Diseño de antenas para aplicaciones de hipertermia en campo cercano a una frecuencia de 2.45GHz
dc.contributor.advisor | Diaz Pardo, Ivan Eduardo | |
dc.contributor.author | Hatem Fayyad, Omar Alejandro | |
dc.date.accessioned | 2024-12-03T17:11:57Z | |
dc.date.available | 2024-12-03T17:11:57Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | El proyecto se centró en el diseño y validación de antenas para aplicaciones de hipertermia en campo ultracercano, con el objetivo de optimizar el calentamiento del tejido biológico a una frecuencia de 2.45 GHz. Se llevó a cabo una exhaustiva investigación del estado del arte para comprender las tecnologías existentes y las características de los aplicadores de hipertermia, con un enfoque particular en aquellos diseñados para el tratamiento de melanomas y aplicadores sin contacto. Se emplearon herramientas como MATLAB para el diseño teórico y CST Studio para la simulación y optimización de antenas. Durante el proceso, se empleó un entorno experimental utilizando GNU Radio y una SDR para validar la potencia entregada y el comportamiento de la antena en condiciones reales. Se utilizó un modelo de tejido ya existente con características eléctricas y dieléctricas específicas para imitar la piel y los músculos humanos, y se realizó una simulación térmica para evaluar la distribución del calor generado. Los resultados mostraron que las antenas diseñadas alcanzaron un coeficiente de reflexión satisfactorio, y comparando con la simulación se evidenció una mancha térmica con forma esférica, cumpliendo los requisitos del proyecto. Con base en los resultados simulados y experimentales se pudo realizar ajustes en las dimensiones de las antenas para un mejor desempeño del diseño. | |
dc.description.abstractenglish | The project focused on the design and validation of antennas for hyperthermia applications in the near-field, with the aim of optimizing tissue heating at a frequency of 2.45 GHz. A thorough literature review was conducted to understand existing technologies and the characteristics of hyperthermia applicators, with particular attention to those designed for melanoma treatment and contactless applicators. Tools such as MATLAB were used for theoretical design, and CST Studio for antenna simulation and optimization. During the process, an experimental setup was used with GNU Radio and an SDR to validate the delivered power and antenna behavior under real conditions. A pre-existing tissue model with specific electrical and dielectric properties was used to mimic human skin and muscles, and a thermal simulation was conducted to evaluate the distribution of the generated heat. The results showed that the designed antennas achieved a satisfactory reflection coefficient, and compared to the simulation, a spherical thermal spot was observed, meeting the project requirements. Based on the simulated and experimental results, adjustments were made to the antenna dimensions for improved design performance. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Electrónico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13563 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Ingeniería Electrónica | spa |
dc.relation.references | [1] National Cancer Institute, “Hyperthermia to treat cancer”, cancer.gov. Accessed: Aug. 22, 2023. [Online]. Available: https://www.cancer.gov/about-cancer/treatment/types/hyperthermia | |
dc.relation.references | [2] Z. Behrouzkia, Z. Joveini, B. Keshavarzi, N. Eyvazzadeh, and R. Z. Aghdam, “Hyperthermia: How Can It Be Used?”, Oman Med J, vol. 31, no. 2, pp. 89–97, Mar. 2016, doi: 10.5001/omj.2016.19. | |
dc.relation.references | [3] A. J. Witkamp, E. de Bree, R. Van Goethem, and F. A. N. Zoetmulder, “Rationale and techniques of intra-operative hyperthermic intraperitoneal chemotherapy”, Cancer Treat Rev, vol. 27, no. 6, pp. 365–374, 2001. | |
dc.relation.references | [4] J. Liu, Y. Zhou, T. Yu, L. Gui, Z. Deng, and Y. Lv, “Minimally invasive probe system capable of performing both cryosurgery and hyperthermia treatment on target tumor in deep tissues”, Minimally Invasive Therapy & Allied Technologies, vol. 13, no. 1, pp. 47–57, 2004. | |
dc.relation.references | [5] J. Delannoy, D. LeBihan, D. I. Hoult, and R. L. Levin, “Hyperthermia system combined with a magnetic resonance imaging unit”, Med Phys, vol. 17, no. 5, pp. 855–860, 1990. | |
dc.relation.references | [6] S. Curto et al., “An integrated platform for small-animal hyperthermia investigations under ultra-high-field MRI guidance”, International Journal of Hyperthermia, vol. 34, no. 4, pp. 341–351, 2018. | |
dc.relation.references | [7] G. Yildiz et al., “Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array”, Sensors, vol. 23, no. 14, p. 6592, Jul. 2023, doi: 10.3390/s23146592. | |
dc.relation.references | [8] P. Nepa and A. Buffi, “Near-Field-Focused Microwave Antennas: Near-field shaping and implementation”, IEEE Antennas Propag Mag, vol. 59, no. 3, pp. 42–53, Jun. 2017, doi: 10.1109/MAP.2017.2686118. | |
dc.relation.references | [9] M. D. Geyikoglu and B. Cavusoglu, “Non-invasive microwave hyperthermia for bone cancer treatment using realistic bone models and flexible antenna arrays”, Electromagn Biol Med, vol. 40, no. 3, pp. 353–360, Jul. 2021, doi: 10.1080/15368378.2021.1965069. | |
dc.relation.references | [10] A. Elboushi and A. Sebak, “Analytical Study of Using Non-Invasive Antenna Probe in Hyperthermia Applications”. | |
dc.relation.references | [11] J. Rajput, A. Nandgaonkar, S. Nalbalwar, A. Wagh, and N. Huilgol, “Dual-Band Slotted Rectangular Monopole Antenna for Breast Hyperthermia.”, International Journal of Microwave & Optical Technology, vol. 16, no. 6, 2021. | |
dc.relation.references | [12] F. Eltigani, S. Ahmed, M. Yahya, and M. Ahmed, “Modeling of Interstitial Microwave Hyperthermia for Hepatic Tumors Using Floating Sleeve Antenna”, Res Sq, 2021, doi: 10.21203/rs.3.rs-900511/v1. | |
dc.relation.references | [13] Agencia Nacional del Espectro, “Resolución N° 000105 de 27/03/2020 Anexo”, ane.gov.co. Accessed: Aug. 22, 2023. [Online]. Available: https://www.avancejuridico.com/docpdf/R_ANE_0105_2020-ANEXO.pdf | |
dc.relation.references | [14] T. Weiland, “A discretization model for the solution of Maxwell’s equations for six-component fields”, Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120, 1977. | |
dc.relation.references | [15] “IEC/IEEE International Standard – Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 1: General requirements for using the finite-difference time-domain (FDTD) method for SAR calculations”, IEC/IEEE 62704-1:2017, pp. 1–86, 2017, doi: 10.1109/IEEESTD.2017.8088404. | |
dc.relation.references | [16] K. Luo, S.-H. Ge, L. Zhang, H.-B. Liu, and J.-L. Xing, “Simulation Analysis of Ansys HFSS and CST Microwave Studio for Frequency Selective Surface”, in 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE, May 2019, pp. 1–3. doi: 10.1109/ICMMT45702.2019.8992280. | |
dc.relation.references | [17] D. M. J. Luis, “Sistema aplicador de campo electromagnético para el tratamiento del melanoma usando hipertermia local”, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/86513 | |
dc.relation.references | [18] H. F. G. Mendez, J. J. Pantoja, and M. A. P. Arango, “Hyperthermia study in cancer treatment”, in 2018 International Applied Computational Electromagnetics Society Symposium (ACES), 2018, pp. 1–2. doi: 10.23919/ROPACES.2018.8364294. | |
dc.relation.references | [19] CVEL Electromagnetic Modeling, “The Finite Integration Technique”, https://cecas.clemson.edu/cvel/modeling/tutorials/techniques/fit/finite_integration.html. | |
dc.relation.references | [20] CST Studio Suite, “Frequency Domain Solver Overview”, https://space.mit.edu/RADIO/CST_online/mergedProjects/3D/special_overview/special_overview_frequency_domain_solver_overview.htm. | |
dc.relation.references | [21] NATIONAL INSTRUMENTS CORP., “USRP-2901”, https://www.ni.com/es-co/shop/model/usrp-2901.html?srsltid=AfmBOors5eYcOqGdLlq5Kt3Uf_qazz7jbHNkL-2ci44dqLzJ3docUsDI. | |
dc.relation.references | [22] Radio project, “GNU Radio”, https://www.gnuradio.org. | |
dc.relation.references | [23] Constantine A. Balanis, Antenna Theory: Analysis and Design, 4th edition. Wiley, 2016. | |
dc.relation.references | [24] P. J. Rosch, “Bioelectromagnetic and Subtle Energy Medicine”, Ann N Y Acad Sci, vol. 1172, no. 1, pp. 297–311, Aug. 2009, doi: 10.1111/j.1749-6632.2009.04535.x. | |
dc.relation.references | [25] EL CONGRESO DE COLOMBIA, “Ley 1341 de 2009”, 2009. | |
dc.relation.references | [26] Mini-Circuits, “ZHL-30W-252-S+ High Power Amplifier, 0.7 to 2.5 GHz”, https://www.minicircuits.com/WebStore/dashboard.html?model=ZHL-30W-252-S%2B. | |
dc.relation.references | [27] CST Studio Suite, “Biological Thermal Effects”, https://space.mit.edu/RADIO/CST_online/mergedProjects/3D/special_overview/special_overview_bioheat_equation.htm. | |
dc.relation.references | [28] CST Studio Suite, “Bio Tissue Overview”, https://space.mit.edu/RADIO/CST_online/mergedProjects/3D/common_tools/common_tools_voxel_material_descr_file.htm. | |
dc.relation.references | [29] CST Studio Suite, “Biological Data”, https://space.mit.edu/RADIO/CST_online/mergedProjects/3D/common_tools/common_tools_biomodels.htm. | |
dc.relation.references | [30] CST Studio Suite, “Biological Tissue Voxel Model”, https://space.mit.edu/RADIO/CST_online/mergedProjects/EXP_HF/examplesoverview/voxel_model.htm. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http:/purl.org/coar/access_right/c_abf2/ | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Hipertermia | |
dc.subject | Experimento térmico | |
dc.subject | Simulación térmica | |
dc.subject | Distribución de calentamiento | |
dc.subject | Tejido biológico | |
dc.subject | Campos electromagnéticos | |
dc.subject.ddc | 621.381 | |
dc.subject.keywords | Hyperthermia | |
dc.subject.keywords | Thermal experiment | |
dc.subject.keywords | Thermal simulation | |
dc.subject.keywords | Heat distribution | |
dc.subject.keywords | Biological tissue | |
dc.subject.keywords | Electromagnetic fields | |
dc.title | Diseño de antenas para aplicaciones de hipertermia en campo cercano a una frecuencia de 2.45GHz | |
dc.title.translated | Antenna design for near-field hyperthermia applications at a frequency of 2.45GHz | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 2.99 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de grado.pdf
- Tamaño:
- 320.32 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 322.34 KB
- Formato:
- Adobe Portable Document Format
- Descripción: