Avances y desafíos en la fabricación de tabletas por impresión 3D
dc.contributor.advisor | Jiménez Cruz, Ronald Andrés | |
dc.contributor.author | González Cristancho, Niccolo | |
dc.date.accessioned | 2024-11-20T16:35:21Z | |
dc.date.available | 2024-11-20T16:35:21Z | |
dc.date.issued | 2024-08 | |
dc.description.abstract | Esta revisión examina los avances y desafíos en la fabricación de tabletas mediante impresión 3D, con un enfoque metodológico basado en el método PRISMA. La revisión de literatura se realizó utilizando bases de datos como PubMed, Scopus y Science Direct, con una búsqueda específica que arrojó 458 resultados iniciales. Tras eliminar duplicados y filtrar estudios según criterios de inclusión, se seleccionaron 51 artículos para análisis completo, de los cuales 30 estudios fueron incluidos en la revisión final. Los temas analizados incluyen el diseño de comprimidos con dosis y liberación controlada, IA aplicada, parámetros de proceso y diseño, impacto ambiental, impacto en el paciente, control de calidad, innovación en tecnología, integración de nanotecnología con impresión 3D, materiales y componente y ensayos in vivo. Los resultados destacan la capacidad de la impresión 3D para fabricar tabletas con geometrías complejas y una dosificación precisa, pero también revelan desafíos significativos como lo es en la tecnología, estabilidad, y regulación farmacéutica. También se evidencio que a menudo, resolver un desafío puede generar otros nuevos, lo que subraya la necesidad de continuar la investigación en esta área. En conclusión, aunque la impresión 3D ha mostrado avances prometedores en la fabricación de tabletas, se requiere un desarrollo continuo para superar los obstáculos existentes y facilitar su adopción más amplia en la industria farmacéutica. | |
dc.description.abstractenglish | This review examines the advances and challenges in tablet fabrication using 3D printing, with a methodological approach based on the PRISMA method. The literature review was conducted using databases such as PubMed, Scopus and Science Direct, with a targeted search yielding 458 initial results. After eliminating duplicates and filtering studies according to inclusion criteria, 51 articles were selected for full analysis, of which 30 studies were included in the final review. Topics analyzed included dose- and release-controlled tablet design, applied AI, process and design parameters, environmental impact, patient impact, quality control, technology innovation, integration of nanotechnology with 3D printing, materials and component, and in vivo testing. The results highlight the ability of 3D printing to manufacture tablets with complex geometries and precise dosing, but also reveal significant challenges such as in technology, stability, and pharmaceutical regulation. It was also evident that often, solving one challenge can generate new ones, underscoring the need for continued research in this area. In conclusion, although 3D printing has shown promising advances in tablet manufacturing, continued development is required to overcome existing hurdles and facilitate its wider adoption in the pharmaceutical industry. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13271 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | [1]. Marta Kozakiewicz-Latała, Karol P Nartowski, Aleksandra Dominik, Katarzyna Malec, Anna M Gołkowska, Adrianna Złocińska, Małgorzata Rusińska, Patrycja Szymczyk-Ziółkowska, Grzegorz Ziółkowski, Agata Górniak & Bożena Karolewicz. (2022). Binder jetting 3D printing of challenging medicines: From low dose tablets to hydrophobic molecules. | |
dc.relation.references | [2]. Moe Elbadawi, Abdul W Basit & Simon Gaisford. (2023). Energy consumption and carbon footprint of 3D printing in pharmaceutical manufacture. | |
dc.relation.references | [3]. Seong Jun Kim, Jae Chul Lee, Jin Young Ko, Seon Ho Lee, Nam Ah Kim & Seong Hoon Jeong. (2021). 3D-printed tablets using a single-step hot-melt pneumatic process for poorly soluble drugs. | |
dc.relation.references | [4]. Thomas Pflieger, Rakesh Venkatesh, Markus Dachtler, Karin Cooke, Stefan Laufer & Dominique Lunter. (2024). Influence of design parameters on sustained drug release properties of 3D-printed theophylline tablets. | |
dc.relation.references | [5]. Ivana Adamov, Gordana Stanojević, Stefan M. Pavlović, Djordje Medarević, Branka Ivković, David Kočović & Svetlana Ibrić. (2024). Powder bed fusion–laser beam (PBF-LB) three-dimensional (3D) printing: Influence of laser hatching distance on the properties of zolpidem tartrate tablets. | |
dc.relation.references | [6]. Matthew J. Page, Joanne E. McKenzie, Patrick M. Bossuyt, Isabelle Boutron, Tammy C. Hoffmann, Cynthia D. Mulrow, Larissa Shamseer, Jennifer M. Tetzlaff, Elie A. Akl, Sue E. Brennan, Roger Chou, Julie Glanville, Jeremy M. Grimshaw, Asbjørn Hróbjartsson, Manoj M, Tianjing Li, Elizabeth W. Loder, Evan Mayo-Wilson, Steve McDonald, Luke A. McGuinness & Sergio Alonso-Fernández. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. | |
dc.relation.references | [7]. Hao Chen, Kai Zheng, Tianshi Bu, Xin Li, Xiangyu Wang & Hao Pan. (2024). Fabrication of 3D-Printed Hydrocortisone Triple Pulsatile Tablet Using Fused Deposition Modelling Technology. | |
dc.relation.references | [8]. Abdullah Alzahrani, Sagar Narala, Ahmed Adel Ali Youssef, Dinesh Nyavanandi, Suresh Bandari, Preethi Mandati, Ahmed Almotairy, Mashan Almutairi & Michael Repka. (2022). Fabrication of a shell-core fixed-dose combination tablet using fused deposition modeling 3D printing. | |
dc.relation.references | [9]. Sooyeon Chung, Peilun Zhang & Michael A. Repka. (2023). Fabrication of timed-release indomethacin core–shell tablets for chronotherapeutic drug delivery using dual nozzle fused deposition modeling (FDM) 3D printing. | |
dc.relation.references | [10]. Yi Hsuan Ou, Wei Jiang Goh & Seng Han Lim. (2023). Form & formulation approaches for COntRollable Release in 3D printed Colonic Targeting (CORR3CT) budesonide Tablet. | |
dc.relation.references | [11]. Varun Sundarkumar, Wanning Wang, Zoltan Nagy & Gintaras Reklaitis. (2023). Manufacturing pharmaceutical mini-tablets for pediatric patients using drop-on-demand printing. | |
dc.relation.references | [12]. Sejad Ayyoubi, Jose R. Cerda, Raquel Fernández-García, Peter Knief, Aikaterini Lalatsa, Anne Marie Healy & Dolores R. Serrano. (2021). 3D printed spherical mini-tablets: Geometry versus composition effects in controlling dissolution from personalised solid dosage forms. | |
dc.relation.references | [13]. Andrea Gabriela Crișan, Sonia Iurian, Alina Porfire, Lucia Maria Rus, Cătălina Bogdan, Tibor Casian, Raluca Ciceo Lucacel, Alexandru Turza, Sebastian Porav & Ioan Tomuță. (2022). QbD guided development of immediate release FDM-3D printed tablets with customizable API doses. | |
dc.relation.references | [14]. Wenrui Yan, Dongdong Liu, Hua Xie, Jintao Shen, Yubao Fang, Yingbao Sun, Wencheng Jiao & Yiguang Jin. (2024). 3D printing of multi-unit gastro-retentive tablets for the pulsatile release of artesunate | |
dc.relation.references | [15]. Yan Jie Neriah Tan, Wai Pong Yong, Han Rou Low, Jaspreet Singh Kochhar, Jayant Khanolkar, Teng Shuen Ernest Lim, Yajuan Sun, Jonathan Zhi En Wong & Siowling Soh. (2021). Customizable drug tablets with constant release profiles via 3D printing technology. | |
dc.relation.references | [16]. Zengming Wang, Xiaolu Han, Ruxin Chen, Jingru Li, Jing Gao, Hui Zhang, Nan Liu, Xiang Gao & Aiping Zheng. (2021). Innovative color jet 3D printing of levetiracetam personalized paediatric preparations. | |
dc.relation.references | [17]. Xinyu Zhao, Wenqing Wei, Ruirong Niu, Qinglan Li, Chunmei Hu & Shuguang Jiang. (2022). 3D Printed Intragastric Floating and Sustained-Release Tablets with Air Chambers. | |
dc.relation.references | [18]. Iria Seoane-Viaño, Tania Pérez-Ramos, Jiaqi Liu, Patricija Januskaite, Elena Guerra-Baamonde, Jorge González-Ramírez, Manuel Vázquez-Caruncho, Abdul W Basit & Alvaro Goyanes. (2024). Visualizing disintegration of 3D printed tablets in humans using MRI and comparison with in vitro data. | |
dc.relation.references | [19]. Joana Macedo, Valérie Vanhoorne, Chris Vervaet & João F Pinto. (2023). Influence of formulation variables on the processability and properties of tablets manufactured by fused deposition modelling. | |
dc.relation.references | [20]. Seyedeh Zahra Mirdamadian, Jaleh Varshosaz, Mohsen Minaiyan & Azade Taheri. (2022). 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/in vivo study. | |
dc.relation.references | [21]. Malte Bogdahn, Johanna Torner, Julius Krause, Michael Grimm & Werner Weitschies. (2021). Influence of the geometry of 3D printed solid oral dosage forms on their swallowability. | |
dc.relation.references | [22]. Tzuyi L Yang, Melpomeni Stogiannari, Sylwia Janeczko, Marva Khoshan, Yueyuan Lin, Abdullah Isreb, Rober Habashy, Joanna Giebułtowicz, Matthew Peak & Mohamed A Alhnan. (2023). Towards point-of-care manufacturing and analysis of immediate-release 3D printed hydrocortisone tablets for the treatment of congenital adrenal hyperplasia. | |
dc.relation.references | [23]. Atabak Ghanizadeh Tabriz, Uttom Nandi, Nicolaos Scoutaris, Karifa Sanfo, Bruce Alexander, Yuchuan Gong, Ho-Wah Hui, Sumit Kumar & Dennis Douroumis. (2022). Personalised paediatric chewable Ibuprofen tablets fabricated using 3D micro-extrusion printing technology. | |
dc.relation.references | [24]. Aseel Samaro, Bahaa Shaqour, Niloofar Moazami Goudarzi, Michael Ghijs, Ludwig Cardon, Matthieu N. Boone, Bart Verleije, Koen Beyers, Valérie Vanhoorne, Paul Cos & Chris Vervaet. (2021). Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing? | |
dc.relation.references | [25]. Shing-Yun Chang, Jun Jin, Jun Yan, Xin Dong, Bodhisattwa Chaudhuri, Karthik Nagapudi & Anson W.K. M. (2021). Development of a pilot-scale HuskyJet binder jet 3D printer for additive manufacturing of pharmaceutical tablets. | |
dc.relation.references | [26]. Xiaoyan Xu, Alejandro Seijo-Rabina, Atheer Awad, Carlos Rial, Simon Gaisford, Abdul W Basit & Alvaro Goyanes. (2021). Smartphone-enabled 3D printing of medicines. | |
dc.relation.references | [27]. Hardik Rana, Dipika Chavada & Vaishali Thakkar. (2024). Amalgamation of nano and 3-D printing technology: Design, optimization, and assessment. | |
dc.relation.references | [28]. Lucía Lopez-Vidal, Juan Pablo Real, Daniel Andrés Real, Nahuel Camacho, Marcelo J. Kogan, Alejandro J. Paredes & Santiago Daniel Palma. (2022). Nanocrystal-based 3D-printed tablets: Semi-solid extrusion using melting solidification printing process (MESO-PP) for oral administration of poorly soluble drugs. | |
dc.relation.references | [29]. Tochukwu C. Okwuosa, Muzna Sadia, Abdullah Isreb, Rober Habashy, Matthew Peak & Mohamed A. Alhnan. (2021). Can filaments be stored as a shelf-item for on-demand manufacturing of oral 3D printed tablets? An initial stability assessment. | |
dc.relation.references | [30]. Nirali G Patel & Abu T M Serajuddin. (2023). Improving drug release rate, drug-polymer miscibility, printability and processability of FDM 3D-printed tablets by weak acid-base interaction. | |
dc.relation.references | [31]. Jenny Johannesson, Jamal Khan, Madlen Hubert, Alexandra Teleki & Christel A.S. Bergström. (2021). 3D-printing of solid lipid tablets from emulsion gels. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Impresión 3D | |
dc.subject | Tabletas | |
dc.subject | Innovación | |
dc.subject | Desarrollo | |
dc.subject | Industria farmacéutica | |
dc.subject | Manufactura | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | 3D printing | |
dc.subject.keywords | Tablets | |
dc.subject.keywords | Innovation | |
dc.subject.keywords | Development | |
dc.subject.keywords | Pharmaceutical industry | |
dc.subject.keywords | Manufacturing | |
dc.title | Avances y desafíos en la fabricación de tabletas por impresión 3D | |
dc.title.translated | Advances and challenges in tablet manufacturing by 3D printing | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 849.23 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Acta de aprobacion.pdf
- Tamaño:
- 2.88 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 206.24 KB
- Formato:
- Adobe Portable Document Format
- Descripción: