Efecto in vitro de una solución estabilizada de ácido hipocloroso (HOCl) para uso odontológico sobre la expresión de factores de crecimiento y el ciclo celular en fibroblastos orales humanos
dc.contributor.advisor | Perdomo, Sandra Janeth | |
dc.contributor.advisor | Lafaurie Villamil, Gloria Ines | |
dc.contributor.author | Calderón Mendoza, Justo Leonardo | |
dc.date.accessioned | 2023-03-03T14:58:56Z | |
dc.date.available | 2023-03-03T14:58:56Z | |
dc.date.issued | 2016 | |
dc.description.abstract | La reparación de los tejidos de la mucosa oral después de una lesión requiere un balance entre la producción de citocinas y factores de crecimiento permitiendo la reparación tisular. En algunas circunstancias clínicas, se utilizan enjuagues que favorecen el proceso de reparación de los tejidos. Sin embargo, las alternativas disponibles en el mercado a pesar de usarse a bajas concentraciones, tienen un alto grado de citotoxicidad. El HOCl es una solución antimicrobiana utilizada por más de 10 años en Colombia, en el tratamiento de heridas de piel y mucosas. Su eficacia antimicrobiana y efectos sobre la reparación tisular demostrados en el uso médico, lo hacen una importante alternativa terapéutica para ser utilizada para el tratamiento de heridas de la mucosa oral. En este trabajo se evaluó el efecto de una solución estabilizada de HOCl pH 5.6 (+/-0.2) diseñada para uso odontológico sobre la línea celular de fibroblastos gingivales humanos (HGnF 2620), con el fin de elucidar mecanismos celulares y moleculares que puedan proponer al HOCl, como una alternativa terapéutica para la reparación de heridas de cavidad oral. Para ello, se evaluó la citotoxicidad, los niveles en la expresión de los genes TGFΒ, FGF, NFkB, VEGF, EGF como marcadores de reparación y BAX, p53, BCL2 y E2F como marcadores de apoptosis y ciclo celular. Se evaluó el efecto del HOCl sobre el contenido de ADN por citometría de flujo y la expresión de proteínas IP3k/AKT, JNK, ERK y P38 MAPK en FGH expuestos a tratamientos con HOCl por western blot. . La expresión de los genes en función a la concentración y tiempo de exposición a HOCl se analizó por ANOVA de dos vías. Los resultados muestran que el HOCl tiene efectos sobre los FGH dependientes de concentración y pH. A concentraciones de ≤47,5µM detiene el ciclo celular de los FGH e induce aneuploidia. A concentraciones entre 95µM y 190µM el HOCl estimula la expresión de los factores de crecimiento TGF-β, FGF y VEGF y activa proteínas de la familia MAPK (ERK). En conclusión el HOCl está involucrando en importantes vías de señalización de reparación tisular dependiendo de concentración y pH, hallazgos que permiten considerar su uso como posible alternativa terapéutica en el tratamiento de lesiones en cavidad oral. | spa |
dc.description.abstractenglish | Mucosal wound healing after an injury requires coordination between growth factors and cytokines production enabling tissue repair. In many clinical circumstances, it is required the use of agents to promote tissue repair processes. However, the available alternatives in the market even at low concentrations have a high degree of cytotoxicity. HOCl is an antimicrobial solution used in Colombia for over 10 years in the treatment of wounds in skin and mucosa. Its antimicrobial efficacy on pathogens and its effects on tissue repair demonstrated in the medical setting, make it an important therapeutic alternative to be used during the treatment of wounds in the oral cavity. The effect of a stable solution of HOCl to be used in oral health at pH 5.2 (+/-0.2) and 5.6 (+/-0.2) on the human gingival fibroblast (HGnF 2620) cell line was evaluated, with the objective to elucidate cellular and molecular mechanisms which may introduce the HOCl as a novel therapeutic for the treatment and repair of wounds in oral cavity. Briefly, cytotoxicity and changes in the expression of TGF-β, FGF, NFkB, VEGF, EGF genes as markers of tissue repair and BAX, p53, E2F, BCL2 as markers of cell cycle and apoptosis in HGF was evaluated. The HOCl effect over DNA content in the HGF was evaluated by flow cytometry and the protein expression of IP3k/AKT, JNK, ERK and P38 MAPK in HGF after treatment with HOCl was evaluated by western blot. Gene expression in function to the concentration and exposure time to HOCl was analyzed using a two ways ANOVA. Results suggest HOCl has effects on the HGF depending on concentration and pH. HOCl Concentrations of ≤47.5um could induce cell cycle arrest in HGF and aneuploidy. At Concentrations between 95µM and 190µM the HOCl stimulates the expression of growth factors such as TGF-β, FGF and VEGF; and activates MAPK signaling pathway (ERK). In conclusion, the HOCl is involved in important tissue repair signaling pathways, depending on its concentration and pH. Important findings to consider its use as a possible therapeutic alternative in the treatment of oral wounds. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/10098 | |
dc.language.iso | spa | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Guo S, DiPietro LA. Factors Affecting Wound Healing. Journal of Dental Research. 2010;89(3):219-229. | spa |
dc.relation.references | Acosta A. Fibroblast: its origin, structure, functions and heterogeneity within the periodontium. Universitas Odontologica. 2006 Jun-Dec;25(57):26-33. | spa |
dc.relation.references | Gosain A, DiPietro LA. Aging and wound healing. World journal of surgery. 2004 Mar;28(3):321-6. | spa |
dc.relation.references | Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunology Letters 2014 December 1;162(2):2238. | spa |
dc.relation.references | Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends in immunology 2014 January;35(1):3-11. | spa |
dc.relation.references | Koivisto L, Heino J, Häkkinen L, Larjava H. Integrins in Wound Healing. Advances in Wound Care 2014 December; 3(12):762-783. | spa |
dc.relation.references | Bartold PM, Walsh LJ, Narayanan AS. Molecular and cell biology of the gingiva. Periodontol 2000. 2000 Oct;24:28-55. | spa |
dc.relation.references | A. T. Nurden. Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis 2011;105 Suppl 1(Suppl. 1):S33. | spa |
dc.relation.references | Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol. 1997;151: 317–322. | spa |
dc.relation.references | Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology 2008 October;47(suppl_5):v4. | spa |
dc.relation.references | Hill SJ, Ebersole JL. The effect of lipopolysaccharide on growth factor-induced mitogenesis in human gingival fibroblasts. J Periodontol. 1996;(67):1274–1280. | spa |
dc.relation.references | Kent LW, Rahemtulla F, Michalek SM. Interleukin (IL)-1 and Porphyromonas gingivalis lipopolysaccharide stimulation of IL-6 production by fibroblasts derived from healthy or periodontally diseased human gingival tissue. Journal of Periodontology. 1999: 70: 274–282. | spa |
dc.relation.references | Bartold PM, Narayanan AS, Page RC. Platelet-derived growth factor reduces the inhibitory effects of lipopolysaccharide on gingival fibroblast proliferation. Journal of periodontal research 1992 September;27(5):499-505. | spa |
dc.relation.references | Chiquet M, Katsaros C, Kletsas D. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair. Periodontology 2000 2015 June;68(1):21-40. | spa |
dc.relation.references | Häkkinen L, Larjava H, Fournier BPJ. Distinct phenotype and therapeutic potential of gingival fibroblasts. Cytotherapy 2014 September;16(9):1171-1186. | spa |
dc.relation.references | McClain SA, Simon M, Jones E, Nandi A, Gailit JO, Tonnesen MG, Newman D, Clark RA. Mesenchymal cell activation is the rate-limiting step of granulation tissue induction. The American Journal Pathology. 1996: 149: 1257–1270. | spa |
dc.relation.references | Ray AK, Jones AC, Carnes DL, Cochran DL, Mellonig JT, Oates J, Thomas W. Platelet-derived growth factor-BB stimulated cell migration mediated through p38 signal transduction pathway in periodontal cells. Journal of periodontology 2003 September;74(9):1320-1328. | spa |
dc.relation.references | Nishimura F, Terranova VP. Comparative study of the chemotactic responses of periodontal ligament cells and gingival fibroblasts to polypeptide growth factors. Journal of dental research 1996 April;75(4):986-992. | spa |
dc.relation.references | Marcopoulou CE, Vavouraki HN, Dereka XE, Vrotsos IA. Journal Int Ac of Periodontol. Proliferative effect of growth factors TGF-beta1, PDGF-BB and rhBMP-2 on human gingival fibroblasts and periodontal ligament cells. 2003 Jul;5(3):63-70. | spa |
dc.relation.references | Haase HR, Clarkson RW, Waters MJ, Bartold PM. Growth factor modulation of mitogenic responses and proteoglycan synthesis by human periodontal fibroblasts. Journal of Cell Phys. 1998;174: 353–361. | spa |
dc.relation.references | Fujisawa K, Miyamoto Y, Nagayama M. Basic fibroblast growth factor and epidermal growth factor reverse impaired ulcer healing of the rabbit oral mucosa. Journal of Oral Pathology & Medicine 2003 July;32(6):358-366. | spa |
dc.relation.references | Parkar MH, Kuru L, Giouzeli M., Olsen I. Expression of growth-factor receptors in normal and regenerating human periodontal cells. Arch Oral Biology 2002;46:275-84. | spa |
dc.relation.references | Ekuni D, Firth JD, Putnins EE. Regulation of epithelial cell growth factor receptor protein and gene expression using a rat periodontitis model. J Periodontal Res. 2006;(41):340-9. | spa |
dc.relation.references | Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Experimental Cell Research 2003;284(1):2-13. | spa |
dc.relation.references | Harris RC. Potential physiologic roles for epidermal growth factor in the kidney. American journal of kidney diseases: the official journal of the National Kidney Foundation 1991 June;17(6):627-630. | spa |
dc.relation.references | Galvez-Contreras AY, Quiñones-Hinojosa A, Gonzalez-Perez O. The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain. Frontiers in cellular neuroscience 2013;7:258. | spa |
dc.relation.references | Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nature Medicine. 2013, 19:1389–1400. | spa |
dc.relation.references | Carpenter G, Cohen S. Epidermal growth factor. Journal of Biological Chemistry. 1990, 265:7709–7712. | spa |
dc.relation.references | Gao J, Jordan TW, Cutress TW. Immunolocalization of basic fibroblast growth factor (bFGF) in human periodontal ligament (PDL) tissue. Journal of periodontal research 1996 May;31(4):260. | spa |
dc.relation.references | Yanagita M, Kojima Y, Kubota M, Mori K, Yamashita M, Yamada S, et al. Cooperative Effects of FGF-2 and VEGF-A in Periodontal Ligament Cells. Journal of Dental Research 2014 January;93(1):89-95. | spa |
dc.relation.references | Giannouli CC, Kletsas D. TGF-β regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2. Cellular Signalling 2006;18(9):1417-1429. | spa |
dc.relation.references | Pratsinis H, Giannouli CC, Zervolea I, Psarras S, Stathakos D, Kletsas D. Differential proliferative response of fetal and adult human skin fibroblasts to transforming growth factor‐β. Wound Repair and Regeneration 2004 June;12(3):374-383. | spa |
dc.relation.references | Bartold, M. & Narayanan, A.S. (2006). Molecular and cell biology of healthy and diseased periodontal tissues, Periodontol 2000.2006;40:29-49 | spa |
dc.relation.references | Tipton DA, Dabbous MK. Autocrine transforming growth factor beta stimulation of extracellular matrix production by fibroblasts from fibrotic human gingiva. Journal of periodontology 1998 June;69(6):609. | spa |
dc.relation.references | Schrementi ME, Ferreira AM, Zender C, Dipietro LA. Site-specific production of TGF-B in oral mucosal and cutaneous wounds. Wound Repair Regen. 2008 JanFeb;16(1):80-6 | spa |
dc.relation.references | Lin Z, Sugai JV, Jin Q, Chandler LA, Giannobile WV. Platelet-derived growth factor B gene delivery sustains gingival fibroblast signal transduction. Journal of Periodontal Research. 2008 Aug, 43(4):440-9. | spa |
dc.relation.references | J Bowen, C Cole, R McGlennen. Comparison of Antimicrobial and Wound Healing Agents on Oral Fibroblast Viability and In-vivo Bacterial Load. Dentistry 2015 January 1;5(6):1. | spa |
dc.relation.references | Eberhard J, Jepsen S, Jervøe-Storm P, Needleman I, Worthington HV. Fullmouth treatment modalities (within 24 hours) for chronic periodontitis in adults. The Cochrane database of systematic reviews 2015;4:CD004622.. | spa |
dc.relation.references | Velden vd, U, Strydonck V, D.A.C, Slot DE, Weijden vd, F. Effect of a chlorhexidine mouthrinse on plaque, gingival inflammation and staining in gingivitis patients: a systematic review. Journal of Clinical Periodontology 2012;39(11):10421055. | spa |
dc.relation.references | Silvestri DL, McEnery-Stonelake M. Chlorhexidine: uses and adverse reactions. Dermatitis: contact, atopic, occupational, drug 2013 May;24(3):112. | spa |
dc.relation.references | Jones CG. Chlorhexidine: is it still the gold standard? Periodontology 2000 1997 October;15(1):55-62. | spa |
dc.relation.references | Graziani F, Gabriele M, D'Aiuto F, Suvan J, Tonellie M. Cei S. Dental plaque, gingival inflammation and tooth - discolouration with different commercial formulations of 0.2% chlorhexidine rinse: a double-blind randomised controlled clinical trial. Oral Health Prev Dent:2015;13(2):101-11. | spa |
dc.relation.references | Elfallah HM, Swain MV. A review of the effect of vital teeth bleaching on the mechanical properties of tooth enamel. The New Zealand dental journal 2013 September;109(3):87-96. | spa |
dc.relation.references | Peterson DE, Bensadoun RJ, Roila F. ESMO Management of oral, gastrointestinal mucositis: ESMO Clinical Practice Guidelines. Clinical practice guidelines Annals of Oncology 22 (Supplement 6): vi78–vi84. | spa |
dc.relation.references | Tyski S, Bocian E, Mikucka A, Grzybowska W. Antibacterial activity of selected commercial products for mouth washing and disinfection, assessed in accordance with PN-EN 1040. Medical science monitor : international medical journal of experimental and clinical research 2013;19:458. | spa |
dc.relation.references | Bian L, Gangwen H, Zhao C, Garl P, Wang X. The role of smad 7 in oral mucositis. Protein Cell 2015;6(3):160–169. | spa |
dc.relation.references | Chevalier M, Sakarovitch C, Precheur I, Lamure J, Pouyssegur-Rougier V. Antiseptic mouthwashes could worsen xerostomia in patients taking polypharmacy. Acta Odontologica Scandinavica 2014 May;73(4):267-273. | spa |
dc.relation.references | Lafaurie GI, Calderón JL, Zaror C, Millan L, Castillo DM. Acido hipocloroso: una nueva alternative como agente antimicrobiano y para la proliferación celular para uso en odontología. International Journal of Odontostomatology 2015;9(3):475-481. | spa |
dc.relation.references | Rutala William A., Cole E., Thomann C., Weber David J. 1991. Stability and Bactericidal Activity of Chlorine Solutions. Inf. Control Hosp. Epidem. 19(5):323327. | spa |
dc.relation.references | Wang L, Bassiri M, Najafi R, Najafi K, Yang J, Khosrovi B, Hwong W, Barati E, Belisle B, Celeri C, Robson MC. Hypochlorous acid as a potential wound care agent: part I. Stabilized hypochlorous acid: a component of the inorganic armamentarium of innate immunity. J Burns Wounds.2007;11:65-79. | spa |
dc.relation.references | Kunawarote S, Nakajima M, Shida K, Kitasako Y, Foxton RM, Tagami J. Effect of dentin pretreatment with mild acidic HOCl solution on microtensile bond strength and surface pH. Journal of Dentistry 2010;38(3):261-268. | spa |
dc.relation.references | Eryilmaz M, Palabiyik IM. Hypochlorous Acid - Analytical Methods and Antimicrobial Activity. Trop j of pharmaceutical res.2013;12(1):123-126. | spa |
dc.relation.references | Cusimano M, Cusimano R, Cusimano S, The genious of Alexis carrel. Can Med association, Nov;131(9)1142-1150. | spa |
dc.relation.references | Weiss SJ, Klein R, Slavika A. Chlorination of Taurine by Human Neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982 Sept;70(3):598607. | spa |
dc.relation.references | Weiss SJ. Tissue Destruction by Neutrophils. The New England Journal of Medicine 1989 February 9;320(6):365-376. | spa |
dc.relation.references | López A, Ríos C, Calderón JL, Daza A, Mesa Caro, Tobón A, Vélez ID, Robledo SM. Biomédica 2011;31(Sup.3)209-421. | spa |
dc.relation.references | Naranjo J, Acevedo C, Calderón JL, Uso del Ácido Hipocloroso en ulceras de miembros inferiores. Informador médico. 2006;94:8–11. | spa |
dc.relation.references | Selkon JB, Cherry GW, Wilson JM, Hughes MA. Evaluation of hypochlorous acid washes in the treatment of chronic venous leg ulcers. Journal of Wound Care 2006 January;15(1):33-37. | spa |
dc.relation.references | Google.com, Calderon J. Patent, Composition of hypochlorous acid and its applications. Publication number, PCT/IB2001/0020852004. Disponible en: https://www.google.com/patents/US20040062818. | spa |
dc.relation.references | Patentscope.wipo.int, Calderon J. Patent, Method of producing and applications of a composition of hypochlorous acid and its applications. World Intellectual Property Organization (WIPO). 2009. Disponible en: https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2009125297 | spa |
dc.relation.references | EPA.gov. Environmental protection agency of United States (US-EPA). HychloHSD registration 90132-2. Disponible en: https://www3.epa.gov/pesticides/chem_search/ppls/090132-00002-20150316.pdf | spa |
dc.relation.references | Gaitán J, Naranjo J, Saavedra MÁ, Calderón JL, Impacto del Hipocloroso sobre la heridas quirúrgicas de la apendicetomía. Informador médico, 2006, Vol 95, pgs 12 – 14. | spa |
dc.relation.references | Invima.gov. Instituto nacional de vigilancia de medicamentos y alimentos – INVIMA. 2014. Registro Neutroderm®, 2014M-0015585. Disponible: https://www.invima.gov.co/images/pdf/salasespecializadas/Sala_Especializada_de_Medicamentos/acta2007/Acta41_de_2007.pdf. | spa |
dc.relation.references | Lafaurie GI, Aya MR, Arboleda S, Escalante A, Castillo DM, Millán LV, Calderón JL, Ruiz BN. Eficacia desinfectante del ácido hipocloroso sobre cepas con poder patogénico de cavidad oral. Rev Colombiana de Investigación en Odontología.2009;1:3-11. | spa |
dc.relation.references | Castillo DM, Castillo Y, Delgadillo NA, Neuta Y, Jola J, Calderón JL, et al. Viability and Effects on Bacterial Proteins by Oral Rinses with Hypochlorous Acid as Active Ingredient. Brazilian dental journal 2015 October;26(5):519. | spa |
dc.relation.references | Chong-Hou S, Hsein-Kun L. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J Dent Sci 2009;4(2):45-54. | spa |
dc.relation.references | Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple IL. Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res 2004;83:823−31 | spa |
dc.relation.references | Hernandez M,Dutzan N,Garcia S,Abusleme L, Host pathogen interactions in progressive chronic periodontitis. J of dent Res 2011;90(10):1164-1179. | spa |
dc.relation.references | Rothfork JM, Timmins GS, Harris MN, Chen X, Lusis AJ, Otto M, et al. Inactivation of a Bacterial Virulence Pheromone by Phagocyte-Derived Oxidants: New Role for the NADPH Oxidase in Host Defense. Proceedings of the National Academy of Sciences of the United States of America 2004 September 21;101(38):13867-13872. | spa |
dc.relation.references | Chapple ILC, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontology 2000 2007 February;43(1):160-232. | spa |
dc.relation.references | Davies KJA, Davies JMS, Horwitz DA. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radical Biology and Medicine 1993;15(6):637-643. | spa |
dc.relation.references | Teng YA. The role of acquired immunity and periodontal disease progression. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 2003;14(4):237-252. | spa |
dc.relation.references | Marcinkiewicz J, Czajkowska B, Grabowska A, Kasprowicz A, Kociszewska B. Differential effects of chlorination of bacteria on their capacity to generate NO, TNF-alfa and IL-6 in macrophages. Immunology 1994;83:611-6. | spa |
dc.relation.references | Vogt W. Complement activation by myeloperoxidase products released from stimulated human polymorphonuclear leukocytes. Immunobiology 1996; 195:334−46. | spa |
dc.relation.references | Grzesik WJ, Narayanan AS. Cementum and periodontal wound healing and regeneration. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 2002;13(6):474-484. | spa |
dc.relation.references | Pullar JM, Vissers MC, Winterbourn CC. Glutathione oxidation by hypochlorous acid in endothelial cells produces glutathione sulfonamide as a major product but not glutathione disulfide. Journal of Biological Chemistry. 2001;276(25):22120−22125. | spa |
dc.relation.references | Xu Y, Arneja AS, Tappia PS, Dhalla NS. The potential health benefits of taurine in cardiovascular disease. Experimental and clinical cardiology 2008;13(2):57-65. | spa |
dc.relation.references | Tatsumi T, Fliss H. Hypochlorous acid and chloramines increase endothelial permeability: possible involvement of cellular zinc. AJP - Heart and Circulatory Physiology 1994 October 1;267(4):H1597. | spa |
dc.relation.references | Wang L, Khosrovi B, Najafi R. N-Chloro-2,2-dimethyltaurines: a new class of remarkably stable N-chlorotaurines. Tetrahedron letters. 49: 2193 - 95, 2008. | spa |
dc.relation.references | Canakci CF, Cicek Y, Canakci V. Reactive oxygen species and human inflammatory periodontal diseases. Biochemistry 2005;70:619−28. | spa |
dc.relation.references | Slots J, Jorgensen MG. Effective, safe, practical and affordable periodontal antimicrobial therapy: where are we going, and are we there yet?. Periodontology 2000. 2002;28:298-12. | spa |
dc.relation.references | Silva FSG, Starostina IG, Ivanova VV, Rizvanov AA, Oliveira PJ, Pereira SP. Determination of Metabolic Viability and Cell Mass Using a Tandem Resazurin/Sulforhodamine B Assay. Current Prots Toxicol 2016 May;68:2.24.12.24.15. | spa |
dc.relation.references | Livak KJ, Smittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 22DDCT Method. Methods. 2001 Dec;25(4):402–408. | spa |
dc.relation.references | Faria G, Cardoso CR, Larson RE, Silva JS, Rossi MA. Chlorhexidine induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress. Toxicology and Applied Pharmacology. 2009 Jan 15, 234(2):256-65 | spa |
dc.relation.references | Nishikiori R, Nomura Y, Sawajiri M, Masuki K, Hirata I, Okazaki M. Influence of chlorine dioxide on cell death and cell cycle of human gingival fibroblasts. Journal of Dentistry. 2008 Dec, 36(12):993-8. | spa |
dc.relation.references | Siegel JJ, Amon A. New Insights into the Troubles of Aneuploidy. Annual Review of Cell and Developmental Biology 2012 November 10;28(1):189-214. | spa |
dc.relation.references | Vissers MC, Pullar JM, Hampton MB. Hypochlorous acid causes caspase activation and apoptosis or growth arrest in human endothelial cells. The Biochemical journal 1999 December 1;344 Pt 2(2):443-449. | spa |
dc.relation.references | Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous Acid Generated by Myeloperoxidase Modifies Adjacent Tryptophan and Glycine Residues in the Catalytic Domain of Matrix Metalloproteinase-7 (Matrilysin): An oxidative mechanism for restraining proteolytic activity during inflammation. Journal of Biological Chemistry 2003 August 1;278(31):28403-28409. | spa |
dc.relation.references | Than TA, Ogino T, Omori M, Okada S. Monochloramine inhibits etoposideinduced apoptosis with an increase in DNA aberration. Free Radic Biol Med. 2001 Apr 15, 30(8):932-40. | spa |
dc.relation.references | Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature reviews. Molecular cell biology 2013 April;14(4):197. | spa |
dc.relation.references | Dutta A, Abbas T. p21 in cancer: intricate networks and multiple activities. Nature Reviews Cancer 2009 July;9(7):460-461. | spa |
dc.relation.references | Zhu H, Zhang L, Wu S, Teraishi F, Davis JJ, Jacob D, Fang B. Induction of Sphase arrest And p21 overexpression by a small molecule 2[[3-(2,3dichlorophenoxy)propyl] amino]ethanol in correlation with activation of ERK. Oncogene. 2004 Jun;23(29):4984-92. | spa |
dc.relation.references | UKnowledge.uky.edu. University of Kentucky. Bin L, p53 and Reactive oxygen species: a convoluted story. University of Kentucky. Master theses. 2007. Disponible en: uknowledge.uky.edu/cgi/viewcontent.cgi?article=1453&context=gradschool_theses | spa |
dc.relation.references | Vile GF, Rothwell LA, Kettle AJ. Initiation of Rapid, P53-Dependent Growth Arrest in Cultured Human Skin Fibroblasts by Reactive Chlorine Species. Arch Biochem Biophys. 2000 may 1;377(1):122-8. | spa |
dc.relation.references | Hosako M, Ogino T, Omori M, Okada S. Cell cycle arrest by monochloramine through the oxidation of retinoblastoma protein. Free rad Biol and Med 2004;36(1):112-122. | spa |
dc.relation.references | Barnouin K, Dubuisson ML, Child ES, Fernandez de Mattos S, Glassford J, Medema RH, Mann DJ, Lam EW. H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression. J Biol Chem. 2002 Apr 19;277(16):13761-70. | spa |
dc.relation.references | Davies KJA, Davies JMS, Horwitz DA. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radical Biology and Medicine 1993;15(6):637-643. | spa |
dc.relation.references | Midwinter RG, Vissers MC, Winterbourn CC. Hypochlorous acid stimulation of the mitogen-activated protein kinase pathway enhances cell survival. Arch Biochem Biophys. 2001 Oct 1;394(1):13-20. | spa |
dc.relation.references | Saito T, Takahashi H, Doken H, Koyama H. Phorbol myristate acetate induces neutrophil death through activation of p38 mitogen-activated protein kinase that requires endogenous reactive oxygen species other than HOCl. Aratani Y Biosci Biotechnol Biochem. 2005 Nov;69(11):2207-12. | spa |
dc.relation.references | Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci. 1998 Jun 30;851:139-46. | spa |
dc.relation.references | Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogenactivated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem. 1996 Feb 3;271(8):4138-42. | spa |
dc.relation.references | Park SY, Shin SW, Lee SM, Park JW. Hypochlorous acidinduced modulation of cellular redox status in HeLa cells. Archives on Pharmacal Research. 2008, July , 31(7):905-10. | spa |
dc.relation.references | Lefloch R, Pouysse´gur J, Lenormand P. Single and Combined Silencing of ERK1 and ERK2 Reveals Their Positive Contribution to Growth Signaling Depending on Their Expression Levels. Mol Cell Biol Jan;28(1)511–527. | spa |
dc.relation.references | Sanjo H, Hikida M, Aiba Y, Mori Y, Hatano N, Ogata M, Kurosaki T. Extracellular Signal-Regulated Protein Kinase 2 Is Required for Efficient Generation of B Cells Bearing Antigen-Specific Immunoglobulin. Mol Cell Biol. 2007 Feb;27(4):1236–1246 | spa |
dc.relation.references | Zhang Y, Lin Y, Bowles C, Wang F. Direct Cell Cycle Regulation by the Fibroblast Growth Factor Receptor (FGFR) Kinase through Phosphorylationdependent Release of Cks1 from FGFR Substrate 2. J Biol Chem. 2004 Dec 31;279(53):55348-54. | spa |
dc.relation.references | Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA: FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA 2001;98:58745879. | spa |
dc.relation.references | Steiling H, Werner S. Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Current Opinion in Biotechnology .2003 Oct;14(5):533-7. | spa |
dc.relation.references | Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB. Free Radic Biol Med. 2000;28:1317−27. | spa |
dc.relation.references | Wilgus TA, Ferreira AM, Oberyszyn TM, Valerie K. Bergdall, DiPietro LA. Regulation of scar formation by vascular endothelial growth factor. Lab Invest. 2008 June;88(6):579–590. | spa |
dc.relation.references | Lucarini G, Zizzi A, Aspriello SD., Ferrante L, Tosso E., Muzio L, Foglini P, Mattioli-Belmonte M, DiPrimio R. Piemontese M. Involvement of vascular endothelial growth factor, CD44 and CD 133 in periodontal disease and diabetes: an immunohistochemical study. J Clin Periodontol 2009 Jan;36(1):3-10 | spa |
dc.relation.references | Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Naussef WM. J Leukoc Biol. 2013 Feb;93(2)185-98. | spa |
dc.relation.references | Gualtero DF, Buitrago DM, Trujillo DA, Calderón JL, Lafaurie GI. Efecto de enjuagues de ácido hipocloroso sobre el pH de la saliva: estudio in vitro. Univ Odontol. 2015 Ene-Jun;34(72):19-26 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_14cb | |
dc.rights.local | Acceso cerrado | spa |
dc.subject | Efecto in vitro | spa |
dc.subject | Ácido hipocloroso (HOCl) | spa |
dc.subject | Fibroblastos orales humanos | spa |
dc.subject.keywords | In vitro effect | spa |
dc.subject.keywords | Hypochlorous acid (HOCl) | spa |
dc.subject.keywords | Human oral fibroblasts | spa |
dc.subject.nlm | W 50 | |
dc.title | Efecto in vitro de una solución estabilizada de ácido hipocloroso (HOCl) para uso odontológico sobre la expresión de factores de crecimiento y el ciclo celular en fibroblastos orales humanos | spa |
dc.title.translated | In vitro effect of a stabilized hypochlorous acid (HOCl) solution for dental use on the expression of growth factors and cell cycle in human oral fibroblasts. | spa |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Efecto in vitro de una solución estabilizada de ácido hipocloroso (HOCl) para uso odontológico sobre la expresión de factores de crecimiento y el ciclo celular en fibroblastos orales humanos
- Tamaño:
- 2.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Efecto in vitro de una solución estabilizada de ácido hipocloroso (HOCl) para uso odontológico sobre la expresión de factores de crecimiento y el ciclo celular en fibroblastos orales humanos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: