Predicción del efecto inóculo a Cefazolina en Staphylococcus Aureus susceptible a Meticilina por un método de aprendizaje automático

dc.contributor.advisorDuitama Leal, Alejandro
dc.contributor.advisorReyes Manrique, Jinnethe Cristina
dc.contributor.authorMartín López, Zaidy Ocnary
dc.contributor.authorQuiroga Calderon, Cesar Hobany
dc.contributor.authorReyes Manrique, Lynda Jehny
dc.contributor.authorBermudez Munar, Jose Alejandro
dc.date.accessioned2024-08-03T00:35:22Z
dc.date.available2024-08-03T00:35:22Z
dc.date.issued2024-06
dc.description.abstractLa resistencia a antibióticos constituye un desafío de importancia clínica, no solo en términos de tratamiento biológico y terapéutico de las infecciones, sino también debido a su impacto en la salud pública (1). El Staphylococcus aureus, es un agente bacteriano común en el microbioma humano. Sin embargo, tambiénocasiona gran variedad de entidades infecciosas, incluyendo, bacteriemia, endocarditis, así como infecciones osteoarticulares, cutáneas, de tejidos blandos, pleuropulmonares y relacionadas con dispositivos (2). La incidencia de bacteriemia por Staphylococcus aureus (SAB) en Estados Unidos oscila entre 20 y 50 casos por cada 100.000 habitantes al año, con una tasa de mortalidad entre el 10% y el 30%, superando en número de muertes combinadas al VIH/SIDA, la tuberculosis y la hepatitis viral, lo que representa un considerable costo en términos de salud pública (3,4). La Sociedad Americana de Enfermedades Infecciosas (IDSA) recomienda los antibióticos betalactámicos como tratamiento fundamental para infecciones causadas por Staphylococcus aureus susceptible a meticilina (SASM) (5,6). La cefazolina se ha convertido en una excelente alternativa de tratamiento por sus bajos efectos adversos y su costo (6). Sin embargo, ha surgido un fenómeno de resistencia conocido como el efecto inóculo a cefazolina (CzIE), asociado a la producción de la betalactamasa (BlaZ) (7), lo que plantea la necesidad de explorar alternativas terapéuticas. El uso de técnicas de aprendizaje automático (Machine Learning - ML) se presenta como una vía prometedora para evaluar la capacidad predictiva de modelos en este contexto, lo que podría tener implicaciones significativas en la práctica médica, permitiendo el uso adecuado de la cefazolina y por ende optimizando la toma de decisiones para el tratamiento antibiótico.
dc.description.abstractenglishAntibiotic resistance constitutes a challenge of clinical importance, not only in terms of biological and therapeutic treatment of infections, but also due to its impact on public health (1). Staphylococcus aureus is common in the human microbiome. However, it also causes a wide variety of infections, including bacteremia, infective endocarditis, as well as osteoarticular, cutaneous, soft tissue, pleuropulmonary, and device-related infections (2). The incidence in U.S of Staphylococcus aureus bacteremia (SAB) ranges between 20 and 50 cases per 100,000 inhabitants per year, with a mortality rate between 10% and 30%, surpassing HIV/AIDS, tuberculosis in the number of combined deaths and viral hepatitis, which represents a considerable cost in terms of public health (3,4). The Infectious Diseases Society of America (IDSA) recommends beta-lactam antibiotics as the primary treatment for infections caused by methicillin-susceptible Staphylococcus aureus (MSSA) (5,6). Cefazolin has become an excellent treatment alternative due to its low adverse effects and cost (6). However, a resistance phenomenon known as the cefazolin inoculum effect (CzIE) has emerged, associated with the production of beta-lactamase (BlaZ) (7), which raises the need to explore therapeutic alternatives. The use of machine learning techniques (ML) is presented as a promising way to evaluate the predictive capacity of models in this context, which could have significant implications in medical practice, allowing the appropriate use of cefazolin and therefore optimizing decision making for antibiotic treatment.
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12815
dc.language.isoes
dc.relation.referencesAguado JM, San-Juan R, Lalueza A, Sanz F, Rodríguez-Otero J, Gómez-Gonzalez C, Chaves F. High vancomycin MIC and complicated methicillin-susceptible Staphylococcus aureus bacteremia. Emerg Infect Dis. 2011;17(6):1099–102.
dc.relation.referencesTong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015 28:603– 661.
dc.relation.referencesVan Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev 2012 25:362-86.
dc.relation.referencesKainer MA, Lynfield R, Greissman S, et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med 379: 1732–1744.
dc.relation.referencesLiu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and childrens. Clin Infect Dis 2011 52:e18 – e55
dc.relation.referencesMinter DJ, Appa A, Chambers HF, Doernberg SB. Contemporary Management of Staphylococcus aureus Bacteremia—Controversies in Clinical Practice. Clin Infect Dis 2023 77:e57–e68
dc.relation.referencesRincon S, Reyes J, Carvajal LP, et al. Cefazolin high-inoculum effect in methicillin- susceptible Staphylococcus aureus from South American hospitals. J Antimicrob Chemother 2013 68:2773-8.
dc.relation.referencesOMS. Resistencia a los antimicrobianos. Noviembre 17 de 2021.
dc.relation.referencesO’neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. HM Government – The Wellcome Trust. December 2014:1-16.
dc.relation.referencesPiewngam P, Otto M. Staphylococcus aureus colonisation and strategies for decolonisation. Lancet Microbe. 2024 Mar 19:S2666-5247(24)00040-5.
dc.relation.referencesLiu A, Garrett S, Hong W, Zhang J. Staphylococcus aureus Infections and Human Intestinal Microbiota. Pathogens 2024 24;13:276.
dc.relation.referencesInagaki K, Lucar J, Blackshear C, Hobbs C V. Methicillin-susceptible and Methicillin-resistant Staphylococcus aureus Bacteremia: Nationwide Estimates of 30-Day Readmission, In-hospital Mortality, Length of Stay, and Cost in the United States. Clin Infect Dis 2019;69:2112–8.
dc.relation.referencesINS. Informe De Resultados De La Vigilancia Por Laboratorio De Resistencia Antimicrobiana En Infecciones Asociadas a La Atención En Salud (IAAS) 2018. Dirección Epidemiol las Infecc Asoc a la atención en salud. 2019;29–44.
dc.relation.referencesGould IM, Reilly J, Bunyan D, Walker A. Costs of healthcare-associated methicillin-resistant Staphylococcus aureus and its control. Vol. 16, Clinical Microbiology and Infection. Blackwell Publishing Ltd; 2010. p. 1721–8.
dc.relation.referencesArias CA, Reyes J, Carvajal LP, et al. A prospective cohort multicenter study of molecular epidemiology and phylogenomics of Staphylococcus aureus bacteremia in nine Latin American countries. Antimicrob. Agents Chemother 2017 61:e00816- 17.
dc.relation.referencesReyes J, Rincón S, Díaz L, Panesso D, Contreras GA, Zurita J, et al. Dissemination of Methicillin-Resistant Staphylococcus aureus USA300 Sequence Type 8 Lineage in Latin America. Clin Infect Dis. 2009 Dec;49(12):1861–7.
dc.relation.referencesLi J, Echevarria KL, Hughes DW, Cadena J, Bowling JE, Lewis JS. 2nd. Comparison of cefazolin versus oxacillin for treatment of complicated bacteremia caused by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 2014 58:5117–5124.
dc.relation.referencesCarvajal LP, Rincon S, Echeverri AM, et al. Novel Insights into the Classification of Staphylococcal β-Lactamases in Relation to the Cefazolin Inoculum Effect. Antimicrob Agents Chemother 2020 64:e02511-19.
dc.relation.referencesRincon S, Carvajal LP, Gomez-Villegas SI, et al. A Test for The Rapid Detection of the Cefazolin Inoculum Effect in Methicillin-Susceptible Staphylococcus aureus. J Clin Microbiol 2021 59:e01938-20.
dc.relation.referencesWang W, Baker M, Hu Y, et al. Whole-Genome Sequencing and Machine Learning Analysis of Staphylococcus aureus from Multiple Heterogeneous Sources in China Reveals Common Genetic Traits of Antimicrobial Resistance. mSystems 2021 6:e0118520.
dc.relation.referencesFernandes PO, Dias ALT, Dos Santos Júnior VS, et al. Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus. J Chem Inf Model 2024 64:1932-1944.
dc.relation.referencesGe J, Meng J, Guo N, Wei Y, Balaji P, Feng S. Counting Kmers for Biological Sequences at Large Scale. Interdiscip Sci 2020 12:99-108.
dc.relation.referencesWang S, Zhao C, Yin Y, Chen F, Chen H, Wang H. A Practical Approach for Predicting Antimicrobial Phenotype Resistance in Staphylococcus aureus Through Machine Learning Analysis of Genome Data. Front Microbiol 2022 13:841289.
dc.relation.referencesTang R, Luo R, Tang S, Song H, Chen X. Machine learning in predicting antimicrobial resistance: a systematic review and meta-analysis. Int J Antimicrob Agents 2022 60:106684.
dc.relation.referencesRios R, Gomez-Villegas SI, McNeil JC, et al. A Machine-Learning Approach to Predict the Cefazolin Inoculum Effect in Methicillin-Susceptible 8:S712–S713. P1248. aureus. Open Forum Infectious Diseases 2021 Staphylococcus
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectResistencia a antibióticos
dc.subjectStaphylococcus aureus
dc.subjectStaphylococcus aureus susceptible a meticilina
dc.subjectAprendizaje automático
dc.subjectSASM
dc.subject.keywordsAntibiotic resistance
dc.subject.keywordsStaphylococcus aureus
dc.subject.keywordsMethicillin-susceptible Staphylococcus aureus
dc.subject.keywordsMachine learning
dc.subject.keywordsMSSA
dc.titlePredicción del efecto inóculo a Cefazolina en Staphylococcus Aureus susceptible a Meticilina por un método de aprendizaje automático
dc.title.translatedPrediction of the inoculum effect to Cefazolin in Methicillin susceptible Staphylococcus Aureus using a machine learning method

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
929.82 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
274.36 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 Acta de aprobacion.pdf
Tamaño:
212.43 KB
Formato:
Adobe Portable Document Format
Descripción: