KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2

dc.contributor.advisorRomero Alvarez, Fran Ernesto
dc.contributor.authorNiño Gómez, Juan Daniel
dc.contributor.orcidNiño Gómez, Juan Daniel [0009-0004-7960-7645]
dc.date.accessioned2024-12-13T14:15:32Z
dc.date.available2024-12-13T14:15:32Z
dc.date.issued2024-05
dc.description.abstractUn Bot conversacional corresponde a una aplicación de software que cuenta con capacidades de Procesamiento de Lenguaje Natural - PLN e Inteligencia Artificial – IA para entablar conversaciones habladas con seres humanos. A diferencia de los tradicionales bots textuales, en los cuales la interacción se lleva a cabo mediante mensajes de texto, un Bot conversacional esta´ en capacidad de entender la voz humana y responder igualmente en lenguaje hablado. El Bot puede ser desplegado de diversas formas, desde sistemas de audio-respuesta sin ningún tipo de interfaz gráfica, hasta sofisticadas aplicaciones móviles que presentan al Bot como un personaje virtual animado con una personalidad y características bien definidas.
dc.description.abstractenglishA conversational Bot is a software application that uses Natural Language Processing (NLP) and Artificial Intelligence (AI) capabilities to engage in spoken conversations with humans. - AI to engage in spoken conversations with human beings. Unlike traditional textual bots, in which the interaction is carried out through text messages, a conversational Bot is able to understand the human voice and respond in spoken language. The Bot can be deployed in a variety of ways, from audio-response systems without any graphical interface, to sophisticated mobile applications that present the Bot as an animated virtual character with a well-defined personality and characteristics.
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero de Sistemasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13700
dc.language.isoes
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programIngeniería de Sistemasspa
dc.relation.references[1] S. A. Hadri y A. Bouramoul, “Towards a deep learning based contextual chat bot for preventing depression in young children with autistic spectrum disorder”, Smart Health, p. 100371, diciembre de 2022. Accedido el 4 de febrero de 2024. [En l ́ınea]. Disponible: https://doi.org/10.1016/j.smhl.2022.100371
dc.relation.references[2] R. L. Weisenburger et al., “Conversational assessment using artificial intelligence is as clinically useful as depression scales and preferred by users”, J. Affect.Disorders, enero de 2024. Accedido el 6 de febrero de 2024. [En l ́ınea]. Disponible:https://doi.org/10.1016/j.jad.2024.01.212
dc.relation.references[3]S. Thakur, D. Rastogi, y L. Singh, “MOODY: A Natural Language Processing-Based Chatbot for Mental Health Care”, en Lecture Notes in Electrical Engineering,Virtual, Online, 2022, pp. 899–908. [En l ́ınea]. Disponible en: http://dx.doi.org/10.1007/978-981-19-4364-5-64
dc.relation.references[4]L. Marciano y S. Saboor, “Reinventing mental health care in youth through mobile approaches: Current status and future steps”, Front Psychol, vol. 14, 2023, doi: 10.3389/fpsyg.2023.1126015.
dc.relation.references[5]P. Parmar, J. Ryu, S. Pandya, J. Sedoc, y S. Agarwal, “Health-focused conversational agents in person-centered care: a review of apps”, NPJ Digit Med, vol. 5,num. 1, 2022, doi: 10.1038/s41746-022-00560-6. ́
dc.relation.references[6]H. Jahanshahi, S. Kazmi, y M. Cevik, “Auto Response Generation in Online Medical Chat Services”, J Healthc Inform Res, vol. 6, num. 3, pp. 344 – 374, 2022, ́doi: 10.1007/s41666-022-00118-x.
dc.relation.references[7]B. M. Chaudhry y A. Islam, “Design Validation of a Workplace Stress Management Mobile App for Healthcare Workers During COVID-19 and Beyond”, en Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Virtual, Online, 2022, pp. 306–321. [En l ́ınea]. Disponible en: http://dx.doi.org/10.1007/978-3-030-94822-1-17
dc.relation.references[8]M.-T. Ho, N.-T. B. Le, P. Mantello, M.-T. Ho, y N. Ghotbi, “Understanding the acceptance of emotional artificial intelligence in the Japanese healthcare system: Across-sectional survey of clinic visitors’ attitude”, Technol Soc, vol. 72, 2023, [En línea]. Disponible en: http://dx.doi.org/10.1016/j.techsoc.2022.102166
dc.relation.references[9]Li, J., Wang, X., Wang, L., Kang, H. (2022). Effects of Artificial Intelligence and Virtual Reality in Martial Arts Sports on Students’ Physical and Mental Health. International Transactions on Electrical Energy Systems, 2022. http://dx.doi.org/10.1155/2022/1359243
dc.relation.references[10]Joyce, D. W., Kormilitzin, A., Smith, K. A., Cipriani, A. (2023). Explainable artificial intelligence for mental health through transparency and interpretability for understandability. Npj Digital Medicine, 6(1). http://dx.doi.org/10.1038/s41746-023-00751-9
dc.relation.references[11]Omarov, B., Narynov, S., Zhumanov, Z. (2023). Artificial Intelligence-Enabled Chatbots in Mental Health: A Systematic Review. Computers, Materials and Continua, 74(3), 5105–5122. http://dx.doi.org/10.32604/cmc.2023.034655
dc.relation.references[12]Dham, V., Rai, K., Soni, U. (2021). Mental Stress Detection Using Artificial Intelligence Models. Journal of Physics: Conference Series, 1950(1). https://doi.org/10.1088/1742-6596/1950/1/012047
dc.relation.references[13]Hilal, A. M., ISSAOUI, I., Obayya, M., Al-Wesabi, F. N., NEMRI, N., Hamza, M. A., al Duhayyim, M., Zamani, A. S. (2022). Modeling of explainable artificial intelligence for biomedical mental disorder diagnosis. Computers, Materials and Continua, 71(2), 3853–3867. http://dx.doi.org/10.32604/cmc.2022.022663
dc.relation.references[14]The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions.https://doi.org/10.1016/j.eng.2023.07.006
dc.relation.references[15] “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research,practice and policy https://doi.org/10.1016/j.ijinfomgt.2023.102642
dc.relation.references[16] Can ChatGPT provide intelligent diagnoses? A comparative study between pre-dictive models and ChatGPT to define a new medical diagnostic bot https://doi.org/10.1016/j.eswa.2023.121186
dc.relation.references[17] Generative artificial intelligence and the ecology of human development https://doi.org/10.1111/jcpp.13860
dc.relation.references[18] A comparative study of retrieval-based and generative-based chatbots using Deep Learning and Machine Learning https://doi.org/10.1016/j.health.2023.100198
dc.relation.references[19] Learning to Fake It: Limited Responses and Fabricated References Provided by ChatGPT for Medical Questions https://doi.org/10.1016/j.mcpdig.2023.05.004
dc.relation.references[20] Using cognitive psychology to understand GPT-3 https://doi.org/10.1073/pnas
dc.relation.references[21] Detecting Symptoms of Depression on Reddit https://doi.org/10.1145/3578503.3583621
dc.relation.references[22] M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, p. n71, Mar. 2021, doi: 10.1136/bmj.n71.
dc.relation.references[23] “Ml-ops.org,” Jan. 22, 2024. https://ml-ops.org/content/crisp-ml
dc.relation.references[24] Hilal, A. M., ISSAOUI, I., Obayya, M., Al-Wesabi, F. N., NEMRI, N., Hamza, M. A., al Duhayyim, M., Zamani, A. S. (2022). Modeling of explainable artificial intelligence for biomedical mental disorder diagnosis. Computers, Materials and Continua, 71(2), 3853–3867. http://dx.doi.org/10.32604/cmc.2022.022663
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectModelo extenso de lenguaje
dc.subjectBot conversacional
dc.subjectDolor oncológico pediátrico
dc.subjectTransformadores
dc.subjectInteligencia artificial
dc.subject.ddc621.3
dc.subject.keywordsLarge Language Model
dc.subject.keywordsConversational Bot
dc.subject.keywordsPediatric Oncologic Pain
dc.subject.keywordsTransformers
dc.subject.keywordsArtificial Intelligence
dc.titleKENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2
dc.title.translatedKENITO, the conversational bot for the evaluation of pediatric oncologic pain management - Phase 2
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
1.48 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1. Acta de aprobacion.pdf
Tamaño:
98.93 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
176.62 KB
Formato:
Adobe Portable Document Format
Descripción: