Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos

dc.contributor.advisorCortés Ortíz, William Giovanni
dc.contributor.authorLugo Álvarez, José David
dc.date.accessioned2024-11-29T15:20:50Z
dc.date.available2024-11-29T15:20:50Z
dc.date.issued2024-11
dc.description.abstractEste estudio exploró la producción de bioplásticos utilizando bagazo de caña de azúcar y tusa residual de maíz como materias primas, enfocándose en su aplicabilidad como material para empaque sostenible. A través de un proceso de extracción, se obtuvo celulosa y fibra de las biomasas mencionadas, que se mezclaron en diferentes proporciones para crear biomateriales. Las muestras fueron caracterizadas mediante pruebas de contenido de humedad, absorción de agua y permeabilidad al vapor, además de una caracterización de microscopía óptica y estereoscopía, mostrando que las proporciones de celulosa y fibra influyen en las propiedades físicas y de resistencia a la humedad, siendo la proporción de distribución 75:25 de tusa-bagazo la muestra que mejor propiedad presentó. El presente trabajo evaluó la métrica “Estrella Verde” de la química verde para determinar el grado de sostenibilidad en las etapas de extracción y obtención del bioplástico, alcanzando un 69,35 % y un 81,62 % de alineación con los principios de la química verde, respectivamente. Estos resultados indican un “gran acercamiento verde” del proceso. Este proyecto muestra el potencial del bagazo de caña de azúcar y la tusa residual de maíz en el desarrollo de bioplásticos y establece recomendaciones para mejorar la resistencia del material, incentivando investigaciones futuras en la optimización de bioplásticos para aplicaciones comerciales y fomentando el compromiso ambiental en el desarrollo de subproductos.
dc.description.abstractenglishThis study explored the production of bioplastics using sugarcane bagasse and corn cob waste as raw materials, focusing on their applicability as sustainable packaging material. Through an extraction process, cellulose and fiber were obtained from the mentioned biomasses, which were mixed in different proportions to create bioplastic films. The samples were characterized by moisture content, water absorption and vapor permeability tests, in addition to optical and stereoscopic microscopy characterization, showing that the proportions of cellulose and fiber influence their physical and moisture resistance properties, with the 75:25 distribution ratio of corn cob-bagasse being the sample that presented the best properties. This work evaluated the “Green Star” metric of green chemistry to determine the degree of sustainability in the extraction and obtaining stages of bioplastic, reaching 69.35% and 81.62% alignment with the principles of green chemistry, respectively. These results indicate a “great green approach” to the process. This project shows the potential of sugarcane bagasse and corn cob residue in the development of bioplastics and establishes recommendations to improve the strength of the material, encouraging future research into the optimization of bioplastics for commercial applications and promoting environmental commitment in the development of by-products.
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13482
dc.language.isoes
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programIngeniería Ambientalspa
dc.relation.referencesAbe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers, 13(15), 2484. https://doi.org/10.3390/polym13152484
dc.relation.referencesAguilar, N. M., Arteaga-Cardona, F., de Anda Reyes, M. E., Gervacio-Arciniega, J. J., & Salazar-Kuri, U. (2019). Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Materials Chemistry and Physics, 238, 121921. https://doi.org/10.1016/J.MATCHEMPHYS.2019.121921
dc.relation.referencesAguilar-Rivera, N. (2011). Efecto del almacenamiento de bagazo de caña en las propiedades físicas de celulosa grado papel. Ingeniería. Investigación y Tecnología, XII(2), 189–197. https://www.redalyc.org/articulo.oa?id=40419907008
dc.relation.referencesAjala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing 2021 8:1, 8(1), 1–25. https://doi.org/10.1186/S40643-021-00440-Z
dc.relation.referencesAlmeida, L., Sola, A., & Ramirez-Behainne, J. (2017). Sugarcane bagasse pellets: Characterization and comparative analysis. Acta Scientiarum. Technology, 39, 461. https://doi.org/10.4025/actascitechnol.v39i4.30198
dc.relation.referencesAnastas, P. T., & Warner, J. C. (2000). Green Chemistry: Theory and Practice. Oxford University Press. https://doi.org/10.1093/oso/9780198506980.001.0001
dc.relation.referencesAndrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. https://doi.org/10.1098/RSTB.2008.0304
dc.relation.referencesAroca Chica, M. J., & Estrada Ramírez, P. E. (2015). Estudio comparativo de la celulosa obtenida a partir del pseudotallo de banano con la obtenida de bagazo de la caña de azúcar, empleando la misma metodología. http://repositorio.ug.edu.ec/handle/redug/8920
dc.relation.referencesASTM International. (2015a). Standard Test Method for Ash in Biomass. https://doi.org/10.1520/E1755-01R15
dc.relation.referencesASTM International. (2015b). Standard Test Method for Determination of Total Solids in Biomass. https://doi.org/10.1520/E1756
dc.relation.referencesASTM International. (2019). Test Method for Moisture Analysis of Particulate Wood Fuels. https://doi.org/10.1520/E0871-82R19
dc.relation.referencesAzmin, S. N. H. M., Hayat, N. A. B. M., & Nor, M. S. M. (2020). Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. Journal of Bioresources and Bioproducts, 5(4), 248–255. https://doi.org/10.1016/j.jobab.2020.10.003
dc.relation.referencesBarnes, D. K. A., & Milner, P. (2005). Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Marine Biology, 146(4), 815–825. https://doi.org/10.1007/S00227-004-1474-8
dc.relation.referencesBarreto, E. P. (2022). Los bioplásticos como sustitutos de los plásticos de un solo uso en Colombia proyecto de grado. https://repository.uniminuto.edu/handle/10656/14664
dc.relation.referencesBenini, K. C. C. C., Voorwald, H. J. C., & Cioffi, M. O. H. (2011). Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering, 10, 3246–3251. https://doi.org/10.1016/j.proeng.2011.04.536
dc.relation.referencesBernstad Saraiva Schott, A., & Andersson, T. (2015). Food waste minimization from a life-cycle perspective. Journal of Environmental Management, 147, 219–226. https://doi.org/10.1016/J.JENVMAN.2014.07.048
dc.relation.referencesBhavanam, A., Gera, P., Pandhare, N. N., & Dash, S. (2022). Catalysts for conversion of lignocellulosic biomass into platform chemicals and bio-aromatics. Handbook of Biomass Valorization for Industrial Applications, 83–106. https://doi.org/10.1002/9781119818816.ch5
dc.relation.referencesCárdenas Quiroga, E. A., Morales Martín, L. Y., & Ussa Caycedo, A. (2015). La estereoscopía, métodos y aplicaciones en diferentes áreas del conocimiento. Revista Científica General José María Córdova, 13(16). https://doi.org/10.21830/19006586.37
dc.relation.referencesCastañeda Torres, S., & Rodriguez Miranda, J. P. (2017). Modelo de aprovechamiento sustentable de residuos sólidos orgánicos en Cundinamarca, Colombia. Universidad y Salud, 19(1). https://doi.org/10.22267/rus.171901.75
dc.relation.referencesCongreso de la República (2022). Ley 2232 de 2022
dc.relation.referencesChan, J. X., Wong, J. F., Hassan, A., & Zakaria, Z. (2021). Bioplastics from agricultural waste. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications, 141–169. https://doi.org/10.1016/B978-0-12-819953-4.00005-7
dc.relation.referencesCury R, K., Aguas M, Y., Martinez M, A., Olivero V, R., & Chams Ch, L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 122–132. https://doi.org/10.24188/RECIA.V9.NS.2017.530
dc.relation.referencesdel Rodríguez, L. P., Toloza, L. J., & Mg Paola Iveth Rodríguez Contreras, C. (2021). Propuesta de optimización del Plan de Gestión Integral de Residuos Sólidos en la Sede Central de la Universidad Pedagógica y Tecnológica de Colombia. Agricultural Sciences, 03(07), 905–917. https://doi.org/10.4236/AS.2012.37110
dc.relation.referencesDíaz, A., & Cardozo, A. (2022). Análisis de la gestión de los residuos orgánicos en Colombia a través de la visualización del marco legal vigente representado por medio de un dashboard. Ciencia Unisalle.
dc.relation.referencesDrané, M., Zbair, M., Hajjar-Garreau, S., Josien, L., Michelin, L., Bennici, S., & Limousy, L. (2023). Unveiling the Potential of Corn Cob Biochar: Analysis of Microstructure and Composition with Emphasis on Interaction with NO2. Materials, 17(1), 159. https://doi.org/10.3390/ma17010159
dc.relation.referencesEjaz, U., Rashid, R., Ahmed, S., Narejo, K. K., Qasim, A., Sohail, M., Ali, S. T., Althakafy, J. T., Alanazi, A. K., Abo-Dief, H. M., & Moin, S. F. (2023). Synthesis of methylcellulose-polyvinyl alcohol composite, biopolymer film and thermostable enzymes from sugarcane bagasse. International Journal of Biological Macromolecules, 235. https://doi.org/10.1016/j.ijbiomac.2023.123903
dc.relation.referencesEnawgaw, H., Tesfaye, T., Yilma, K., & Limeneh, D. (2023). Multiple Utilization Ways of Corn By-Products for Biomaterial Production with Bio-Refinery Concept; a Review. Materials Circular Economy, 5. https://doi.org/10.1007/s42824-023-00078-6
dc.relation.referencesEvode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. N. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4, 100142. https://doi.org/10.1016/J.CSCEE.2021.100142
dc.relation.referencesFabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). Biopolymers for food packaging applications. Smart Polymers and their Applications, 476–509. https://doi.org/10.1533/9780857097026.2.476
dc.relation.referencesGabriela, M., Ribeiro, T. C., Costa, D. A., Machado, A. A. S. C., & Machado, A. A. S. C. (2010). “Green Star”: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Taylor & Francis, 3(2), 149–159. https://doi.org/10.1080/17518251003623376
dc.relation.referencesGandam, P. K., Chinta, M. L., Pabbathi, N. P. P., Velidandi, A., Sharma, M., Kuhad, R. C., Tabatabaei, M., Aghbashlo, M., Baadhe, R. R., & Gupta, V. K. (2022). Corncob-based biorefinery: A comprehensive review of pretreatment methodologies, and biorefinery platforms. Journal of the Energy Institute, 101, 290–308. https://doi.org/10.1016/J.JOEI.2022.01.004
dc.relation.referencesGeissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/J.JCLEPRO.2016.12.048
dc.relation.referencesGeyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/SCIADV.1700782/SUPPL_FILE/1700782_SM.PDF
dc.relation.referencesGlasson, J., & Therivel, R. (2019). Introduction to environmental impact assessment. Introduction to Environmental Impact Assessment, 1–381. https://doi.org/10.4324/9780429470738/INTRODUCTION-ENVIRONMENTAL-IMPACT-ASSESSMENT-JOHN-GLASSON-RIKI-THERIVEL
dc.relation.referencesGuía para la formulación, implementación, evaluación, seguimiento, control y actualización de los (PGIRS) (2015).
dc.relation.referencesHernández Caballero, A. N. (2021). Análisis de la gestión de residuos sólidos en Colombia. Repositorio Institucional Universidad Militar Nueva Granada.
dc.relation.referencesHopewell, J., Dvorak, R., & Kosior, E. (2009a). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115–2126. https://doi.org/10.1098/RSTB.2008.0311
dc.relation.referencesHottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898–1907. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2013.06.016
dc.relation.referencesHugot, E., & Jenkins, G. H. (1986). Handbook of Cane Sugar Engineering. Elsevier. https://books.google.com.co/books?id=hNdxQgAACAAJ
dc.relation.referencesIbitoye, S. E., Jen, T.-C., Mahamood, R. M., Akinlabi, E. T., Singh, K., Tummala, K., Kosaraju, S., & Haider, J. (2021). Improving the Combustion Properties of Corncob Biomass via Torrefaction for Solid Fuel Applications. Journal of Composites Science 2021, Vol. 5, Page 260, 5(10), 260. https://doi.org/10.3390/JCS5100260
dc.relation.referencesJayakumar, A., Radoor, S., Siengchin, S., Shin, G. H., & Kim, J. T. (2023). Recent progress of bioplastics in their properties, standards, certifications and regulations: A review. Science of the Total Environment, 878. https://doi.org/10.1016/j.scitotenv.2023.163156
dc.relation.referencesKaran, H., Funk, C., Grabert, M., Oey, M., & Hankamer, B. (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, 24(3), 237–249. https://doi.org/10.1016/j.tplants.2018.11.010
dc.relation.referencesKawaguchi, H., Takada, K., Elkasaby, T., Pangestu, R., Toyoshima, M., Kahar, P., Ogino, C., Kaneko, T., & Kondo, A. (2022). Recent advances in lignocellulosic biomass white biotechnology for bioplastics. Bioresource Technology, 344, 126165. https://doi.org/10.1016/J.BIORTECH.2021.126165
dc.relation.referencesLabrador Sánchez, H., & Osto, S. (2021). Caracterización de la celulosa proveniente del lodo papelero y su esterificación. Revista de la Facultad de Ciencias, 10(2). https://doi.org/10.15446/rev.fac.cienc.v10n2.94003
dc.relation.referencesLenço, P. C., Ramirez-Quintero, D. A., & Bizzo, W. A. (2020). Characterization of sugarcane bagasse particles separated by elutriation for energy generation. Renewable Energy, 161, 712–721. https://doi.org/10.1016/J.RENENE.2020.06.046
dc.relation.referencesLeón-Fernández, V., Rieumont-Briones, J., Bordallo-López, E., Dopico-Ramírez, D., Peña-Sacerio, E., & Menéndez-Cuesta-Mirabal, I. (2013). Obtención y caracterización de la celulosa hidrofóbicamente modificada. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 47(1), 51–56. https://www.redalyc.org/articulo.oa?id=223126409007
dc.relation.referencesLiu, F., Ren, J., Yang, Q., Zhang, Q., Zhang, Y., Xiao, X., & Cao, Y. (2024). Improving water resistance and mechanical properties of starch-based films by incorporating microcrystalline cellulose in a dynamic network structure. International Journal of Biological Macromolecules, 260, 129404. https://doi.org/10.1016/J.IJBIOMAC.2024.129404
dc.relation.referencesLuchese, C. L., Frick, J. M., Patzer, V. L., Spada, J. C., & Tessaro, I. C. (2015). Synthesis and characterization of biofilms using native and modified pinhão starch. Food Hydrocolloids, 45, 203–210. https://doi.org/10.1016/J.FOODHYD.2014.11.015
dc.relation.referencesLuna Vera, F., Melo Cortes, H. A., Viviana Murcia, C., & Charry Galvis, I. (2014). Modificación superficial de micro fibras de celulosa obtenidas a partir de bagazo de caña de azúcar usando silanización. Informador técnico, ISSN 0122-056X, ISSN-e 2256-5035, Vol. 78, No. 2 (Julio-Diciembre 2014), 2014, págs. 106-114, 78(2), 106–114. https://dialnet.unirioja.es/servlet/articulo?codigo=5129559&info=resumen&idioma=ENG
dc.relation.referencesMAATE. (2020). Manual de aprovechamiento de residuos orgánicos municipales. Ministerio de Ambiente y Agua.
dc.relation.referencesMadhavan, A., Reshmy, R., Arun, K. B., Philip, E., Sindhu, R., Nair, B. G., Awasthi, M. K., Pandey, A., & Binod, P. (2023). Murraya koenigii extract blended nanocellulose-polyethylene glycol thin films for the sustainable synthesis of antibacterial food packaging. Sustainable Chemistry and Pharmacy, 32, 101021. https://doi.org/10.1016/J.SCP.2023.101021
dc.relation.referencesMarta, H., Wijaya, C., Sukri, N., Cahyana, Y., & Mohammad, M. (2022). A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers, 14(22), 4875. https://doi.org/10.3390/polym14224875
dc.relation.referencesMeereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519–5558. https://doi.org/10.1039/D0GC01647K
dc.relation.referencesMenezes Filho, A. C. P. de, Oliveira Filho, J., Deminski, G., Jesus, A., Andrade, M., & Castro, C. F. de S. (2019). Avaliação colorimétrica e caracterização morfológica por microscopia óptica de alta resolução das farinhas dos frutos do jatobá, jambolão e siriguela. Multi-Science Journal, 2(1). https://doi.org/10.33837/msj.v2i1.544
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2021). Plan Nacional para la Gestión Sostenible del Plástico.
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2022). En 2050 habría en el mundo unos 12.000 millones de toneladas de basura plástica, si no se cambian las pautas de consumo - Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/en-2050-habria-en-el-mundo-unos-12-000-millones-de-toneladas-de-basura-plastica-si-no-se-cambian-las-pautas-de-consumo/
dc.relation.referencesMora, J. (2021). Reciclaje y reutilización de materiales de construcción en Colombia como aporte a la economía circular. Ciencia Unisalle.
dc.relation.referencesMorales Galicia, M. L., Martínez, J. O., Reyes Sánchez, L. B., Martín Hernández, O., Arroyo Razo, G. A., Obaya Valdivia, A., & Miranda Ruvalcaba, R. (2011). ¿Qué tan verde es un experimento? Educación química, 22(3), 240–248. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-893X2011000300009&lng=es&nrm=iso&tlng=es
dc.relation.referencesNasir, N., & Othman, S. (2021). The Physical and Mechanical Properties of Corn-based Bioplastic Films with Different Starch and Glycerol Content. Journal of Physical Science, 32, 89–101. https://doi.org/10.21315/jps2021.32.3.7
dc.relation.referencesNing, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent advances in the valorization of plant biomass. Biotechnology for Biofuels 2021 14:1, 14(1), 1–22. https://doi.org/10.1186/S13068-021-01949-3
dc.relation.referencesNorth, E. J., & Halden, R. U. (2013). Plastics and environmental health: The road ahead. Reviews on Environmental Health, 28(1), 1–8. https://doi.org/10.1515/REVEH-2012-0030
dc.relation.referencesNunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. https://doi.org/10.1016/J.RSER.2015.08.053
dc.relation.referencesOutili, N., Kerras, H., & Meniai, A. H. (2023). Recent conventional and non-conventional WCO pretreatment methods: Implementation of green chemistry principles and metrics. Current Opinion in Green and Sustainable Chemistry, 41, 100794. https://doi.org/10.1016/J.COGSC.2023.100794
dc.relation.referencesPang, Y. L., Lim, S., Lai, S. O., & Chong, W. C. (2023). Green Chemistry for the development of biomass conversion process into cellulose and bioethanol. Green Sustainable Process for Chemical and Environmental Engineering and Science: Natural Materials-Based Green Composites 2: Biomass, 121–137. https://doi.org/10.1016/B978-0-323-95183-8.00003-2
dc.relation.referencesPetersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science and Technology, 10(2), 52–68. https://doi.org/10.1016/S0924-2244(99)00019-9
dc.relation.referencesPrado-Martínez, M., Anzaldo-Hernández, J., Becerra-Aguilar, B., Palacios-Juárez, H., Vargas-Radillo, J. de J., & Rentería-Urquiza, M. (2012). Caracterización de hojas de mazorca de maíz y de bagazo de caña para la elaboración de una pulpa celulósica mixta. Madera Bosques, 18(3). https://doi.org/10.21829/myb.2012.183357
dc.relation.referencesRatna, A. S., Ghosh, A., & Mukhopadhyay, S. (2022). Advances and prospects of corn husk as a sustainable material in composites and other technical applications. Journal of Cleaner Production, 371, 133563. https://doi.org/10.1016/J.JCLEPRO.2022.133563
dc.relation.referencesRezende, C. A., de Lima, M. A., Maziero, P., deAzevedo, E. R., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(1), 54. https://doi.org/10.1186/1754-6834-4-54
dc.relation.referencesRiera, M. A., Maldonado3, S., & Palma4, R. R. (2021). Agro-industrial residues generated in ecuador for the elaboration of bioplastics. https://doi.org/10.22320/S07179103/2018.13
dc.relation.referencesRitzen, L., Sprecher, B., Bakker, C., & Balkenende, R. (2023). Bio-based plastics in a circular economy: A review of recovery pathways and implications for product design. Resources, Conservation and Recycling, 199, 107268. https://doi.org/10.1016/J.RESCONREC.2023.107268
dc.relation.referencesRivero, C. P., Hu, Y., Kwan, T. H., Webb, C., Theodoropoulos, C., Daoud, W., & Lin, C. S. K. (2017). Bioplastics From Solid Waste. Current Developments in Biotechnology and Bioengineering: Solid Waste Management, 1–26. https://doi.org/10.1016/B978-0-444-63664-5.00001-0
dc.relation.referencesRojas, M., … R. M.-R.-J. en, & 2016, undefined. (2016). Producción de ácido láctico a partir de bagazo de caña residual de la industria azucarera. jovenesenlaciencia.ugto.mx, 2(1). http://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/1355
dc.relation.referencesRugeles, A., … S. V.-… D. L. C., & 2014, undefined. (s/f). Bioplásticos: aplicación de la química verde. staticcuc.s3.amazonaws.com. Recuperado el 29 de octubre de 2023, de http://staticcuc.s3.amazonaws.com/images/stories/archivos/pdf/educosta/memoriaeventos/MEMORIAS_IV_ENC._INVEST._C._BAS._-_provisional.pdf#page=18
dc.relation.referencesS. Kaddory Al-Zubaidy, M. (2015). A Literature Evaluation of the Energy Efficiency of Leadership in Energy and Environmental Design (LEED) -Certified Buildings. American Journal of Civil Engineering and Architecture, 3(1), 1–7. https://doi.org/10.12691/AJCEA-3-1-1
dc.relation.referencesSaba, Naheed., Jawaid, Mohammad., & Thariq, Mohamed. (2021). Biopolymers and biocomposites from agro-waste for packaging applications.
dc.relation.referencesSachs, J. D. (2015). The Oxymoron of Sustainable Development: The Age of Sustainable Development. BioScience, 65(10), 1027–1029. http://bioscience.oxfordjournals.org
dc.relation.referencesSamir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation 2022 6:1, 6(1), 1–28. https://doi.org/10.1038/s41529-022-00277-7
dc.relation.referencesSantos, B., Prado, K., Jacinto, A., & Spinacé, M. (2018). Influence of Sugarcane Bagasse Fiber Size on Biodegradable Composites of Thermoplastic Starch. Journal of Renewable Materials, 6. https://doi.org/10.7569/JRM.2018.634101
dc.relation.referencesSheldon, R. A. (2008). E factors, green chemistry and catalysis: an odyssey. Chemical Communications, 29, 3352–3365. https://doi.org/10.1039/B803584A
dc.relation.referencesSheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4), 1437–1451. https://doi.org/10.1039/C1CS15219J
dc.relation.referencesSilva, T. A. L., Zamora, H. D. Z., Varão, L. H. R., Prado, N. S., Baffi, M. A., & Pasquini, D. (2018). Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse. Waste and Biomass Valorization, 9(11), 2191–2201. https://doi.org/10.1007/s12649-017-9989-7
dc.relation.referencesSimão, J. A., Carmona, V. B., Marconcini, J. M., Mattoso, L. H. C., Barsberg, S. T., & Sanadi, A. R. (2016). Effect of fiber treatment condition and coupling agent on the mechanical and thermal properties in highly filled composites of sugarcane bagasse Fiber/PP. Materials Research, 19(4), 746–751. https://doi.org/10.1590/1980-5373-MR-2015-0609
dc.relation.referencesSong, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal
dc.relation.referencesSociety B: Biological Sciences, 364(1526), 2127–2139. https://doi.org/10.1098/RSTB.2008.0289
dc.relation.referencesSpierling, S., Röttger, C., Venkatachalam, V., Mudersbach, M., Herrmann, C., & Endres, H. J. (2018). Bio-based Plastics - A Building Block for the Circular Economy? Procedia CIRP, 69, 573–578. https://doi.org/10.1016/J.PROCIR.2017.11.017
dc.relation.referencesSurendran, G., & Sherje, A. P. (2022). Cellulose nanofibers and composites: An insight into basics and biomedical applications. Journal of Drug Delivery Science and Technology, 75, 103601. https://doi.org/10.1016/J.JDDST.2022.103601
dc.relation.referencesSzymanska-Chargot, M., Chylinska, M., Gdula, K., Koziol, A., & Zdunek, A. (2017). Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers, 9(10). https://doi.org/10.3390/polym9100495
dc.relation.referencesTeacǎ, C. A., Bodîrlǎu, R., & Spiridon, I. (2013). Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydrate Polymers, 93(1), 307–315. https://doi.org/10.1016/J.CARBPOL.2012.10.020
dc.relation.referencesThomas, A. P., Kasa, V. P., Dubey, B. K., Sen, R., & Sarmah, A. K. (2023). Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. Science of The Total Environment, 904, 167243. https://doi.org/10.1016/J.SCITOTENV.2023.167243
dc.relation.referencesThompson, R. C., Moore, C. J., Saal, F. S. V., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/RSTB.2009.0053
dc.relation.referencesTobiszewski, M., Marć, M., Gałuszka, A., & Namies̈nik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, Vol. 20, Pages 10928-10946, 20(6), 10928–10946. https://doi.org/10.3390/MOLECULES200610928
dc.relation.referencesUl-Islam, Shahid., Shalla, A. Hussain., & Khan, S. Ahmad. (2022). Handbook of biomass valorization for industrial applications.
dc.relation.referencesVargas Corredor, Y. A., & Peréz Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 59–72. https://doi.org/10.18359/RFCB.3108
dc.relation.referencesVilela, C., Moreirinha, C., Domingues, E. M., Figueiredo, F. M. L., Almeida, A., & Freire, C. S. R. (2019). Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. Nanomaterials 2019, Vol. 9, Page 980, 9(7), 980. https://doi.org/10.3390/NANO9070980
dc.relation.referencesVivian, M. A., Santos, J. R. S. dos, Segura, T. E. S., Silva Júnior, F. G. da, Brito, J. O., Vivian, M. A., Santos, J. R. S. dos, Segura, T. E. S., Silva Júnior, F. G. da, & Brito, J. O. (2022). Caracterização do bagaço de cana-de-açúcar e suas potencialidades para geração de energia e polpa celulósica. Madera y Bosques, 28(1). https://doi.org/10.21829/myb.2022.2812376
dc.relation.referencesWu, C. S. (2011). Performance and biodegradability of a maleated polyester bioplastic/recycled sugarcane bagasse system. Journal of Applied Polymer Science, 121(1), 427–435. https://doi.org/10.1002/APP.33713
dc.relation.referencesYang, J., Ching, Y., & Chuah, C. (2019). Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers, 11(5), 751. https://doi.org/10.3390/polym11050751
dc.relation.referencesYang, Y., Liu, H., Wu, M., Ma, J., & Lu, P. (2020). Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films. International Journal of Biological Macromolecules, 161, 627–635. https://doi.org/10.1016/j.ijbiomac.2020.06.081
dc.relation.referencesYépez Chávez, A., & Viteri Moya, F. (2019). Enfoques innovadores de educación ambiental con el aprovechamiento de residuos orgánicos urbanos. Cátedra, 2(2). https://doi.org/10.29166/catedra.v2i2.1639
dc.relation.referencesZacarías, A. (2018). ¿Qué es la economía circular y cómo cuida del medio ambiente?
dc.relation.referencesZamora Rueda, G., Gutiérrez, C., Mistretta, G., Peralta, F., Golato, M., Ruiz, M., & Paz, D. (2016). Determinación del contenido de humedad del bagazo de caña de azùcar por medio de microondas. Revista industrial y agrícola de Tucumán, 93(2), 07–12. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-30182016000200002&lng=es&nrm=iso&tlng=es
dc.relation.referencesZia, K. M., Akram, N., Tabasum, S., Noreen, A., & Akbar, M. U. (2021). Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects. En Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects. Elsevier. https://doi.org/10.1016/B978-0-323-85772-7.09993-6
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBioplásticos
dc.subjectBagazo de caña de azúcar
dc.subjectTusa residual de maíz
dc.subjectObtención de bioplásticos
dc.subjectQuímica verde
dc.subjectSostenibilidad
dc.subject.ddc628
dc.subject.keywordsBioplastics
dc.subject.keywordsSugarcane bagasse
dc.subject.keywordsCorn cob residue
dc.subject.keywordsBioplastic production
dc.subject.keywordsGreen chemistry
dc.subject.keywordsSustainability
dc.titleAprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
dc.title.translatedUse of sugar cane bagasse and residual corn stover to obtain bioplastics
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
3.76 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Acta de grado.pdf
Tamaño:
268.71 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
188.42 KB
Formato:
Adobe Portable Document Format
Descripción: