.03656-20. | spa |
dc.relation.references | SHORELINE BIOME. Users Guide for Advanced ASV Analysis for Shoreline Biome PacBio products. N.d. https://directus.biocat.com/uploads/biocat/originals/shoreline-wave-for-pacbio-technical-manual-v01.pdf | spa |
dc.relation.references | Cutadapt Documentation. Cutadapt User Guide. https://cutadapt.readthedocs.io/en/stable/guide.html. | spa |
dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Manual V0.32. http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManual_V0.32.pdf. | spa |
dc.relation.references | Babraham Bioinformatics. FastQC: A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. | spa |
dc.relation.references | Nextflow. Nextflow Documentation. https://www.nextflow.io/docs/latest/index.html | spa |
dc.relation.references | Gordon JI, Knight R. Capítulo 471: El microbioma humano. McGraw Hill. 2022. https://accessmedicina.mhmedical.com/content.aspx?bookid=3118§ionid=267808015 | spa |
dc.relation.references | Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, McGill SK, Dougherty MK. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019 Oct 10;47(18):e103. https://doi.org/10.1093/nar/gkz569 | spa |
dc.relation.references | Xia Y, Sun J. Hypothesis Testing and Statistical Analysis of Microbiome. Genes Dis. 2017 Sep;4(3):138-148. https://doi.org/10.1016/j.gendis.2017.06.001 | spa |
dc.relation.references | McKnight P, Najab J. Mann-Whitney U Test. Wiley online library. The Corsini Encyclopedia of Psychology.2009. doi: https://doi.org/10.1002/9780470479216.corpsy0524 | spa |
dc.relation.references | van Loon, W., Goeman, J. J., van Iterson, M., & Fiocco, M. (2017). The Power of the Benjamini-Hochberg Procedure. https://math.leidenuniv.nl/scripties/MastervanLoon.pdf | spa |
dc.relation.references | White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PloS Comput Biol. 2009 Apr;5(4):e1000352. Doi: https://doi.org/10.1371/journal.pcbi.1000352 | spa |
dc.relation.references | Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014 Nov 1;30(21):3123-4. Doi: https://doi.org/10.1093/bioinformatics/btu494 | spa |
dc.relation.references | Houtman, T.A., Eckermann, H.A., Smidt, H. et al. Gut microbiota and BMI throughout childhood: the role of firmicuandomizedesdetes, and short-chain fatty acid producers. Sci Rep 12, 3140 (2022). https://doi.org/10.1038/s41598-022-07176-6 | spa |
dc.relation.references | Shetty, S. Fuentes, S. dysbiosisR. Dysbiosis Measures Dysbiosis score based on median community level variation. Danone Nutricia Research. https://microsud.github.io/dysbiosisR/articles/Introduction.html | spa |
dc.relation.references | Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019). https://doi.org/10.1038/s41586-019-1237-9 | spa |
dc.relation.references | Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, Mills DA. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010 May 12;58(9):5334-40. https://doi.org/10.1021/jf9044205 | spa |
dc.relation.references | Sjögren YM, Tomicic S, Lundberg A, Böttcher MF, Björkstén B, Sverremark-Ekström E, Jenmalm MC. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy. 2009 Dec;39(12):1842-51. https://doi.org/10.1111/j.1365-2222.2009.03326.x | spa |
dc.relation.references | Chichlowski M, De Lartigue G, German JB, Raybould HE, Mills DA. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr. 2012 Sep;55(3):321-7 https://doi.org/10.1097/mpg.0b013e31824fb899 | spa |
dc.relation.references | Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, Kodama H, Yamamoto K, Yamada T, Matsumoto S, Kurokawa K. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016 Jun 24;7:11939. https://doi.org/10.1038/ncomms11939 | spa |
dc.relation.references | Gehrig JL, Portik DM, Driscoll MD, Jackson E, Chakraborty S, Gratalo D, Ashby M, Valladares R. Finding the right fit: evaluation of short-read and long-read sequencing approaches to maximize the utility of clinical microbiome data. Microb Genom. 2022 Mar;8(3):000794. https://doi.org/10.1099/mgen.0.000794 | spa |
dc.relation.references | Welham Z, Li J, Engel AF, Molloy MP. Mucosal Microbiome in Patients with Early Bowel Polyps: Inferences from Short-Read and Long-Read 16S rRNA Sequencing. Cancers (Basel). 2023 Oct 19;15(20):5045. https://doi.org/10.3390/cancers15205045 | spa |
dc.relation.references | Prodan A, Tremaroli V, Brolin H, Zwinderman AH, Nieuwdorp M, Levin E. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PloS One. 2020 Jan 16;15(1):e0227434. https://doi.org/10.1371%2Fjournal.pone.0227434 | spa |
dc.relation.references | Deering, K, Devine, A, O’Sullivan, T, Lo, J, Boyce, M, Christophersen, C. Characterizing the Composition of the Pediatric Gut Microbiome: A Systematic Review. Nutrients 2020, 12, 16. https://doi.org/10.3390/nu12010016 | spa |
dc.relation.references | Karvonen, A.M., Sordillo, J.E., Gold, D.R. et al. Gut microbiota and overweight in 3-year old children. Int J Obes 43, 713–723 (2019). https://doi.org/10.1038/s41366-018-0290-z | spa |
dc.relation.references | Abomoelak B, Pemberton V, Deb C, Campion S, Vinson M, Mauck J, Manipadam J, Sudakaran S, Patel S, Saps M, Enshasy HAE, Varzakas T, Mehta DI. The Gut Microbiome Alterations in Pediatric Patients with Functional Abdominal Pain Disorders. Microorganisms. 2021 Nov 15;9(11):2354. Doi: https://doi.org/10.3390%2Fmicroorganisms9112354 | spa |
dc.relation.references | Shani G, Hoeflinger JL, Heiss BE, Masarweh CF, Larke JA, Jensen NM, Wickramasinghe S, Davis JC, Goonatilleke E, El-Hawiet A, Nguyen L, Klassen JS, Slupsky CM, Lebrilla CB, Mills DA. Fucosylated Human Milk Oligosaccharide Foraging within the Species Bifidobacterium pseudocatenulatum Is Driven by Glycosyl Hydrolase Content and Specificity. Appl Environ Microbiol. 2022 Jan 25;88(2):e0170721. https://doi.org/10.1128/aem.01707-21 | spa |
dc.relation.references | Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, Van den Abbeele P. HMOs Exert Marked Bifidogenic Effects on Chi’dren’s Gut Microbiota Ex Vivo, Due to Age-Related Bifidobacterium Species Composition. Nutrients. 2023 Mar 30;15(7):1701. https://doi.org/10.3390/nu15071701 | spa |
dc.relation.references | Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002 Jan;68(1):219-26. https://doi.org/10.1128/aem.68.1.219-226.2002 | spa |
dc.relation.references | O’Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol. 2016 Jun 15;7:925. https://doi.org/10.3389/fmicb.2016.00925 | spa |
dc.relation.references | Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis’G, O’Toole PW, van Sinderen D, Marchesi JR, Ventura M. Diversity of bifidobacteria within the infant gut microbiota. PloS One. 2012;7(5):e36957. https://doi.org/10.1371/journal.pone.0036957 | spa |
dc.relation.references | Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergology International. Volume 66, Issue 4. 2017. Pages 515-522. ISSN 1323-8930. https://doi.org/10.1016/j.alit.2017.07.010. | spa |
dc.relation.references | Wei S, Mortensen MS, Stokholm J, Brejnrod AD, Thorsen J, Rasmussen MA, Trivedi U, Bisgaard H, Sørensen SJ. Short- and long-term impacts of azithromycin treatment on the gut microbiota in children: A double-blind, randomized, placebo-controlled trial. EbioMedicine. 2018 Dec;38:265-272. https://doi.org/10.1016%2Fj.ebiom.2018.11.035 | spa |
dc.relation.references | Kongnum K, Taweerodjanakarn S, Hongpattarakere T. Longitudinal characterization of bifidobacterial abundance and diversity profile developed in Thai healthy infants. Arch Microbiol. 2020 Aug;202(6):1425-1438. https://doi.org/10.1007/s00203-020-01856-5 | spa |
dc.relation.references | Yang B, Yan S, Chen Y, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Diversity of Gut Microbiota and Bifidobacterial Community of Chinese Subjects of Different Ages and from Different Regions. Microorganisms. 2020 Jul 24;8(8):1108. https://doi.org/10.3390%2Fmicroorganisms8081108 | spa |
dc.relation.references | Vogel, K., Arra, A., Lingel, H. et al. Bifidobacteria shape antimicrobial T-helper cell responses during infancy and adulthood. Nat Commun 14, 5943 (2023). https://doi.org/10.1038/s41467-023-41630-x | spa |
dc.relation.references | Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, Murphy B, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012 Nov;56(11):5811-20. Doi: https://doi.org/10.1128/aac.00789-12 | spa |
dc.relation.references | Hussey S, Wall R, Gruffman’E, O’Sullivan L, Ryan CA, Murphy B, Fitzgerald G, Stanton C, Ross RP. Parenteral antibiotics reduce bifidobacteria colonization and diversity in neonates. Int J Microbiol. 2011;2011:130574. https://doi.org/10.1155/2011/130574 | spa |
dc.relation.references | Mangin I, Suau A, Gotteland M, Brunser O, Pochart P. Amoxicillin treatment modifies the composition of Bifidobacterium species in infant intestinal microbiota. Anaerobe. 2010 Aug;16(4):433-8. https://doi.org/10.1016/j.anaerobe.2010.06.005 | spa |
dc.relation.references | Gore C, Munro K, Lay C, Bibiloni R, Morris J, Woodcock A, Custovic A, Tannock GW. Bifidobacterium pseudocatenulatum is associated with atopic eczema: a nested case-control study investigating the fecal microbiota of infants. J Allergy Clin Immunol. 2008 Jan;121(1):135-40. https://doi.org/10.1016/j.jaci.2007.07.061 | spa |
dc.relation.references | Wu G, Zhang C, Wu H, Wang R, Shen J, Wang L, Zhao Y, Pang X, Zhang Z, Zhao L, Zhang M. Genomic Microdiversity of Bifidobacterium pseudocatenulatum Underlying Differential Strain-Level Responses to Dietary Carbohydrate Intervention. mBio. Vol 8. 2017. https://doi.org/10.1128/mbio.02348-16 | spa |
dc.relation.references | Sanchis-Chordà J, Del Pulgar EMG, Carrasco-Luna J, Benítez-Páez A, Sanz Y, Codoñer-Franch P. Bifidobacterium pseudocatenulatum CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children. Eur J Nutr. 2019 Oct;58(7):2789-2800. https://doi.org/10.1007/s00394-018-1828-5 | spa |
dc.relation.references | de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T, Orivuori L, Hakala S, Welling GW, Harmsen HJ, Vaarala O. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013 Apr;62(4):1238-44. https://doi.org/10.2337/db12-0526 | spa |
dc.relation.references | Russell DA, Ross RP, Fitzgerald GF, Stanton C. Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol. 2011 Sep 1;149(1):88-105. https://doi.org/10.1016/j.ijfoodmicro.2011.06.003 | spa |
dc.relation.references | Mattarelli P, Biavati B. Chapter 2 - Species in the Genus Bifidobacterium. Academic Press. 2018. Pages 9-48. ISBN 9780128050606. https://doi.org/10.1016/B978-0-12-805060-6.00002-8. | spa |
dc.relation.references | Sharma V, Mobeen F, Prakash T. Exploration of Survival Traits, Probiotic Determinants, Host Interactions, and Functional Evolution of Bifidobacterial Genomes Using Comparative Genomics. Genes (Basel). 2018 Oct 1;9(10):477. https://doi.org/10.3390/genes9100477 | spa |
dc.relation.references | Moya-Gonzálvez EM, Rubio-Del-Campo A, Rodríguez-Díaz J, Yebra MJ. Infant-gut associated Bifidobacterium dentium strains utilize the galactose moiety and release lacto-N-triose from the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose. Sci Rep. 2021 Dec 2;11(1):23328. https://doi.org/10.1038/s41598-021-02741-x | spa |
dc.relation.references | Saturio S, Nogacka AM, Suárez M, Fernández N, Mantecón L, Mancabelli L, Milani C, Ventura M, de Los Reyes-Gavilán CG, Solís G, Arboleya S, Gueimonde M. Early-Life Development of the Bifidobacterial Community in the Infant Gut. Int J Mol Sci. 2021 Mar 25;22(7):3382. https://doi.org/10.3390%2Fijms22073382 | spa |
dc.relation.references | Bae EU, Myung JH, Mi-Jeong S. Purification of Rotavirus Infection-Inhibitory Protein from Bifidobacterium breve K-110. J Microbiol. Biotechnol. 2002, 12(4); 553-556. https://www.jmb.or.kr/journal/download_pdf.php?spage=553&volume=12&number=4 | spa |
dc.relation.references | Indiani CMDSP, Rizzardi KF, Castelo PM, Ferraz LFC, Darrieux M, Parisotto TM. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child Obes. 2018 Nov/Dec;14(8):501-509. https://doi.org/10.1089/chi.2018.0040 | spa |
dc.relation.references | Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020 May 19;12(5):1474. https://doi.org/10.3390%2Fnu12051474 | spa |
dc.relation.references | De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6. https://doi.org/10.1073/pnas.1005963107 | spa |
dc.relation.references | Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract. 2012 Apr;27(2):201-14. https://doi.org/10.1177/0884533611436116 | spa |
dc.relation.references | Rahmani M, Saffari F, Aboubakri O,Mansouri S. Enterococci from breast-fed infants exert higher antibacterial effects than those from adults: A comparative study. Human Microbiome | spa |
dc.relation.references | Lister DM, Tan K, Carse E, Stuart RL. Clearance of infant vancomycin-resistant Enterococcus faecium carriage after a neonatal inpatient outbreak. Am J Infect Control. 2016 Oct 1;44(10):1172-1173. https://doi.org/10.1016/j.ajic.2016.03.032 | spa |
dc.relation.references | Fang H, Fröding I, Ullberg M, Giske CG. Genomic analysis revealed distinct transmission clusters of vancomycin-resistant Enterococcus faecium ST80 in Stockholm, Sweden. J Hosp Infect. 2021 Jan;107:12-15 https://doi.org/10.1016/j.jhin.2020.10.019 | spa |
dc.relation.references | Nitin Dhowlaghar & Mei-Jun Zhu (2022) Control of Salmonella in low-moisture foods: Enterococcus faecium NRRL B-2354 as a surrogate for thermal and non-thermal validation, Critical Reviews in Food Science and Nutrition, 62:21, 5886-5902. https://doi.org/10.1080/10408398.2021.1895055 | spa |
dc.relation.references | Forrester JD, Spain DA. Clostridium ramosum bacteremia: case report and literature review. Surg Infect (Larchmt). 2014 Jun;15(3):343-6. https://doi.org/10.1089/sur.2012.240 | spa |
dc.relation.references | Milosavljevic MN, Kostic M, Milovanovic J, Zaric RZ, Stojadinovic M. Antimicrobial treatment of Erysipelatoclostridium ramosum invasive infections: a systematic review. Rev Inst Med Trop Sao Paulo. 2021 Apr 12;63:e30. https://doi.org/10.1590/s1678-9946202163030 | spa |
dc.relation.references | Gallardo-Becerra L, Cornejo-Granados F, García-López R, Valdez-Lara A, Bikel S, Canizales-Quinteros S, López-Contreras BE, Mendoza-Vargas A, Nielsen H, Ochoa-Leyva A. Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children. Microb Cell Fact. 2020 Mar 6;19(1):61. https://doi.org/10.1186/s12934-020-01319-y | spa |
dc.relation.references | Huertas-Díaz L, Kyhnau R, Ingribelli E, Neuzil-Bunesova V, Li Q, CK-CARE Study Group. Breastfeeding and the major fermentation metabolite lactate determine occurrence of Peptostreptococcaceae in infant feces. Gut Microbes. Vol 15.1.2023. https://doi.org/10.1080/19490976.2023.2241209 | spa |
dc.relation.references | Yanlong Cui, Leshan Zhang, Xin Wang, Yanglei Yi, Yuanyuan Shan, Bianfang Liu, Yuan Zhou, Xin Lü, Roles of intestinal Parabacteroides in human health and diseases, FEMS Microbiology Letters, Volume 369, Issue 1, 2022, fnac072, https://doi.org/10.1093/femsle/fnac072 | spa |
dc.relation.references | Nakano V, Nascimento e Silva Ad, Merino VR, Wexler HM, Avila-Campos MJ. Antimicrobial resistance and prevalence of resistance genes in intestinal Bacteroidales strains. Clinics (Sao Paulo). 2011;66(4):543-7. https://doi.org/10.1590%2FS1807-59322011000400004 | spa |
dc.relation.references | Nilsen M, Rehbinder E, Lødrup C, Haugen G, et al. A Globally Distributed Bacteroides caccae Strain Is the Most Prevalent Mother-Child Shared Bacteroidaceae Strain in a Large Scandinavian Cohort. 2023. American Society for Microbiology . Vol 89. Issue 7. Doi: https://doi.org/10.1128/aem.00789-23 | spa |
dc.relation.references | Richardson A, Ardissone A, Dias R, Ville S, Leonard M, Kemppainen K, Drew J, Schatz D, Atkinson M, Kolaczkowski B, Ilonen J, Knip M, Toppari J, Nurminen N, Hyöty H, Riitta V. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Frontiers in Microbiology. Vol 5. 2014. https://www.frontiersin.org/articles/10.3389/fmicb.2014.00678 | spa |
dc.relation.references | Kim, JS., Kim, H.K., Lee, J. et al. Inhibition of CD82 improves colitis by increasing NLRP3 deubiquitination by BRCC3. Cell Mol Immunol 20, 189–200 (2023). https://doi.org/10.1038/s41423-022-00971-1 | spa |
dc.relation.references | Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 2021, 9, 697. https://doi.org/10.3390/microorganisms9040697 | spa |
dc.relation.references | Lu CY, Ni YH. Gut microbiota and the development of pediatric diseases. J Gastroenterol. 2015 Jul;50(7):720-6. https://doi.org/10.1007/s00535-015-1082-z | spa |
dc.relation.references | Parker EPK, Praharaj I, John J, Kaliappan SP, Kampmann B, Kang G, Grassly NC. Changes in the intestinal microbiota following the administration of azithromycin andomizedmised placebo-controlled trial among infants in south India. Sci Rep. 2017 Aug 23;7(1):9168. https://doi.org/10.1038/s41598-017-06862-0 | spa |
dc.relation.references | Yassour M, Vatanen T, Siljander H, Hämäläinen AM, Härkönen T, Ryhänen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers D, Lander ES, Knip M; DIABIMMUNE Study Group; Xavier RJ. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med. 2016 Jun 15;8(343):343ra81. https://doi.org/10.1126/scitranslmed.aad0917 | spa |
dc.relation.references | Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8 (343):343ra82. https://doi.org/10.1126/scitranslmed.aad7121 | spa |
dc.relation.references | Reyman, M., van Houten, M.A., van Baarle, D. et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun 10, 4997 (2019). https://doi.org/10.1038/s41467-019-13014-7 | spa |
dc.relation.references | Cioffi CC, Tavalire HF, Neiderhiser JM, Bohannan B, Leve LD. History of breastfeeding but not mode of delivery shapes the gut microbiome in childhood. PLoS One. 2020 Jul 2;15(7):e0235223. https://doi.org/10.1371%2Fjournal.pone.0235223 | spa |
dc.relation.references | Liu Y, Qin S, Song Y, Feng Y, Lv N, Xue Y, Liu F, Wang S, Zhu B, Ma J, Yang H. The Perturbation of Infant Gut Microbiota Caused by Cesarean Delivery Is Partially Restored by Exclusive Breastfeeding. Front Microbiol. 2019 Mar 26;10:598. doi: 10.3389/fmicb.2019.00598. https://doi.org/10.3389%2Ffmicb.2019.00598 | spa |
dc.relation.references | Wang Z, Neupane A, Vo R, White J, Wang X, Marzano SL. Comparing Gut Microbiome in Mothers' Own Breast Milk- and Formula-Fed Moderate-Late Preterm Infants. Front Microbiol. 2020 May 26;11:891. https://doi.org/10.3389%2Ffmicb.2020.00891 | spa |
dc.relation.references | Oldenburg CE, Sié A, Coulibaly B, Ouermi L, Dah C, Tapsoba C, Bärnighausen T, Ray KJ, Zhong L, Cummings S, Lebas E, Lietman TM, Keenan JD, Doan T. Effect of Commonly Used Pediatric Antibiotics on Gut Microbial Diversity in Preschool Children in Burkina Faso: A Randomized Clinical Trial. Open Forum Infect Dis. 2018 Nov 2;5(11):ofy289. https://doi.org/10.1093/ofid/ofy289 | spa |
dc.relation.references | Enomoto T, Sowa M, Nishimori K. Shimazu S, Yoshida A, Yamada K. Effects of Bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergology International VL 63. IS 4. SP -575. EP-585. PY -2014. doi: https://doi.org/10.2332/allergolint.13-OA-0683 | spa |
dc.relation.references | Miraglia Del Giudice, M., Indolfi, C., Capasso. Bifidobacterium mixture (B longum BB536, B infantis M-63, B breve M-16V) treatment in children with seasonal allergic rhinitis and intermittent asthma. Ital J Pediatr 43, 25 (2017). https://doi.org/10.1186/s13052-017-0340-5 | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.subject | Microbioma intestinal | |
dc.subject | Lactante | |
dc.subject | Antibiótico | |
dc.subject | Pediatría | |
dc.subject | Diversidad bacteriana | |
dc.subject.keywords | Gut microbiome | |
dc.subject.keywords | Infant | |
dc.subject.keywords | Antibiotic | |
dc.subject.keywords | Pediatrics | |
dc.subject.keywords | Bacterial diversity | |
dc.subject.nlm | W 50 | |
dc.title | Cambio en el microbioma bacteriano intestinal de niños menores de 3 años después de un tratamiento con antibióticos | |
dc.title.translated | Change in the bacterial gut microbiome of children under 3 years of age after antibiotics treatment | |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 3.41 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 4 de 4
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 229.75 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de Grado.pdf
- Tamaño:
- 144.21 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Acta de grado.pdf
- Tamaño:
- 275.62 KB
- Formato:
- Adobe Portable Document Format
- Descripción: