Modelos de difusión probabilísticos como emuladores en simulaciones de gravedad modificada
dc.contributor.advisor | Hortua Orjuela, Hector Javie | |
dc.contributor.author | Saavedra Tafur, Paola Andrea | |
dc.contributor.author | Riveros Galeano, Julieth Katherine | |
dc.date.accessioned | 2024-09-06T19:10:10Z | |
dc.date.available | 2024-09-06T19:10:10Z | |
dc.date.issued | 2024-06 | |
dc.description.abstract | En este trabajo, se usa la aplicación de modelos de difusión probabilística (DDPM) y de eliminación de ruido (DDIM) en la generación de simulaciones de N-cuerpos en modelos de gravedad modificada. Los DDPM añaden ruido de manera controlada a través de una cadena de Markov, donde cada paso de difusión depende exclusivamente del anterior, incrementando gradualmente la indistinción. Por otro lado, los DDIM introducen una mayor flexibilidad al permitir referencias a estados anteriores más distantes en el proceso de difusión. En este documento reportamos que los modelos DDPM proveen un excelente emulador para la generación de las simulaciones cosmológicas a nivel del espectro de potencias y biespectro obteniendo un r2 = 0.8, mientras que los modelos DDIM fallan en la extracción de la normalización. Este enfoque juega un papel importante en cosmología, donde la precisión y la rapidez en la generación de simulaciones son esenciales para la estimación de parámetros y la restricción de modelos de gravedad. | |
dc.description.abstractenglish | In this work, the application of Denoising Diffusion Probabilistic Models (DDPM) and Denoising Diffusion Implicit Models (DDIM) is used in the generation of N-body simulations in modified gravity models. DDPMs add noise in a controlled manner through a Markov chain, where each diffusion step depends exclusively on the previous one, gradually increasing indistinguishability. On the other hand, DDIMs introduce greater flexibility by allowing references to more distant previous states in the diffusion process. In this document, we report that DDPM models provide an excellent emulator for the generation of cosmological simulations at the level of power spectrum and bispectrum, achieving an r2 = 0.8, while DDIM models fail in the extraction of normalization. This approach plays an important role in cosmology, where precision and speed in the generation of simulations are essential for parameter estimation and model constraint of gravity. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12962 | |
dc.language.iso | es | |
dc.relation.references | Abadi M., contributors 2023, TensorFlow: An End-to-End Open Source Machine Learning Platform, https://github.com/ tensorflow/tensorflow | |
dc.relation.references | Abareshi B., et al., 2022, The Astronomical Journal, 164, 207 | |
dc.relation.references | Bernardeau F., Colombi S., Gaztanaga E., Scoccimarro R., 2002, Physics Reports, 367, 1 | |
dc.relation.references | B´eres A., 2022, Denoising Diffusion Implicit Models, https:// keras.io/examples/generative/ddim/ | |
dc.relation.references | Chollet F., contributors 2023, Keras: The Python Deep Learning library, https://github.com/keras-team/keras | |
dc.relation.references | Corso G., St¨ark H., Jing B., Barzilay R., Jaakkola T., 2023, Diff Dock: Diffusion Steps, Twists, and Turns for Molecular Dock ing (arXiv:2210.01776) | |
dc.relation.references | Garc´ıa-Farieta J. E., Hort´ ua H. J., Kitaura F.-S., 2024, Astronomy & Astrophysics, 684, A100 | |
dc.relation.references | Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., 2014, Advances in neural information processing systems, 27 | |
dc.relation.references | Ho J., Jain A., Abbeel P., 2020, arXiv preprint arxiv:2006.11239 | |
dc.relation.references | Hu W., Sawicki I., 2007, Physical Review D, 76, 064004 | |
dc.relation.references | Kingma D. P., Welling M., 2022, Auto-Encoding Variational Bayes (arXiv:1312.6114) | |
dc.relation.references | Koda J., Blake C., Beutler F., Kazin E., Marin F., 2016, Monthly Notices of the Royal Astronomical Society, 459, 2118–2129 | |
dc.relation.references | Kuhlen M., Vogelsberger M., Angulo R., 2012, Physics of the Dark Universe, 1, 50 | |
dc.relation.references | Lorenzo-Gonz´alez M., Calvo-Iglesias E., ´ Avarez-Fern´andez I., 2022, Ciencia, T´ ecnica y Mainstreaming Social, pp 33–42 | |
dc.relation.references | Nain A. K., 2022, Denoising Diffusion Probabilistic Mod els, https://keras.io/examples/generative/denoising_ diffusion_probabilistic_models/ | |
dc.relation.references | Ntampaka M., et al., 2021, The Role of Machine Learning in the Next Decade of Cosmology (arXiv:1902.10159) | |
dc.relation.references | Planck Collaboration Aghanim N., Akrami Y., Ashdown M., Au mont J., et al., 2020, Planck 2018 results. VI. Cosmological parameters, https://www.aanda.org/articles/aa/abs/2020/ 09/aa33910-18/aa33910-18.html | |
dc.relation.references | Rezende D., Mohamed S., 2015, in International conference on machine learning. pp 1530–1538 | |
dc.relation.references | Rombach R., Blattmann A., Lorenz D., Esser P., Ommer B., 2022, High-Resolution Image Synthesis with Latent Diffusion Models (arXiv:2112.10752) | |
dc.relation.references | Rouhiainen A., 2024, Cosmology at the Field Level with Proba bilistic Machine Learning (arXiv:2402.07694) | |
dc.relation.references | Sohl-Dickstein J., Weiss E. A., Maheswaranathan N., Ganguli S., 2015, Deep Unsupervised Learning using Nonequilibrium Ther modynamics (arXiv:1503.03585) | |
dc.relation.references | Song J., Meng C., Ermon S., 2021, in International Confer ence on Learning Representations. https://openreview.net/ forum?id=St1giarCHLP | |
dc.relation.references | Song J., Meng C., Ermon S., 2022, Denoising Diffusion Implicit Models (arXiv:2010.02502) Diffusion Implicit Models (arXiv:2304.03322) | |
dc.relation.references | Tassev S., Zaldarriaga M., Eisenstein D. J., 2013, Journal of Cos mology and Astroparticle Physics, 2013, 036–036 | |
dc.relation.references | Valogiannis G., Dvorkin C., 2022, Physical Review D, 106 | |
dc.relation.references | Verbin D., Hedman P., Mildenhall B., Zickler T., Barron J. T., Srinivasan P. P., 2021, Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields (arXiv:2112.03907) | |
dc.relation.references | Winther H. A., 2017, MG-PICOLA-PUBLIC, https://github. com/HAWinther/MG-PICOLA-PUBLIC | |
dc.relation.references | Yang R., Srivastava P., Mandt S., 2023, Entropy, 25, 1469 | |
dc.relation.references | Yankelevich V., Porciani C., 2018, Monthly Notices of the Royal Astronomical Society, 483, 2078–2099 | |
dc.relation.references | Zhang G., Ji J., Zhang Y., Yu M., Jaakkola T., Chang S., 2023, Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models (arXiv:2304.03322) | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http:/purl.org/coar/access_right/c_abf2/ | |
dc.rights.local | Acceso abierto | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Deep Learning | |
dc.subject | Modelos generativos | |
dc.subject | Astrofísica | |
dc.subject | Simulaciones de N-cuerpos | |
dc.subject | Gravedad modificada | |
dc.subject.keywords | Deep Learning | |
dc.subject.keywords | Generative models | |
dc.subject.keywords | Astrophysics | |
dc.subject.keywords | N-body simulations | |
dc.subject.keywords | Modified gravity | |
dc.title | Modelos de difusión probabilísticos como emuladores en simulaciones de gravedad modificada | |
dc.title.translated | Probabilistic diffusion models as emulators in modified gravity simulations |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 2.74 MB
- Formato:
- Adobe Portable Document Format