Generación de resultados de imágenes de diagnóstico médico: modelación y simulación

dc.contributor.authorMendoza Torres, Martha Ruth
dc.contributor.authorMedina Chacón, Emilsy Rosio
dc.contributor.orcidMedina Chacón, Emilsy Rosio [0000-0002-9198-5022]spa
dc.date.accessioned2023-12-04T17:08:27Z
dc.date.available2023-12-04T17:08:27Z
dc.date.issued2023
dc.description.abstractEste libro documenta la investigación sobre las causas de demora en la entrega de resultados de imágenes diagnósticas, requeridos para detectar patologías que demandan pronta intervención médica. El estudio se valió de un modelo de análi sis y control de la red de los procesos estocásticos de generación de resultados de resonancia magnética, escanografía y rayos X, el manejo estadístico de grandes volúmenes de datos y la simulación como analogía en relación con procesos industriales y comerciales. Se encontraron interrupciones del flujo de procesa miento de imágenes por falta de sincronía entre el orden de procesamiento y los horarios de trabajo de los procesos de la red, lo que genera retrasos en la obtención de los resultadosspa
dc.description.abstractenglishThis book documents research on the causes of delays in the delivery of diag nostic imaging results, required to detect pathologies that demand prompt medical intervention. The study used a model of analysis and control of the network of stochastic processes for generating magnetic resonance, scanog raphy and X-ray results, statistical management of large volumes of data, and simulation as an analogy in relation to industrial and commercial processes. Interruptions in the image processing flow were found due to lack of synchrony between the processing order and the work schedules of the network processes, which generates delays in obtaining diagnostic results. Due to the application of process analysis methodologies from industry and commerce to health processes, this work can be a useful reference for academia, for future research and for the management of health services.spa
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.instnameÁpite
dc.identifier.isbn978-958-739-341-5spa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlhttps://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/11642
dc.publisherUniversidad El Bosquespa
dc.publisherÁpite
dc.publisher.grantorUniversidad El Bosquespa
dc.relation.referencesAbdullah, H., Lam, S., Ang, B., Pourghaderi, A., Nguyen, F., Matchar, D., Tan H. & Ong, M. (2022). Resuming elective surgery after covid-19: A simullating modelling framework for guiding the phased opening of operating room. International Journal of Medical Informatics. Vol 158, pp. 1-12 https://doi.org/10.1016/j.ijmedinf.2021.104665spa
dc.relation.referencesAcevedo, M., Herrera, J., & Herrera, J. (2016). Propuesta de mejoramiento de la asignación de las cargas de trabajo de los transcriptores de exámenes de diagnóstico en Idime S.A., sede Lago y sede Norte, Bogotá. Trabajo de Grado, Universidad El Bosque, Bogotá.spa
dc.relation.referencesAgudelo, L., & Escobar, J. (2010). Gestión por procesos. Instituto Colombiano de Normas Técnicas ICONTEC.spa
dc.relation.referencesAlba, L. F. (2010). Manejo de la calidad en un departamento de radiología e imagen. Curso nacional para la implementación de un sistema de calidad en salud, Departamento de Radiología e Imagen INER., Unidad de imagen molecular PET- CT, Medina Sur. https://www.iner.salud.gob.mx/descargas/ARCAL/ponencias/Ponencias-Miercoles/13x45DrLuis-FelipeAlva.pdfspa
dc.relation.referencesAndersen, A., Nielsen, B., Reindhardt, L., & Stidsen, T. (2019). Staff Optimization for time-dependent acute patient flow. European Journal of Operations Research. Vol. 272, pp. 94- 105. https://doi.org/10.1016/j.ejor.2018.06.015spa
dc.relation.referencesAngelo, S., Arruda, E., Goldwasser, R., Lobo, M., Salles, A., & Lapa e Silva, J. (2017). Demand forecast and optimal planning of intensive care unit (ICU) capacity. Pesquisa Operacional. Vol 37(2), pp. 229-245. https://doi.org/0.1590/0101-7438.2017.037.02.022.spa
dc.relation.referencesAnsah, J., Ahmad, S., Lee, L., Shen, Y., Eng, M., Ong, H., Matchar, D., & Schoenenberger, L. (2021). Modeling Emergency Department crowding: Restoring the balance between demand for and supply of emergency medicine. PLoS ONE, pp. 1-33. https:// doi.org/10.1371/journal. pone.0244097.spa
dc.relation.referencesArslan, S., Ozdemir, M., & Ucar, A. (2021). Nowcasting and fo- recasting the Spread of covid-19 and Healthcare Demand in Turkey, a Modeling Study. Frontiers in Public Health. Vol 8, pp. 1-11. https://doi.org/10.3389/fpubh.2020.575145spa
dc.relation.referencesAzarang, M., & García, E. (1998). Simulación y análisis de modelos estocásticos. McGraw Hill.spa
dc.relation.referencesBae, K., Jones, M., Evans, G., & Antimisiares, D. (2017). Simulation Modelling of Patients Flow and Capacity Planning for Regional Long-Term Care Needs: A case study. Health Systems. Vol 8(1), pp. 1-16. https://doi.org/10.1080/20476965.2017.1405873spa
dc.relation.referencesBaia, D., Hahn-Goldberg, S., Aleman, D., & O´Connor, E. (2019). Planning Capacity for Mental Health and Addiction Services in the Emergency Department: A Discrete-Event Simulation Approach. Journal of Healthcare Engineering, pp. 1-11. https://doi.org/10.1155/2019/8973515spa
dc.relation.referencesBarros, O., Weber, R., & Reveco, C. (2021). Demand Analysis and Capacity Management for Hospital Emergencies Using Advanced Forecasting Models and Stochastic Simulation. Operations Research Perspectives. Vol 8, pp. 1-16. https://doi. org/10.1016/j.orp.2021.100208spa
dc.relation.referencesBattacharjee, P., & Ray, P. (2014). Patient flow modelling and performance analisys of healthcare delivery processes in hospitals: A review and reflections. Computers & Industrial Engineering (78), pp. 299-312. https://doi.org/10.1016/j. cie.2014.04.016spa
dc.relation.referencesBhowmik, T., & Eluru, N. (2021). A comprehensive county level model to identify factors affecting hospital capacity and predict future hospital demand. Scientific Reports. Sci Rep 11, 23098. https://doi.org/10.1038/s41598-021-02376-yspa
dc.relation.referencesBittencourt, O., Verter, V, & Yalovsky, M. (2018). Hospital capacity management based on the queueing theory. International Journal of Productivity and Performance Management, 67(2), pp. 224-238. https://doi.org/10.1108/ IJPPM-12-2015-0193spa
dc.relation.referencesBorkiz, C. D. C., Ozmemis, C., Kurbanzade, A. K., Balcik, B., Gunes, E. D., & Tuglular, S. (2021). Capacity Planning for Effective Cohorting of Hemodialysis Patients during the Coronavirus Pandemic: A case study. European Journal of Operational Research.spa
dc.relation.referencesBurgos, F. (2012). Ingeniería de métodos, calidad y productividad. Universidad de Carabobo.spa
dc.relation.referencesCalvino, J., López-Haro, M., Muñoz-Ocaña, J., Puerto, J., & Rodríguez-Chía, A. (2022). Segmentation of scanning transmission electron microscopy images using the ordered median problema. European Journal of Operational Research. Vol 302(2), pp. 671-687. https://doi.org/10.1016/j.ejor.2022.01.022spa
dc.relation.referencesCampillo-Funollet, E., Van Yperen, J., Allman, P., Bell, M., Beresford, W., Clay, J., Dorey, M., Evans, G., Gilchrist, K., Memon, A., Pannu, G., Walkley, R., Watson, M. & Madzvamuse, A. (2021). Predicting and forecasting the impact of local outbreaks of covid-19: use of SEIR-D quantitative epidemiological modelling for healthcare demand and capacity. International Journal of Epidemiology. Int J Epidemiol. 50(4), pp. 1103-1113. https://doi.org/10.1093/ije/dyab106spa
dc.relation.referencesCardona, D., González, J., Rivera, M., & Romero, J. (2012). Aplicación de colas de Poisson en procesos de toma de decisiones en la gestión de servicios médicos. Universidad del Rosario. https://www.researchgate.net/publication/298431357_Aplicacion_de_colas_de_Poisson_en_procesos_de_’toma_de_decisiones’_en_la_gestion_de_servicios_medicosspa
dc.relation.referencesCarter, H., Knowles, D., Moronoy, T., Holtmann, G., Rahman, T., Appleyard, M., . . . Graves, N. (2019). The use of modelling studies to inform planning of the health services: case of rapidly increasing endoscopy services in Australia. BMC. Health Serv Res 19, 608. https://doi.org/10.1186/s12913- 019-4438-xspa
dc.relation.referencesChapilliquén, F. (2013). Diagnóstico del proceso de atención por consultorio externo de un establecimiento de salud, utilizando simulación discreta. [Tesis de pregrado]. Universidad de Piura, Departamento de Ingeniería Industrial y de Sistemas, Piura.spa
dc.relation.referencesChase, R., & Jacobs, F. (2014). Administración de operaciones, producción y cadena de suministros. McGraw Hill.spa
dc.relation.referencesDa Silva, R., Flogiatto, F., Krindges, A., & Cecconello, M. (2021). Dynamic capacity allocation in a radiology service considering different types of patients, individual no-show probabilities, and overbooking. BMC Health Services Research, Res 21, 968, pp. 2-24. https://doi.org/10.1186/s12913- 021-06918-y.spa
dc.relation.referencesDeglise-Hawkinson, J., Helm, J., Huschka, T., Kaufman, D., & Van-Ovayen, M. (2018). A Capacity Allocation Planning Model for Integrated Care and Access Management. Production and Operations Managment. 27(12), pp. 2270-2290. https://doi.org/10.1111/poms.12941spa
dc.relation.referencesDemir, E., Gunal, M., & Southern, D. (2017). Demand and capacity modelling for acute services using discrete event simulation. Health Systems, pp. 1-8. https://doi.org/10.1057/hs.2016.1spa
dc.relation.referencesDemir, E., Southern, D., Rashid, S., & Lebcir, R. (2018). A discret event simulation model to evaluate the treatments pathways of patients with cataract in the United Kingdom. BMC Health Serv Res 18, p. 933. https://doi.org/10.1186/ s12913-018-3741-2spa
dc.relation.referencesFagefors, C., Lantz, B., & Rosen, P. (2020). Creating Short- Term Volume Flexibility in Healthcare Capacity Management. International Journal of Environmental Research and Public Health. Int J Environ Res Public Health. 2020 Nov 17;17(22):8514. doi: 10.3390/ijerph17228514. PMID: 33212944; PMCID: PMC7698355spa
dc.relation.referencesFattahi, M., Keyvansshokoo, E., Kannan, D., & Govindan, K. (2022). Resource planning Strategies for helathcare systems during pandemic. European Journal of Operational Research. Vol. 304(1), pp. 192-206. https://doi.org/10.1016/j. ejor.2022.01.023spa
dc.relation.referencesFralick, M., Kaw, N., Wang, M., Mamdani, N., & Mourad, O. (2021). Analyzing supply and demand on a general internal medicine ward: a cross-sectional study. cmaj Open. 9(4): E1021-E1025. https://doi.org/10.9778/cmajo.20200252spa
dc.relation.referencesFreivalds, A., & Niebel, B. (2014). Ingeniería industrial de Niebel. McGraw Hill.spa
dc.relation.referencesGallego, I. (2016). Estudio de las líneas de espera de pacientes en un centro médico. Universidad de Navarra. [Trabajo de Grado, Universidad Pública de Navarra]. https://hdl.handle. net/2454/20135spa
dc.relation.referencesGarcía, P. (2015). Aplicando teoría de colas en dirección de operaciones. Universidad Politécnica de Valencia. https://personales.upv.es/jpgarcia/LinkedDocuments/Teoriadecolasdoc.pdfspa
dc.relation.referencesGido, J., & Clemens, J. (2007). Administración exitosa de proyectos. Thomson Editores.spa
dc.relation.referencesGreiner, J., Naik, H., Johson, M., Liu, D., Silvestre, B., Ballouk, H., & McCarthy, I. (2021). Learning for the First Wave: Lessons about managing patient flow and resource utilization on medical wards at providence health during the covid-19 pandemic. Healthcare. Healthc (Amst) 9(2):100530. https://doi.org/10.1016/j.hjdsi.2021.100530.spa
dc.relation.referencesGupta, P., Chacko, G., Mavin, P., McDonald, I., Hassan, M., El Hassan M., Omari E., Ali A., Siddiqui R., Khan N., McKenzie L., Bolender T., & Andrews W. (2020). Value Improvement at the Point of Care: Engaging and Empowering front-line teams with a new quality improvement methodology. bmj Open Qual 10(2):e001233. https://doi. org/10.1136/bmjoq-2020-001233spa
dc.relation.referencesGutiérrez, H., & De la Vara, R. (2009). Control estadístico de calidad y seis sigma. Mc Graw Hill.spa
dc.relation.referencesHamrock, E., Paige, K., Parks, J., Scheulen, J., & Levin, S. (Marzo de 2013). Discrete Event Simulation for Healthcare Organizations: A Tool for Decision Making. J Healthc Manag 58(2):110-24, pp.124-5. PMID: 23650696.spa
dc.relation.referencesHeizer, J., & Render, B. (2009). Principios de administración de operaciones. Pearson Education.spa
dc.relation.referencesHernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación. McGraw Hill Interamericana.spa
dc.relation.referencesHopp, W., & Spearman, M. (2001). Factory Physics. Irwin/McGraw Hill.spa
dc.relation.referencesHospital Departamental Mario Correa Rengifo. (2009). Plan de mejoramiento con énfasis en acreditación de enero a marzo de 2010.spa
dc.relation.referencesInstituto de Diagnóstico Médico S.A. (octubre de 2017). Instituto de Diagnóstico Médico S.A. https://www.idime.com.co/Web- site/portfolio-view/escanografia-tac/spa
dc.relation.referencesIzadi, N. (2019). An Integrated Approach to Demand and Capacity Planning in Outpatient Clinics. European Journal of Operational Research, Elsevier, Vol. 279(2), pp. 645-656.spa
dc.relation.referencesJiménez, A., Castro, M., & Costa, J. (2015). Simulación de procesos y aplicaciones.Dextra Editorial S.L.spa
dc.relation.referencesJohannessen, K., & Alexandersen, N. (2018). Improving accessibility for outpatiens in specialist clinics: reducing long waiting times and waiting list with a simple analytic approach. BMC Health Serv Res 18, p. 827. https://doi.org/10.1186/ s12913-018-3635-3.spa
dc.relation.referencesKembe, M. M., Onah, E. S., & Lorkegh, S. (2012). A Study of Waiting and Service Cost of a Multiserver Queuing Model in a Specialist Hospital. International Journal of Scientific & Technology Research, Vol. 1(8), pp. 19-23.spa
dc.relation.referencesKeshtkar, L., Rashwan, W., Abo-Hamad, W., & Arisha, A. (2020). An hybrid system dynamics, discret event simulation and data envelopment analysis to investigate boarding patients in acute hospitals. Operations Research for Health Care. Vol 26. https://doi.org/10.1016/j.orhc.2020.100266.spa
dc.relation.referencesLakshmi, C., & Sivakumar, A. (2013). Application of queueing theory in healthcare: A literature review. Operations Research for Healthcare, Vol 2, pp. 25-39. https://doi.org/10.1016/j. orhc.2013.03.002.spa
dc.relation.referencesLi, J., Luo, I., & Zhu, G. (2021). Patient Mix Optimization in Admission Planning under Multitype Patients and Priority Constraints. Computational and Mathematical Methods in Medicine:5588241.https://doi.org/10.1155/2021/5588241.spa
dc.relation.referencesLópez, E. (2014). Teoría de colas. Universidad de Málaga. https:// www.lcc.uma.es/~ezeqlr/ios/Tema5.pdfspa
dc.relation.referencesLópez-Roldán, P., & Fachelli, S. (2015). Metodología de la Investigación Social Cuantitativa. Universitat Autónoma de Barcelona. Disponible en: https://ddd.uab.cat/pub/cap- lli/2017/185163/metinvsoccua_cap2-4a2017.pdfspa
dc.relation.referencesMackenzie, A., Tomblin, G., & Audas, R. (2019). A dynamic, multi-professional needs basic simulation to inform human resources for health planning. Hum Resour Health 17, 42. https://doi.org/10.1186/s12960-019-0376-2spa
dc.relation.referencesManterola, C., Astudillo, P., Arias, E., & Claros, N. (2013). Revisiones sistemáticas de literatura. Qué se debe saber acerca de ellas. Cirugía española, 91(3), pp. 149-155. https://doi.org/10.1016/j.ciresp.2011.07.009spa
dc.relation.referencesMedlineplus a. (octubre de 2017). Resonancia magnética. https:// medlineplus.gov/spanish/ency/article/003335.htmspa
dc.relation.referencesMedlineplus b. (octubre de 2017). Tomografía computarizada. https://medlineplus.gov/spanish/ctscans.htmlspa
dc.relation.referencesMendoza, M., & Ocampo, E. (2005). Modelo de sincronización de logística interna para empresas productoras pymes. Revista de Tecnología. 8(2), pp. 105-118.spa
dc.relation.referencesMinisterio de Salud. (1999). Resolución 1995. Bogotá, Colombia.spa
dc.relation.referencesMontenegro, V., & Méndez, J. (2018). Propuesta de mejoramiento de los procesos de control de lectura y entrega de resultados de IDIME S.A.. [Trabajo de Grado, Universidad El Bosque].spa
dc.relation.referencesMoretto, N., Comans, T., Chang, A., O´Leary, S., Osborne, S., Carter, H., Smith, D., Cavanagh T., Blond D., & Raymer, M. (2019). Implementation of simulation modelling to improve service planning in specialist orthopaedic and neurosurgical outpatients service. Implementation Science. Sci 14, 78. https://doi.org/10.1186/s13012-019-0923-1.spa
dc.relation.referencesMurphy, G., Birch, S., Mackenzie, A., Rigby, J., & Langley, J. (2017). An Integrated Need-Based Approach to Health Service and Health Workforce Planning: Applications for Pandemic Influenza. Healthc Policy, 13(1), pp. 28-42. https://doi.org/10.12927/hcpol.2017.25193spa
dc.relation.referencesNawawi, M., Zulkepli, J., Khalid, R., & Abidin, N. (2021). Modeling in Healthcare: Selection of Simulation Types. Universal Journal of Public Health. Vol. 9, pp. 401-409. https://doi. org/10.13189/ujph.2021.090607spa
dc.relation.referencesNguyen, T., Sivakumar, A., & Graves, S. (2018). Capacity Planning with Demand Uncertainty for Outpatients Clinics. European Journal of Operational Research. Vol 267(1), pp. 338-348. https://doi.org/10.1016/j.ejor.2017.11.038spa
dc.relation.referencesOrdu, M., Demir, E., & Tofallis, C. (2020). A decision support system for demand and capacity modelling of an accident and emergency department. Health Syst (Basingstoke) 9(1), pp. 31-56. https://doi.org/10.1080/20476965.2018.15611 61.spa
dc.relation.referencesOrdu, M., Demir, E., Tofallis, C., & Gunal, M. (2020). A novel healthcare resource allocation decision support: A forecasting –simulation– optimization approach. Journal of the Operational Research Society, 72(3), pp. 485-500, https:// doi.org/10.1080/01605682.2019.1700186spa
dc.relation.referencesPedrosa, I., Juarros-Ballesteros, J., Robles-Fernández, A., Basteiro, J., García-Cueto, E., (2014). Prueba de Bondad de Ajuste en distribuciones simétricas ¿qué estadístico usar? Universitas Psychologica, 14(1), pp. 245-254. https://doi. org/10.11144/Javeriana.upsy14-1.pbadspa
dc.relation.referencesPosada, G. (2016). Elementos básicos de estadística descriptiva para el análisis de datos. Luis Amigó.spa
dc.relation.referencesRamos, J. (2013). Mi producto: la prueba radiológica; el informe radiológico. Hospital San Juan de Dios Aljarafe. Sociedad Española de Radiología Médica.spa
dc.relation.referencesRaudales, I. R. (2014). Imágenes diagnósticas: conceptos y generalidades. Revista Facultad de Ciencias Médicas, pp. 35-43. Disponible en https://www.bvs.hn/RFCM/pdf/2014/pdf/ RFCMVol11-1-2014-6.pdfspa
dc.relation.referencesRíos, D., Ríos, S., Martín, J., & Jiménez, A. (2009). Simulación. métodos y aplicaciones. AlfaOmega.spa
dc.relation.referencesRoughan, L., & Stafford, J. (2019). Demand and Capacity in an ADHD Team: reducing the wait time for a ADHD assessment to 12 weeks. BMJ Open Qual 8(4):e000653. https:// doi.org/10.1136/bmjoq-2019-000653spa
dc.relation.referencesSai Hanuman, A., Soujanya, R., & Madhuri, P. (2020). Big Data Analitycs in Healthcare Using Machine Learning Alghoritms: A comparative Study. International Journal of Online and Biomedical Engineering, 16(13), pp. 19-32. https://doi. org/10.3991/ijoe.v16i13.18609spa
dc.relation.referencesSelen, W., & Van Mulken, L. (2002). Bussiness Process Flow Analysis as a tool for improving repair loop logistics. APICS: Production and Inventory Managment Journal. https://www.researchgate.net/publication/292295598_Business_process_flow_analysis_as_a_tool_for_improving_re- pair_loop_logisticsspa
dc.relation.referencesSprague, B. L., O’Meara, E. S., Lee, C. I., Lee, J. M., Henderson, L. M., Buist, D. S. M., Alsheik, N., Macarol, T., Perry, H., Tosteson, A. N. A., Onega, T., Kerlikowske, K., Mi- glioretti, D. L. (2021). Prioritizing breast imaging services during the covid pandemic: A survey of breast imaging facilities within the Breast Cancer Surveillance Consortium. Prev Med 151:106540. https://doi.org/10.1016/j.yp- med.2021.106540spa
dc.relation.referencesStenson, B. A., Joseph, J. W., Antkowiak, P. S., Chiu, D. T., & Sanchez, L. D. (2021). Understanding Demand and Capacity Mismatch in an Academic Emergency Department Using a Staircase Model of Provider Capacity and Staggered Shift Start Times. J Emerg Med. 61(3), pp. 336-343. https://doi.org/10.1016/j.jemermed.2021.03.031spa
dc.relation.referencesTaha, H. (2012). Investigación de operaciones. Pearson.spa
dc.relation.referencesTahtis, V., Wilson, N., Northfield, F., Cook, D., Gregory, K., & Reilly, C. C. (2021). A demand-capacity mismatch between rehabilitation need and service provision as a result of the covid-19 pandemic? Early clinical observations from a large teaching hospital in London. Physiotherapy 113, pp. 153-159. https://doi.org/10.1016/j.physio.2021.03.007spa
dc.relation.referencesTomes, C., Schram, B., & Orr, R. (2021). Field Monitoring the Effects of Overnight Shift Work on Specialits Tactical Police Training with Heart Rate Variability Analisis. Sustainability 13(14), p. 7895. https://doi.org/10.3390/su13147895spa
dc.relation.referencesTranscribeya. (Noviembre de 2018). Transcribeya. https://www. transcribeya.com/velocidad-de-transcripcion/spa
dc.relation.referencesTseng, M. H., & Wu, H. C. (2021). Accessibility Assessment of Community Care Resources Using Maximum-Equity Optimization of Supply Capacity Allocation. Int J Environ Res Public Health 18(3), p. 1153. https://doi.org/10.3390/ ijerph18031153spa
dc.relation.referencesvan Bussel, E. M., van der Voort, M. B. V. R., Wessel, R. N., & van Merode, G. G. (2018). Demand, capacity, and access of the outpatient clinic: A framework for analysis and improvement. J Eval Clin Pract 24(3), pp. 561-569. https://doi. org/10.1111/jep.12926spa
dc.relation.referencesvan de Sande, D., Van Genderen, M., Verhoef, C., van Bommel, J., Gommers, D., van Unen, E., Huiskens J., & Grunhagen, D. (2021). Predicting need for hospital-specific interventional care after surgery using electronic health record data. Surgery 170(3). https://doi.org/10.1016/j.surg.2021.05.005spa
dc.relation.referencesViana, J., Simonsen, T., Faraas, H., Schmidt, N., Dahl, F., & Flo, K. (2020). Capacity and patient flow planning in post-term pregnancy outpatient clinics: a computer simulation modelling study. bmc Health Serv Res 20, p. 117. https://doi. org/10.1186/s12913-020-4943-yspa
dc.relation.referencesWiig, S., & O´Hara, J. (2021). Resilient and responsive healthcare services and systems: challenges and opportunities in a changing world. bmc Health Serv Res 21, 1037. https://doi. org/10.1186/s12913-021-07087-8spa
dc.relation.referencesWinston, W. (2005). Investigación de Operaciones: Aplicaciones y algoritmos. Thomson.spa
dc.relation.referencesWood, R. M., Pratt, A. C., Kenward, C., McWilliams, C. J., Booton, R. D., Thomas, M. J., Bourdeaux, C. P., & Vasilakis, C. (2021). The Value of Triage during Periods of Intense covid-19 Demand: Simulation Modeling Study. Med Decis Making 41(4), pp. 393-407. https://doi.org/10.1177/0272989X21994035spa
dc.relation.referencesYau, F., Ferreira, R., Kamali, R., Bird, P. W., Halliwell, R., Patel, H., Nicoara, D. C., Woltmann, G., & Tang, J. W. (2021). Clinical utility of a rapid ‘on-demand’ laboratory-based SARS-CoV-2 diagnostic testing service in an acute hospital setting admitting covid-19 patients. Clin Infect Pract. 12:100086. https://doi.org/10.1016/j.clinpr.2021.100086spa
dc.relation.referencesZhou, L., Geng, N., Jiang, Z., & Jiang, S. (2021). Integrated Multiresource Capacity Planning and Multitype Patient Scheduling. Informs Journal of Computers, 34(1), pp. 29-149. https://doi.org/10.1287/ijoc.2020.1048spa
dc.subjectDiagnóstico por Imagenspa
dc.subjectImagen por resonancia magnéticaspa
dc.subjectCintigrafíaspa
dc.subjectRayos Xspa
dc.subjectMetodologíaspa
dc.subjectMedicinaspa
dc.subject.keywordsDiagnostic imagingspa
dc.subject.keywordsMagnetic resonance imagingspa
dc.subject.keywordsCintigraphy, X-rayspa
dc.subject.keywordsMethodologyspa
dc.subject.keywordsMedicinespa
dc.titleGeneración de resultados de imágenes de diagnóstico médico: modelación y simulaciónspa
dc.title.translatedMedical diagnostic imaging results generation: modeling and simulationspa
dc.typebook
dc.type.coarhttps://purl.org/coar/resource_type/c_2f33
dc.type.driverinfo:eu-repo/semantics/book
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.locallibrospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Libro.pdf
Tamaño:
4.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Generación de resultados de imágenes de diagnóstico médico: modelación y simulación
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones