La figura de rey como instrumento de clasificación de deterioro cognitivo con el apoyo de inteligencia artificial
dc.contributor.advisor | Salazar Montes, Ana María | |
dc.contributor.author | Castro Rodríguez, Juan Gabriel | |
dc.date.accessioned | 2024-11-18T20:23:46Z | |
dc.date.available | 2024-11-18T20:23:46Z | |
dc.date.issued | 2024-10 | |
dc.description.abstract | La Figura Compleja de Rey (FCR) es ampliamente utilizada para la evaluación y diagnóstico del deterioro cognitivo. En los últimos años han surgido sistemas automatizados basados en Redes Neuronales Convolucionales (RNC), que buscan evaluar la FCR como herramienta de apoyo en el diagnóstico de Deterioro Cognitivo Leve (DCL) y demencia, observándose resultados positivos en la precisión. Por ello, el objetivo de este estudio fue validar un modelo de RNC que usa la FCR en la fase de copia, para la clasificación de DCL y demencia. Se obtuvieron un total de 1.593imágenes, de las cuales 547 fueron de pacientes con normalidad, 655 con DCL y 379 con demencia. El modelo fue desarrollado con Deep Learning (DL), con la inclusión de una capa de atención. Los resultados mostraron un 85% de precisión y una pérdida del 15% en la clasificación de pacientes normales, DCL’s y demencias. Se concluye que el modelo tiene un buen porcentaje de clasificación y su optimización puede mejorar considerablemente su rendimiento para poder ser implementado enla Atención Primaria (AP) como apoyo en el diagnóstico de deterioro cognitivo | |
dc.description.abstractenglish | The Rey Complex Figure (RCF) is widely used for the assessment and diagnosis of cognitive impairment (CI). In recent years, automated systems based on Convolutional Neural Networks (CNN) have emerged, which seek to evaluate the RCF as a support tool in the diagnosis of Mild Cognitive Impairment (MCI) and dementia, with positive results in accuracy. Therefore, the aim of this study was to validate an RNC model that uses the FCR in the copying phase, for the classification of MCI and dementia. A total of 1,593 images were obtained, of which 547 were from patients with normal, 655 with MCI and 379 with dementia. The model was developed with Deep Learning (DL), with the inclusion of an attention layer. The results showed 85% accuracy and a 15% loss in the classification of normal, MCI and dementia patients. It is concluded that the model has a good classification rate, and its optimization can considerably improve its performance to be implemented in Primary Care (PC) as a support in the diagnosis of cognitive impairment. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Psicólogo | spa |
dc.description.sponsorship | Fundación Universitaria de Ciencias de la Salud (FUCS) | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13220 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Psicología | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Psicología | spa |
dc.relation.references | Bergman, H., Borson, S., Jessen, F., Krolak-Salmon, P., Pirani, A., Rasmussen, J., Rodrigo, J., & Taddeo, D. (2023). Dementia and comorbidities in primary care: A scoping review. BMC Primary Care, 24(1), 277. https://doi.org/10.1186/s12875-023-02229-9 | |
dc.relation.references | Bernstein, A., Rogers, K. M., Possin, K. L., Steele, N. Z. R., Ritchie, C. S., Kramer, J. H., Geschwind, M., Higgins, J. J., Wohlgemuth, J., Pesano, R., Miller, B. L., & Rankin, K. P. (2019). Dementia assessment and management in primary care settings: A survey of current provider practices in the United States. BMC Health Services Research, 19, 919. https://doi.org/10.1186/s12913-019- 4603-2 | |
dc.relation.references | Cheah, W.-T., Chang, W.-D., Hwang, J.-J., Hong, S.-Y., Fu, L.-C., & Chang, Y.-L. (2019). A Screening System for Mild Cognitive Impairment Based on Neuropsychological Drawing Test and Neural Network. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 3543-3548. https://doi.org/10.1109/SMC.2019.8913880 | |
dc.relation.references | Cheah, W.-T., Hwang, J.-J., Hong, S.-Y., Fu, L.-C., Chang, Y.-L., Chen, T.-F., Chen, I.-A., & Chou, C.-C. (2022). A Digital Screening System for Alzheimer Disease Based on a Neuropsychological Test and a Convolutional Neural Network: System Development and Validation. JMIR Medical Informatics, 10(3), e31106. https://doi.org/10.2196/31106 | |
dc.relation.references | Chu, C.-S., Tseng, P.-T., Stubbs, B., Chen, T.-Y., Tang, C.-H., Li, D.-J., Yang, W.-C., Chen, Y.-W., Wu, C.-K., Veronese, N., Carvalho, A. F., F ernandes, B. S., Herrmann, N., & Lin, P.-Y. (2018). Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Scientific Reports, 8(1), 5804. https://doi.org/10.1038/s41598-018-24248-8 | |
dc.relation.references | Di Febbo, D., Ferrante, S., Baratta, M., Luperto, M., Abbate, C., Trimarchi, P. D., Giunco, F., & Matteucci, M. (2023). A decision support system for Rey–Osterrieth complex figure evaluation. Expert Systems with Applications, 213, 119226. https://doi.org/10.1016/j.eswa.2022.119226 | |
dc.relation.references | Estella-Nonay, E., Bachiller-Mayoral, M., Valladares-Rodriguez, S., & Rincón, M. (2022). Automatic Diagnosis of Mild Cognitive Impairment Using Siamese Neural Networks. En J. M. Ferrández Vicente, J. R. Álvarez-Sánchez, F. de la Paz López, & H. Adeli (Eds.), Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (pp. 416-425). Springer International Publishing. https://doi.org/10.1007/978-3-031-06242-1_41 | |
dc.relation.references | Jerskey, B. A. (2018). Rey Complex Figure Test. En J. Kreutzer, J. DeLuca, & B. Caplan (Eds.), Encyclopedia of Clinical Neuropsychology (pp. 1-5). Springer International Publishing. https://doi.org/10.1007/978-3-319-56782-2_1399-2 | |
dc.relation.references | Park, J. Y., Seo, E. H., Yoon, H.-J., Won, S., & Lee, K. H. (2023). Automating Rey Complex Figure Test scoring using a deep learning-based approach: A potential large-scale screening tool for cognitive decline. Alzheimer’s Research & Therapy, 15(1), 145. https://doi.org/10.1186/s13195-023-01283-w | |
dc.relation.references | Park, J.-H. (2024). Non-equivalence of sub-tasks of the Rey-Osterrieth Complex Figure Test with convolutional neural networks to discriminate mild cognitive impairment. BMC Psychiatry, 24(1), 166. https://doi.org/10.1186/s12888-024-05622-5 | |
dc.relation.references | Pucchio, A. D., Vanacore, N., Marzolini, F., Lacorte, E., Fiandra, T. D., Group, I.-D., & Gasparini, M. (2018). Use of neuropsychological tests for the diagnosis of dementia: A survey of Italian memory clinics. BMJ Open, 8(3), e017847. https://doi.org/10.1136/bmjopen-2017-017847 | |
dc.relation.references | Rey, A. (1941). L’examen psychologique dans les cas d’encéphalopathie traumatique. (Les problems.). [The psychological examination in cases of traumatic encepholopathy. Problems.]. Archives de Psychologie, 28, 215-285. | |
dc.relation.references | Simfukwe, C., An, S. S., & Youn, Y. C. (2021). Comparison of RCF Scoring System to Clinical Decision for the Rey Complex Figure Using Machine-Learning Algorithm. Dementia and Neurocognitive Disorders, 20(4), 70. https://doi.org/10.12779/dnd.2021.20.4.70 | |
dc.relation.references | Yang, G. R., & Wang, X.-J. (2020). Artificial Neural Networks for Neuroscientists: A Primer. Neuron, 107(6), 1048-1070. https://doi.org/10.1016/j.neuron.2020.09.005 | |
dc.relation.references | Youn, Y. C., Pyun, J.-M., Ryu, N., Baek, M. J., Jang, J.-W., Park, Y. H., Ahn, S.-W., Shin, H.-W., Park, K.-Y., & Kim, S. Y. (2021). Use of the Clock Drawing Test and the Rey–Osterrieth Complex Figure Test-copy with convolutional neural networks to predict cognitive impairment. Alzheimer’s Research & Therapy, 13(1), 85. https://doi.org/10.1186/s13195-021-00821-8 | |
dc.relation.references | Zhang, X., Lv, L., Min, G., Wang, Q., Zhao, Y., & Li, Y. (2021). Overview of the Complex Figure Test and Its Clinical Application in Neuropsychiatric Disorders, Including Copying and Recall. Frontiers in Neurology, 12. https://doi.org/10.3389/fneur.2021.680474 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacionall | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http:/purl.org/coar/access_right/c_abf2/ | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source.url | https://vimeo.com/10 2359454 | |
dc.subject | Figura compleja de rey | |
dc.subject | Inteligencia artificial | |
dc.subject | Deterioro cognitivo | |
dc.subject.ddc | 150 | |
dc.subject.keywords | Rey complex figure | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | Cognitive impairment | |
dc.title | La figura de rey como instrumento de clasificación de deterioro cognitivo con el apoyo de inteligencia artificial | |
dc.title.translated | Complex rey figure as an instrument of classification of cognitive impairment with artificial intelligence support | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.23 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 321.57 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 340.57 KB
- Formato:
- Adobe Portable Document Format
- Descripción: