Desarrollo de un modelo para la medición de la implicación lógica en problemas de matemática elemental

dc.contributor.advisorGonzález Galeano, Andrei Alain
dc.contributor.authorSánchez Tovar, Edwin Alejandro
dc.date.accessioned2024-12-05T14:25:31Z
dc.date.available2024-12-05T14:25:31Z
dc.date.issued2024-11
dc.description.abstractActualmente, existen modelos de lenguaje integrados en sistemas que pueden superar las capacidades humanas en una variedad de pruebas. Sin embargo, ¿cómo podemos medir la coherencia de estos modelos? En este trabajo, proponemos un enfoque que utiliza la arquitectura de transformers para abordar el problema de la implicación lógica (IL), es decir, determinar qué oraciones se derivan de otras dentro de un texto. Esto se logra mediante el uso de su mecanismo de atención y predicción del siguiente token. Se encontró que, con un modelo muy simple basado en la arquitectura del transformer, es posible la identificación de la IL en problemas de conteo y probabilidad con una precisión del 60 % en una muestra de 95 ejercicios matemáticos de diversos temas. Este método podría contribuir a mejorar la precisión con la que se evalúa la coherencia de los modelos de lenguaje, proporcionando los datos necesarios para realizar un análisis detallado de sus errores y examinar la validez lógica de sus respuestas correctas.
dc.description.abstractenglishToday, there are language models built into systems that can outperform human capabilities in a variety of tests. However, how can we measure the coherence of these models? In this work, we propose an approach that uses the transformer architecture to address the problem of logical implication (LI), that is, determining which sentences are derived from others within a text. This is achieved by using its attention mechanism and predicting the next token. It was found that, with a very simple model based on the transformer architecture, the identification of IL in counting and probability problems is possible with an accuracy of 60% in a sample of 95 mathematical exercises on various topics. This method could help improve the precision with which the consistency of language models is evaluated, providing the data necessary to perform a detailed analysis of their errors and examine the logical validity of their correct answers.
dc.description.degreelevelPregradospa
dc.description.degreenameMatemáticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13595
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMatemáticasspa
dc.relation.referencesBahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate [arXiv:1409.0473]. Proceedings of the International Conference on Learning Representations (ICLR). https://doi.org/10.48550/arXiv.1409.047
dc.relation.referencesBengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic Language Model. Journal of Machine Learning Research, 3,1137-1155.
dc.relation.referencesBojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 5, 135-146. https://doi.org/10.1162/tacl a 00051
dc.relation.referencesBos, J., Markert, K., & Van Noord, G. (2014). Logical Natural Language Inference. Journal of Logic, Language and Information, 23 (4), 431-445
dc.relation.referencesBottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. En Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT 2010) (pp. 177-186).
dc.relation.referencesChang, R., & Jungnickel, D. (2008). Matematicas para Ciencias de la Computacion. McGraw-Hill.
dc.relation.referencesChawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).SMOTE: Synthetic minority over-sampling technique. Journal of artificial intelligence research, 321-357.
dc.relation.referencesChen, S. F., & Goodman, J. (1999). An Empirical Study of Smoothing Techniques for Language Modeling. Computer Speech & Language, 13 (4),359-394.
dc.relation.referencesde Moura, L., & Ullrich, S. (2023). The Lean Theorem Prover
dc.relation.referencesDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
dc.relation.referencesDevlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805. https://arxiv.org/abs/1810.04805
dc.relation.referencesDuchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12, 2121-2159
dc.relation.referencesElkan, C. (2001). The foundations of cost-sensitive learning. Proceedings of the 17th international joint conference on Artificial intelligence, 2,973-978.
dc.relation.referencesEuclides. (1956). The Thirteen Books of Euclid’s Elements (T. L. Heath, Ed.;2nd) [Originally published in 1908]. Dover Publications.
dc.relation.referencesGoldberg, Y. (2016). A Primer on Neural Network Models for Natural Language Processing. Journal of Artificial Intelligence Research, 57, 345-420.https://doi.org/10.1613/jair.4992
dc.relation.referencesGauss, C. F. (1809). Theoria Motus Corporum Coelestium in Sectionibus Conicis Solum. Publisher Name
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2013). Dropout Training as Adaptive Regularization. MIT Press.
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
dc.relation.referencesHe, H., & Bai, Y. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1322-1328.
dc.relation.referencesHe, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21 (9), 1263-1284
dc.relation.referencesHendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & Steinhardt, J. (2021). Measuring Mathematical Problem Solving With the MATH Dataset. arXiv preprint arXiv:2103.03874.
dc.relation.referencesHernandez Sampieri, R., Fernandez Collado, C., & Baptista Lucio, P. (2018). Metodologıa de la investigacion (6th). McGraw-Hill Education
dc.relation.referencesHinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Proceedings of the 27th International Conference on Machine Learning (ICML 2010), 192-200
dc.relation.referencesHochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9 (8), 1735-1780.
dc.relation.referencesIoffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning, 448-456
dc.relation.referencesJina Development Team. (2020). Jina: An Open-Source Neural Search Framework.
dc.relation.referencesJurafsky, D., & Martin, J. H. (2008). Speech and Language Processing (2nd). Pearson Prentice Hall
dc.relation.referencesKarpathy, A. (2023). NanoGPT
dc.relation.referencesKingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations (ICLR)
dc.relation.referencesKudo, T., & Richardson, J. (2018). SentencePiece: A Simple and Language Independent Subword Tokenizer and Detokenizer for Neural Text Processing. arXiv preprint arXiv:1808.06226. https://arxiv.org/abs/ 1808.06226
dc.relation.referencesKukar, M., & Kononenko, I. (1998). Cost-sensitive learning with neural networks. European conference on machine learning, 445-452.
dc.relation.referencesManning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. The MIT Press.
dc.relation.referencesMcCulloch, W., & Pitts, W. (1943). A Logical Calculus of the Ideas Immanent in Nervous Activity.
dc.relation.referencesMikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781. https://arxiv.org/abs/1301.3781
dc.relation.referencesMitchell, T. M. (1997). Machine Learning. McGraw-Hill.
dc.relation.referencesPennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),1532-1543. https://doi.org/10.3115/v1/D14-1162
dc.relation.referencesPowers, D. M. W. (2011). Model Evaluation: From Precision, Recall and FMeasure to ROC, Informedness, Markedness & Correlation. Journal of Machine Learning Technologies, 2 (1). https://doi.org/10.1.1.189.2560
dc.relation.referencesPrice, C. (2023). g4dn.xlarge - AWS EC2 Instance Prices [n.d.]. https : / /cloudprice.net/aws/ec2/instances/g4dn.xlarge
dc.relation.referencesRawte, V., Islam Tonmoy, S. M. T., Chadha, A., & Sheth, A. (2024). FACtual enTailment fOr hallucInation Detection [Preprint]. https://doi.org/10.13140/RG.2.2.24327.82080
dc.relation.referencesRocktaschel, T., Grefenstette, E., Hermann, K. M., Koˇcisk´y, T., Blunsom, P., & de Freitas, N. (2015). Reasoning About Entailment with Neural Attention. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), 632-642.
dc.relation.referencesRojo, A. (2012). Algebra II. Editorial Universitaria.
dc.relation.referencesRosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review.
dc.relation.referencesRumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536. https ://doi.org/10.1038/323533a0
dc.relation.referencesSennrich, R., Haddow, B., & Birch, A. (2016). Neural Machine Translation of Rare Words with Subword Units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1715-1725. https://doi.org/10.18653/v1/P16-1162
dc.relation.referencesShannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, 27 (3), 379-423
dc.relation.referencesSutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
dc.relation.referencesTieleman, T., & Haffner, P. (2012). Lecture 6.5 - RMSProp: Divide the Gradient by a Running Average of its Recent Magnitude. Neural Networks for Machine Learning.
dc.relation.referencesVan den Bosch, A. (2013). A survey of stochastic methods for optimization. Journal of Machine Learning Research, 16, 123-133.
dc.relation.referencesZhou, Z.-H., & Liu, X.-Y. (2006). Multi-class cost-sensitive neural networks with softmax loss. Neurocomputing, 69 (16-18), 2415-2418
dc.relation.referencesVapnik, V. N. (1998). Statistical Learning Theory. Wiley.
dc.relation.referencesVaswani, A., Shard, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Klatz, H., et al. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30.
dc.relation.referencesVaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems (NeurIPS).
dc.relation.referencesWang, W., Lan, Z., Tan, W., Li, M., Tur, D., & Liu, P. F. (2020). MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers. Findings of EMNLP.
dc.relation.referencesWerbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. ProQuest.
dc.relation.referencesWu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., . . . Dean, J. (2016). Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144. https://arxiv.org/abs/1609.08144
dc.relation.referencesYuan, Y., Liu, X., Dikubab, W., Liu, H., Ji, Z., Wu, Z., & Bai, X. (2022). Syntax-Aware Network for Handwritten Mathematical Expression Recognition. arXiv preprint arXiv:2203.01601.
dc.relation.referencesFraleigh, J. B. (2003). A First Course in Abstract Algebra. Addison-Wesley.
dc.relation.referencesManning, C. D., & Sch¨utze, H. (1999). Foundations of Statistical Natural Language Processing. MIT Press.
dc.relation.referencesZhou, Z.-H., & Liu, X.-Y. (2006). Multi-class cost-sensitive neural networks with softmax loss. Neurocomputing, 69 (16-18), 2415-2418.
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAxiomas e IA
dc.subjectImplicación lógica
dc.subjectIA en matemáticas
dc.subjectAprendizaje automático
dc.subjectAprendizaje profundo
dc.subjectInteligencia artificial
dc.subjectModelos de lenguaje
dc.subject.ddc510
dc.subject.keywordsAxioms and AI
dc.subject.keywordsLogical implication
dc.subject.keywordsAI in mathematics
dc.subject.keywordsMachine learning
dc.subject.keywordsDeep learning
dc.subject.keywordsArtificial intelligence
dc.subject.keywordsLanguage model
dc.titleDesarrollo de un modelo para la medición de la implicación lógica en problemas de matemática elemental
dc.title.translatedDevelopment of a model for measuring logical implication in elementary mathematics problems
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
813.93 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 Acta de aprobacion.pdf
Tamaño:
191.84 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
153.42 KB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones