Determinación in vitro de la participación de la proteína hipotética SAUSA300_0063 en la activación del operón arc presente en el elemento móvil para el catabolismo de la arginina (ACME) en el clon pandémico USA300

dc.contributor.advisorEscobar-Pérez, Javier
dc.contributor.advisorMárquez Ortiz, Ricaurte Alejandro
dc.contributor.authorCorredor Rozo, Zayda Lorena
dc.contributor.orcidEscobar-Pérez, Javier [0000-0002-0432-6978]
dc.date.accessioned2021-02-16T19:34:16Z
dc.date.available2021-02-16T19:34:16Z
dc.date.issued2021
dc.description.abstractEn las últimas dos décadas se ha reportado la emergencia y rápida diseminación del Staphylococcus aureus resistente a meticilina clon USA300 con una amplia distribución y patogenicidad, causando al ser humano infecciones no solo en el hospital sino en la comunidad. El elemento genético móvil para el catabolismo de la arginina (ACME) fue identificado exclusivamente en este clon y dentro de este elemento se encuentra un operón arc que tiene la misma función catabólica de ACME suministrando ATP en condiciones anaerobias y que en ambientes ácidos aumenta el pH del medio favoreciendo la capacidad para colonizar. Estudios previos en nuestro laboratorio mostraron que una sobreexpresión del operón arcACME en el clon USA300 es dada posiblemente por el gen sausa300_0063 inserto dentro de este operón que codifica para un regulador transcripcional. Determinar la participación de la proteína hipotética SAUSA300_0063 en la activación del operón arc presente en ACME en el clon pandémico USA300. Mediante el sistema de expresión pET303/CT-His en BL21 (DE3) se produjo la proteína recombinante SAUSA300_0063 del operón arcACME la cual se purificó mediante electroelución. Se determinó la unión in vitro de la proteína recombinante SAUSA300_0063 a la secuencia promotora del operón arcACME mediante ensayos de retardamiento en gel y por PCR en tiempo real se analizó la transcripción relativa de los genes sausa300_0063, arcCACME, arcCcons y arcR en condiciones de anaerobiosis en presencia o ausencia de arginina. La evidencia experimental mostró que la proteína SAUSA300_0063 establece su unión en el promotor del operón arcACME sugiriendo una aproximación acerca de su función como regulador transcripcional perteneciente a la familia de proteínas CRP/FNR. Adicionalmente se observó una relación directa en el aumento de la transcripción de los genes sausa300_0063 y arcC del operón arcACME indicando la posible participación de la proteína SAUSA300_0063 en la autoactivación del operón arcACME, dada a esta nueva estructura del operón facilitando su regulación. La proteína SAUSA300_0063 participa en la activación del operón arcACME a través de la unión a su región promotora y esta activación es mayor que la encontrada en el operón arc constitutivo. Estos resultados sugieren que el cambio estructural encontrado en el operón arcACME facilita la participación de la proteína SAUSA300_0063 en la auto-activación de este operón ya que dada a esta nueva estructura se podría regular en modo cis considerándose un sistema altamente ventajoso.spa
dc.description.abstractenglishIn the last two decades has reported the emergence and rapid spread of methicillinresistant Staphylococcus aureus USA300 clone with a wide distribution and pathogenicity, causing human infections not only in the hospital but in the community. The mobile genetic element for catabolism of arginine (ACME) was identified only in this clone and inside this element is one arc operon having the same catabolic function ACME providing ATP under anaerobic conditions and in acidic environments increases pH medium favoring the ability to colonize. Previous studies in our laboratory showed that overexpression arcACME operon in clone USA300 is possibly given by the insert sausa300_0063 within this operon gene encoding a transcriptional regulator. Determine the participation SAUSA300_0063 hypothetical protein in the activation of arcACME operon in the USA300 clone pandemic. Using the system pET303 / CT-His expression in BL21 (DE3) recombinant protein produced SAUSA300_0063 arcACME operon which was purified by electroelution. In vitro binding of recombinant protein SAUSA300_0063 to the promoter sequence of the arcACME operon determined by assays retarding gel and real-time PCR the relative transcription sausa300_0063, arcCACME, arcCcons and arcR genes it was analyzed in anaerobiosis in presence or absence of arginine. Experimental evidence showed that establishes its binding protein SAUSA300_0063 in arcACME operon promoter suggesting an approach about its function as a transcriptional regulator belonging to the family of proteins CRP / FNR. Additionally a direct relationship in the increased transcription of sausa300_0063 genes and arcC operon arcACME indicating the possible participation SAUSA300_0063 protein self-activation arcACME operon given to this new structure operon facilitating regulation. SAUSA300_0063 protein participes in the activation arcACME operon across binding to its promoter region and this activation is greater than that found in the constituent arc operon. These results suggest that the structural change in the arcACME operon found facilitates participation SAUSA300_0063 self-protein in the activation of this operon and given to this new structure could be regulated in cis mode considered a highly advantageous system.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/5348
dc.language.isospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.referencesBustos Martínez JA, Hamdan Partida A, and G.C. M, Staphylococcus aureus: la reemergencia de un patógeno en la comunidad. Rev Biomed, 2006. 17 p. 287-305.spa
dc.relation.referencesMurray P. Baron E, J.J., Pfaller M, Yolken R., , Manual of clinical microbiology. . 8 ed. Vol. 1. 2003, Washington.spa
dc.relation.referencesDiep, B.A., et al., Complete genome sequence of USA300, an epidemic clone of communityacquired meticillin-resistant Staphylococcus aureus. Lancet, 2006. 367(9512): p. 731-9.spa
dc.relation.referencesThurlow, L.R., et al., Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe, 2013. 13(1): p. 100-7.spa
dc.relation.referencesAlonzo, F., 3rd and V.J. Torres, A lesson in survival: S. aureus versus the skin. Cell Host Microbe, 2013. 13(1): p. 3-5.spa
dc.relation.referencesMakhlin, J., et al., Staphylococcus aureus ArcR controls expression of the arginine deiminase operon. J Bacteriol, 2007. 189(16): p. 5976-86.spa
dc.relation.referencesZeng, L., Y. Dong, and R.A. Burne, Characterization of cis-acting sites controlling arginine deiminase gene expression in Streptococcus gordonii. J Bacteriol, 2006. 188(3): p. 941-9.spa
dc.relation.referencesZuniga, M., G. Perez, and F. Gonzalez-Candelas, Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol, 2002. 25(3): p. 429-44.spa
dc.relation.referencesGriswold, A., et al., Characterization of the arginine deiminase operon of Streptococcus rattus FA-1. Appl Environ Microbiol, 2004. 70(3): p. 1321-7.spa
dc.relation.referencesFulde, M., et al., ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology, 2011. 157(Pt 2): p. 572-82.spa
dc.relation.referencesTonon, T., J.P. Bourdineaud, and A. Lonvaud-Funel, The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol, 2001. 152(7): p. 653-61.spa
dc.relation.referencesAkhter, Y., S. Tundup, and S.E. Hasnain, Novel biochemical properties of a CRP/FNR family transcription factor from Mycobacterium tuberculosis. Int J Med Microbiol, 2007. 297(6): p. 451-7.spa
dc.relation.referencesGruening, P., et al., Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J Bacteriol, 2006. 188(2): p. 361-9.spa
dc.relation.referencesPortillo, B.C., Determinación de la Presencia y Transcripción de Factores de Virulencia en Aislamientos Colombianos de Staphylococcus Aureus Resistente a Meticilina Adquirido en la Comunidad 2009, Universidad el Bosque: Bogotá.spa
dc.relation.referencesIbarra, J.A., et al., Global analysis of transcriptional regulators in Staphylococcus aureus. BMC Genomics, 2013. 14: p. 126.spa
dc.relation.referencesMiller, L.G. and B.A. Diep, Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 2008. 46(5): p. 752-60.spa
dc.relation.referencesWijaya, L., L.Y. Hsu, and A. Kurup, Community-associated methicillin-resistant Staphylococcus aureus: overview and local situation. Ann Acad Med Singapore, 2006. 35(7): p. 479-86.spa
dc.relation.referencesGordon, R.J. and F.D. Lowy, Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 2008. 46 Suppl 5: p. S350-9.spa
dc.relation.referencesGordon R J., F.D.L., Pathogenesis of Methicillin-Resistant Staphylococcus aureus Infection. CID, 2008. 46(Suppl 5): p. 350-359.spa
dc.relation.referencesAires de Sousa, M. and H. Lencastre, Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunology and Medical Microbiology, 2004. 40: p. 101-111.spa
dc.relation.referencesCreech, C.B., 2nd, T.R. Talbot, and W. Schaffner, Community-associated methicillinresistant Staphylococcus aureus: the way to the wound is through the nose. J Infect Dis, 2006. 193(2): p. 169-71.spa
dc.relation.referencesRubin, R.J., et al., The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis, 1999. 5(1): p. 9-17.spa
dc.relation.referencesEngemann, J.J., et al., Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis, 2003. 36(5): p. 592-8.spa
dc.relation.referencesRuiz, V.A. and S.M. Guillén, Tratado SEIMC de enfermedades infecciosas y microbiología clínica. 2006: Editorial Médica Panamericana.spa
dc.relation.referencesMediavilla, J.R., et al., Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol, 2012. 15(5): p. 588-95.spa
dc.relation.referencesKobayashi, S.D., et al., Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis, 2011. 204(6): p. 937-41.spa
dc.relation.referencesDegnan, B.A., et al., Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect Immun, 2000. 68(5): p. 2441-8.spa
dc.relation.referencesPannaraj, P.S., et al., Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis, 2006. 43(8): p. 953-60.spa
dc.relation.referencesLowy, F.D., Staphylococcus aureus infections. N Engl J Med, 1998. 339(8): p. 520-32.spa
dc.relation.referencesMasalha, M., et al., Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. J Bacteriol, 2001. 183(24): p. 7260-72.spa
dc.relation.referencesOmoe, K., et al., Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun, 2004. 72(6): p. 3664-7.spa
dc.relation.referencesYamaguchi, T., et al., Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect Immun, 2002. 70(10): p. 5835-45.spa
dc.relation.referencesOtter, J.A. and G.L. French, Community-associated meticillin-resistant Staphylococcus aureus: the case for a genotypic definition. J Hosp Infect, 2012. 81(3): p. 143-8.spa
dc.relation.referencesYamamoto T, H.W., Takano T, Nishiyama A., Genetic nature and virulence of communityassociated methicillin-resistant Staphylococcus aureus BioMedicine 2013. 3(1): p. 2-18.spa
dc.relation.referencesMediavilla, J.R., et al., Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol. 15(5): p. 588-95.spa
dc.relation.referencesDeleo, F.R., et al., Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 375(9725): p. 1557-68.spa
dc.relation.referencesChambers, H.F., The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis, 2001. 7(2): p. 178-82.spa
dc.relation.referencesFey, P.D., et al., Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 2003. 47(1): p. 196- 03.spa
dc.relation.referencesBerga, A.P., Infecciones producidas por Staphylococcus aureus. 2009: Marge Books.spa
dc.relation.referencesSeybold, U., et al., Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis, 2006. 42(5): p. 647-56.spa
dc.relation.referencesYamamoto, T., et al., Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J Infect Chemother, 2010. 16(4): p. 225-54.spa
dc.relation.referencesKurlenda, J. and M. Grinholc, Alternative therapies in Staphylococcus aureus diseases. Acta Biochim Pol, 2012. 59(2): p. 171-84.spa
dc.relation.referencesde Lencastre, H., D. Oliveira, and A. Tomasz, Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol, 2007. 10(5): p. 428-35.spa
dc.relation.referencesVoyich, J.M., et al., Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis, 2006. 194(12): p. 1761-70.spa
dc.relation.referencesShukla, S.K., Community-associated methicillin-resistant Staphylococcus aureus and its emerging virulence. Clin Med Res, 2005. 3(2): p. 57-60.spa
dc.relation.referencesTenover, F.C. and R.V. Goering, Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother, 2009. 64(3): p. 441-6.spa
dc.relation.referencesMa, X.X., et al., Community-acquired methicillin-resistant Staphylococcus aureus, Uruguay. Emerg Infect Dis, 2005. 11(6): p. 973-6.spa
dc.relation.referencesRodriguez-Noriega, E., et al., Evolution of methicillin-resistant Staphylococcus aureus clones in Latin America. Int J Infect Dis. 14(7): p. e560-6.spa
dc.relation.referencesOtto, M., Community-associated MRSA: what makes them special? Int J Med Microbiol, 2013. 303(6-7): p. 324-30.spa
dc.relation.referencesMiragaia, M., et al., Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. PLoS One, 2009. 4(11): p. e7722.spa
dc.relation.referencesMalachowa, N. and F.R. DeLeo, Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci, 2010. 67(18): p. 3057-71.spa
dc.relation.referencesVoyich, J.M., et al., Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol, 2005. 175(6): p. 3907-19.spa
dc.relation.referencesWu, K., et al., Assessment of virulence diversity of methicillin-resistant Staphylococcus aureus strains with a Drosophila melanogaster infection model. BMC Microbiol, 2012. 12: p. 274.spa
dc.relation.referencesParker, D. and A. Prince, Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol, 2012. 34(2): p. 281-97.spa
dc.relation.referencesSifri, C.D., et al., Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun, 2003. 71(4): p. 2208-17.spa
dc.relation.referencesBarbier, F., et al., High prevalence of the arginine catabolic mobile element in carriage isolates of methicillin-resistant Staphylococcus epidermidis. J Antimicrob Chemother, 2011. 66(1): p. 29-36.spa
dc.relation.referencesOnishi, M., et al., Prevalence and genetic diversity of arginine catabolic mobile element (ACME) in clinical isolates of coagulase-negative staphylococci: Identification of ACME type I variants in Staphylococcus epidermidis. Infect Genet Evol, 2013.spa
dc.relation.referencesShore, A.C., et al., Characterization of a novel arginine catabolic mobile element (ACME) and staphylococcal chromosomal cassette mec composite island with significant homology to Staphylococcus epidermidis ACME type II in methicillin-resistant Staphylococcus aureus genotype ST22-MRSA-IV. Antimicrob Agents Chemother, 2011. 55(5): p. 1896-905.spa
dc.relation.referencesSabat, A.J., et al., Novel organization of the arginine catabolic mobile element and staphylococcal cassette chromosome mec composite island and its horizontal transfer between distinct Staphylococcus aureus genotypes. Antimicrob Agents Chemother, 2013. 57(11): p. 5774-7.spa
dc.relation.referencesAraque Granados, M.I., Estudio bioquímico y molecular de la producción de precursores de carbamato de etilo por bacteria lácticas asociadas al proceso de vinificación, in Bioquímica y Biotecnologia. 2010, Universitat Rovira i Virgili.: Tarragona. p. 261.spa
dc.relation.referencesDiep, B.A., et al., The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis, 2008. 197(11): p. 1523-30.spa
dc.relation.referencesIto, T., Y. Katayama, and K. Hiramatsu, Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob Agents Chemother, 1999. 43(6): p. 1449-58.spa
dc.relation.referencesPreston, G.M., B. Haubold, and P.B. Rainey, Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr Opin Microbiol, 1998. 1(5): p. 589-97.spa
dc.relation.referencesFuchs, S., et al., Anaerobic gene expression in Staphylococcus aureus. J Bacteriol, 2007. 189(11): p. 4275-89.spa
dc.relation.referencesMathews, C.K., et al., Bioquímica. 2002: Pearson Educación.spa
dc.relation.referencesMatsui, M., M. Tomita, and A. Kanai, Comprehensive computational analysis of bacterial CRP/FNR superfamily and its target motifs reveals stepwise evolution of transcriptional networks. Genome Biol Evol, 2013. 5(2): p. 267-82.spa
dc.relation.referencesMakarova, K.S., A.A. Mironov, and M.S. Gelfand, Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol, 2001. 2(4): p. RESEARCH0013.spa
dc.relation.referencesCaldara, M., D. Charlier, and R. Cunin, The arginine regulon of Escherichia coli: wholesystem transcriptome analysis discovers new genes and provides an integrated view of arginine regulation. Microbiology, 2006. 152(Pt 11): p. 3343-54.spa
dc.relation.referencesLevy, C., et al., Molecular basis of halorespiration control by CprK, a CRP-FNR type transcriptional regulator. Mol Microbiol, 2008. 70(1): p. 151-67.spa
dc.relation.referencesSawers, G., et al., Transcriptional activation by FNR and CRP: reciprocity of binding-site recognition. Mol Microbiol, 1997. 23(4): p. 835-45.spa
dc.relation.referencesHolmes, D.S. and M. Quigley, A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem, 1981. 114(1): p. 193-7.spa
dc.relation.referencesSambrook, J. and D.W. Russell, Molecular Cloning: A Laboratory Manual. 2001: Cold Spring Harbor Laboratory Press.spa
dc.relation.referencesStrålfors, P. and P. Belfrage, Electrophoretic elution of proteins from polyacrylamide gel slices. Analytical Biochemistry, 1983. 128(1): p. 7-10.spa
dc.relation.referencesVoyich JM, O.M., Mathema B, Braughton KR, Whitney AR, Welty D, , et al., Is PantonValentine leucocidin the major virulence determinant in community-associated methicillinresistant Staphylococcus aureus disease? J Infect Dis, 2006. 194(12): p. 1761-70.spa
dc.relation.referencesSchefe, J.H., et al., Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med (Berl), 2006. 84(11): p. 90110.spa
dc.relation.referencesCunin, R., et al., Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev, 1986. 50(3): p. 314-52.spa
dc.relation.referencesOuzounis, C.A. and N.C. Kyrpides, On the evolution of arginases and related enzymes. J Mol Evol, 1994. 39(1): p. 101-4.spa
dc.relation.referencesLindgren, J.K., et al., Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol, 2014. 196(12): p. 227789.spa
dc.relation.referencesHazkani-Covo, E. and D. Graur, Evolutionary conservation of bacterial operons: does transcriptional connectivity matter? Genetica, 2005. 124(2-3): p. 145-66.spa
dc.relation.referencesPlanet, P.J., et al., Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin. MBio, 2013. 4(6): p. e00889-13.spa
dc.relation.referencesLathe, W.C., III, B. Snel, and P. Bork, Gene context conservation of a higher order than operons. Trends in Biochemical Sciences. 25(10): p. 474-479.spa
dc.relation.referencesPrice, M.N., et al., Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer. 2005.spa
dc.relation.referencesWang, L., et al., Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res, 2004. 32(12): p. 3689-702.spa
dc.relation.referencesCotter, P.D. and C. Hill, Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev, 2003. 67(3): p. 429-53, table of contents.spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons2015-08
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectClon USA300spa
dc.subjectACMEspa
dc.subjectOperón arcspa
dc.subjectProteína hipotética SAUSA300_0063spa
dc.subjectActivador transcripcionalspa
dc.subject.decsAnálisis de secuencia de proteínaspa
dc.subject.decsMetabolismospa
dc.subject.decsTécnicas in vitrospa
dc.subject.keywordsClone USA300spa
dc.subject.keywordsACMEspa
dc.subject.keywordsOperon arcspa
dc.subject.keywordsSAUSA300_0063spa
dc.subject.keywordsHypothetical proteinspa
dc.subject.keywordsTranscriptional activatorspa
dc.subject.nlmW 50
dc.titleDeterminación in vitro de la participación de la proteína hipotética SAUSA300_0063 en la activación del operón arc presente en el elemento móvil para el catabolismo de la arginina (ACME) en el clon pandémico USA300spa
dc.title.translatedDetermination in vitro protein participation in the activation hypothetical Sausa300_0063 operon ARC present in the mobile element for catabolism of arginine (ACME) in clone Usa300 pandemicspa
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Corredor_Rozo_Zayda_Lorena_2015.pdf
Tamaño:
2.1 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Corredor_Rozo_Zayda_Lorena_2015_Carta_autorizacion.pdf
Tamaño:
131.55 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: