Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador

dc.contributor.advisorCortés Ortiz, William Giovanni
dc.contributor.advisorGuerrero Fajardo, Carlos Alberto
dc.contributor.authorGuerrero Pinilla, Dana Valentina
dc.date.accessioned2024-11-20T14:48:04Z
dc.date.available2024-11-20T14:48:04Z
dc.date.issued2025-10
dc.description.abstractEl ácido levulínico es un compuesto orgánico con un reconocido uso en la actualidad como molécula plataforma para la obtención de diversos productos químicos de gran interés en diferentes sectores industriales como la farmacéutica. Para la obtención del ácido se puede emplear la hidrólisis ácida, la cual es un proceso que emplea materias primas celulósicas empleando tratamientos ácidos, para favorecer la reacción. En este estudio, se desarrolló un diseño factorial para la evaluación de la influencia de la temperatura y el tiempo de reacción en el proceso de obtención de ácido levulínico a partir de glucosa, empleando ácido metanoico como catalizador. Los ensayos se llevaron a cabo a condiciones de 170 °C – 200 °C y 60 min – 120 min usando ácido metanoico al 10,0 % (v/v). Los resultados demostraron que a mayor temperatura (200 °C) y tiempo corto (60 min) se favorece la descomposición de glucosa a ácido levulínico. El uso de ácido metanoico como catalizador demuestra que proporciona un medio de reacción contribuyente en la formación del ácido levulínico con valores de rendimiento del 65,26 % y selectividad de 70,01 %.
dc.description.abstractenglishLevulinic acid is an organic compound currently recognized for its use as a platform molecule for obtaining various chemicals of great interest in different industrial sectors, such as pharmaceuticals. Acid hydrolysis can be used to obtain levulinic acid, a process that employs cellulosic raw materials and acid treatments to promote the reaction. In this study, a factorial design was developed to evaluate the influence of temperature and reaction time in the process of obtaining levulinic acid from glucose, using methanoic acid as a catalyst. The experiments were carried out under conditions of 170°C – 200°C and 60 min – 120 min using 10.0% (v/v) methanoic acid. The results showed that higher temperatures (200°C) and shorter times (60 min) favor the decomposition of glucose to levulinic acid. The use of methanoic acid as a catalyst demonstrated that it provides a reaction medium that contributes to the formation of levulinic acid, with yields of 65.26% and selectivity of 70.01%.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13265
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.references[1] B. Girisuta, L. P. B. M. Janssen, and H. J. Heeres, “Green chemicals: A kinetic study on the conversion of glucose to levulinic acid,” Chemical Engineering Research and Design, vol. 84, no. 5 A, pp. 339–349, 2006, doi: 10.1205/cherd05038.
dc.relation.references[2] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Extractive separation of levulinic acid using natural and chemical solvents,” Chemical Data Collections, vol. 28, Aug. 2020, doi: 10.1016/j.cdc.2020.100417.
dc.relation.references[3] A. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Jun. 2007. doi: 10.1021/cr050989d.
dc.relation.references[4] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Production of levulinic acid: A promising building block material for pharmaceutical and food industry,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 790–793. doi: 10.1016/j.matpr.2020.04.749.
dc.relation.references[5] M. Zhang, N. Wang, J. Liu, C. Wang, Y. Xu, and L. Ma, “A review on biomass-derived levulinic acid for application in drug synthesis,” 2022, Taylor and Francis Ltd. doi: 10.1080/07388551.2021.1939261.
dc.relation.references[6] C. Mota, A. De Lima, D. Fernandes, and B. Pinto, Levulinic Acid: A Sustainable Platform Chemical for Value-added Products, 1st ed. 2022.
dc.relation.references[7] F. A. C. P. ; Bergfeld et al., “Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics,” 2021. [Online]. Available: https://www.cir-
dc.relation.references[8] J. L. Cannon, A. Aydin, A. N. Mann, S. L. Bolton, T. Zhao, and M. P. Doyle, “Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates,” J Food Prot, vol. 75, no. 8, pp. 1532–1535, Aug. 2012, doi: 10.4315/0362-028X.11-572.
dc.relation.references[9] P. Biswas, S. Nandy, D. K. Pandey, J. Singh, and A. Dey, “Levulinic acid: a potent green chemical in sustainable agriculture,” in New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals, Elsevier, 2022, pp. 179–218. doi: 10.1016/B978-0-323-85581-5.00013-6.
dc.relation.references[10] K. V. M. Pulidindi, “Levulinic Acid Market Size By Process (Acid Hydrolysis, Biofine) By Application (Plasticizers, Agrochemicals, Food Additives, Fuel Additives and Others) By End-User Industry (Cosmetics & Personal Care, Pharmaceutical, Agriculture, Food & Beverages and Others), & Forecast, 2024 – 2032,” Global Market Insights, Jul. 2024, Accessed: Aug. 25, 2024. [Online]. Available: https://www.gminsights.com/industry- analysis/levulinic-acid-market
dc.relation.references[11] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Separation of fuel additive levulinic acid using toluene, xylene, and octanol from water stream,” Journal of the Indian Chemical Society, vol. 99, no. 11, Nov. 2022, doi: 10.1016/j.jics.2022.10074
dc.relation.references[12] J. J. Bozell et al., “Production of levulinic acid and use as a platform chemical for derived products,” 2000. [Online]. Available: www.elsevier.com/locate/resconrec
dc.relation.references[13] F. L. Gonzales J and P. Vera Zelada, “DISMINUCIÓN DE LA MATERIA ORGÁNICA DE LAS AGUAS RESIDUALES DOMÉSTICA CON PERÓXIDO DE HIDRÓGENO Y LEVADURA,” UNIVERSIDAD PRIVADA ANTONIO GUILLERMO URRELO, Perú, 2022.
dc.relation.references[14] C. E. Bounoukta, C. Megías-Sayago, S. Ivanova, F. Ammari, M. A. Centeno, and J. A. Odriozola, “Pursuing efficient systems for glucose transformation to levulinic acid: Homogeneous vs. heterogeneous catalysts and the effect of their co-action,” Fuel, vol. 318, Jun. 2022, doi: 10.1016/j.fuel.2022.123712.
dc.relation.references[15] P. Deshlahra and E. Iglesia, “Reactivity descriptors in acid catalysis: Acid strength, proton affinity and host- guest interactions,” Chemical Communications, vol. 56, no. 54, pp. 7371–7398, Jul. 2020, doi: 10.1039/d0cc02593c.
dc.relation.references[16] M. L. Testa and V. La Parola, “Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: A minireview,” Oct. 01, 2021, MDPI. doi: 10.3390/catal11101143.
dc.relation.references[17] C. Antonetti, D. Licursi, S. Fulignati, G. Valentini, and A. M. R. Galletti, “New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock,” Dec. 01, 2016, MDPI. doi: 10.3390/catal6120196.
dc.relation.references[18] T. N. Rao et al., “One-pot synthesis of 7, 7-dimethyl-4-phenyl-2-thioxo-2,3,4,6,7, 8-hexahydro-1H-quinazoline-5- onesusing zinc ferrite nanocatalyst and its bio evaluation,” Catalysts, vol. 11, no. 4, Apr. 2021, doi: 10.3390/catal11040431.
dc.relation.references[19] X. Liu, S. Li, Y. Liu, and Y. Cao, “Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis,” Sep. 20, 2015, Science Press. doi: 10.1016/S1872-2067(15)60861-0.
dc.relation.references[20] S. Fernández and B. Director, “DISEÑO DE EXPERIMENTOS: DISEÑO FACTORIAL Memoria y Anexos Autor,” 2020.
dc.relation.references[21] D. Frías-Navarro, “Diseño de la investigación, análisis y redacción de los resultados Editores: Dolores Frías- Navarro Marcos Pascual-Soler,” 2021.
dc.relation.references[22] C. Chang, M. A. Xiaojian, and C. E. N. Peilin, “Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature,” Chin J Chem Eng, vol. 14, pp. 708–712, 2006.
dc.relation.references[23] Q. JING and X. LÜ, “Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water,” Chin J Chem Eng, vol. 16, no. 6, pp. 890–894, Dec. 2008, doi: 10.1016/S1004-9541(09)60012-4.
dc.relation.references[24] A. Kiadó and B. Vol, “KINETICS OF LEVULINIC ACID FORMATION FROM CARBOHYDRATES AT MODERATE TEMPERATURES,” Kluwer Academic Publishers, 2002.
dc.relation.references[25] L. Kupiainen, J. Ahola, and J. Tanskanen, “Comparison of formic and sulfuric acids as a glucose decomposition catalyst,” Ind Eng Chem Res, vol. 49, no. 18, pp. 8444–8449, Sep. 2010, doi: 10.1021/ie1008822.
dc.relation.references[26] J. Horvat, B. Klaid, B. Metelko, and V. Sunjid’, “MECHANISM OF LEVULINIC ACID FORMATION,” 1985.
dc.relation.references[27] K. C. Badgujar, L. D. Wilson, and B. M. Bhanage, “Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges,” Mar. 01, 2019, Elsevier Ltd. doi: 10.1016/j.rser.2018.12.007.
dc.relation.references[28] A. Paajanen and J. Vaari, “High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study,” Cellulose, vol. 24, no. 7, pp. 2713–2725, Jul. 2017, doi: 10.1007/s10570-017-1325-7.
dc.relation.references[29] Y. Wang, K. Lu, Y. Zhao, L. Zhu, and S. Wang, “Catalytic Conversion of Glucose to Levulinic Acid over Temperature-Responsive Al-Doped Silicotungstic Acid Catalyst. ,” Energy & Fuels, vol. 38, no. 9, pp. 7950–7958, 2024.
dc.relation.references[30] F. Parveen and S. Upadhyayula, “Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - A mechanistic and experimental study,” Fuel Processing Technology, vol. 162, pp. 30– 36, 2017, doi: 10.1016/j.fuproc.2017.03.021.
dc.relation.references[31] S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Oct. 01, 2018, Elsevier Ltd. doi: 10.1016/j.rser.2018.06.016.
dc.relation.references[32] M. H. Kim, C. S. Kim, H. W. Lee, and K. Kim, “Temperature dependence of dissociation constants for formic acid and 2,6-dinitrophenol in aqueous solutions up to 175°C,” Journal of the Chemical Society - Faraday Transactions, vol. 92, no. 24, pp. 4951–4956, Dec. 1996, doi: 10.1039/FT9969204951.
dc.relation.references[33] L. Kupiainen, J. Ahola, and J. Tanskanen, “Kinetics of glucose decomposition in formic acid,” Chemical Engineering Research and Design, vol. 89, no. 12, pp. 2706–2713, Dec. 2011, doi: 10.1016/j.cherd.2011.06.005.
dc.relation.references[34] M. Li, W. Li, Y. Lu, H. Jameel, H. M. Chang, and L. Ma, “High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system,” RSC Adv, vol. 7, no. 24, pp. 14330–14336, 2017, doi: 10.1039/c7ra00701a.
dc.relation.references[35] P. C. Smitht, H. E. Grethlein, and A. O. Converse, “GLUCOSE DECOMPOSITION AT HIGH TEMPERATURE, MILD ACID, AND SHORT RESIDENCE TIMES,” 1982.
dc.relation.references[36] C. Chang, “Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature*,” 2006.
dc.relation.references[37] J. Dagnino, “ANÁLISIS DE VArIANZA,” 2014.
dc.relation.references[38] A. Bryman and D. Cramer, “Quantitative data analysis with minitab: A guide for social scientists.,” 2003, Routledge.
dc.relation.references[39] Minitab, “ANOVA de un solo factor,” 2024.
dc.relation.references[40] K. Kumar, M. Kumar, and S. Upadhyayula, “Catalytic conversion of glucose into levulinic acid using 2-phenyl- 2-imidazoline based ionic liquid catalyst,” Molecules, vol. 26, no. 2, Jan. 2021, doi: 10.3390/molecules26020348.
dc.relation.references[41] N. Ya’aini, N. A. S. Amin, and M. Asmadi, “Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst,” Bioresour Technol, vol. 116, pp. 58–65, Jul. 2012, doi: 10.1016/j.biortech.2012.03.097.
dc.relation.references[42] W. Weiqi and W. Shubin, “Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids,” Chemical Engineering Journal, vol. 307, pp. 389–398, Jan. 2017, doi: 10.1016/j.cej.2016.08.099.
dc.relation.references[43] M. Mikola, J. Ahola, and J. Tanskanen, “Production of levulinic acid from glucose in sulfolane/water mixtures,” Chemical Engineering Research and Design, vol. 148, pp. 291–297, Aug. 2019, doi: 10.1016/j.cherd.2019.06.022.
dc.relation.references[44] I. Van Zandvoort et al., “Formation, molecular structure, and morphology of humins in biomass conversion: Influence of feedstock and processing conditions,” ChemSusChem, vol. 6, no. 9, pp. 1745–1758, 2013, doi: 10.1002/cssc.201300332.
dc.relation.references[45] N. A. S. Ramli and N. A. S. Amin, “Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance,” Appl Catal B, vol. 163, pp. 487–498, Feb. 2015, doi: 10.1016/j.apcatb.2014.08.031.
dc.relation.references[46] J. Fu, F. Yang, J. Mo, J. Zhuang, and X. Lu, “Catalytic Decomposition of Glucose to Levulinic Acid by Synergy of Organic Lewis Acid and Brønsted Acid in Water”.
dc.relation.references[47] Y. Liu, H. Li, J. He, W. Zhao, T. Yang, and S. Yang, “Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides,” Catal Commun, vol. 93, pp. 20–24, 2017, doi: 10.1016/j.catcom.2017.01.023.
dc.relation.references[48] F. Shen, R. L. Smith, L. Li, L. Yan, and X. Qi, “Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst,” ACS Sustain Chem Eng, vol. 5, no. 3, pp. 2421–2427, Mar. 2017, doi: 10.1021/acssuschemeng.6b02765.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÁcido levulínico
dc.subjectGlucosa
dc.subjectÁcido metanoi
dc.subjectTemperatura
dc.subjectTiempos
dc.subjectHidrólisis ácida
dc.subject.ddc615.19
dc.subject.keywordsLevulinic acid
dc.subject.keywordsGlucose
dc.subject.keywordsMethanoic acid
dc.subject.keywordsTemperature
dc.subject.keywordsTimes
dc.subject.keywordsAcid hydrolysi
dc.titleObtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
dc.title.translatedObtaining levulinic acid, a synthetic promoter widely used in the pharmaceutical industry, using methanoic acid as catalyst
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado .pdf
Tamaño:
1.81 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 4 de 4
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Acta de aprobacion.pdf
Tamaño:
545.42 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta autorizacion comite.pdf
Tamaño:
174.95 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
341.68 KB
Formato:
Adobe Portable Document Format
Descripción: