Evaluación in vitro de la integridad de la barrera hematoencefálica y su alteración causada por el virus dengue

dc.contributor.advisorVelandia-Romero, Myriam Lucía
dc.contributor.advisorCastellanos, Jaime
dc.contributor.authorCalderón Peláez, María Angélica
dc.contributor.orcidCalderón Peláez, María Angélica [0000-0003-0788-0795]
dc.contributor.orcidCastellanos, Jaime [0000-0003-1596-8383]
dc.contributor.orcidVelandia-Romero, Myriam Lucía [0000-0002-3340-7304]
dc.date.accessioned2021-02-23T17:02:24Z
dc.date.available2021-02-23T17:02:24Z
dc.date.issued2014
dc.description.abstractEl sistema nervioso (SN), está protegido por una barrera de difusión celular conocida como Barrera Hematoencefálica (BHE), compuesta por diferentes tipos de células que limitan el paso de moléculas desde los capilares hacia el parénquima cerebral, lo cual garantiza la homeostasis del tejido. A pesar de esto, algunas moléculas y agentes infecciosos logran atravesar la BHE e ingresar al tejido nervioso para inducir graves daños en la fisiología de este. Dentro de los patógenos que logran alterar la BHE e infectar el tejido nervioso, se encuentran algunos miembros de la familia flaviviridae típicamente neurotrópicos, sin embargo el virus del dengue (DENV), un virus considerado no neurotrópico, puede infectar y alterar la fisiología del tejido nervioso ocasionando signos como encefalitis, parálisis y alteraciones motoras y cognitivas que pueden ser permanentes. Para comprender los cambios de tropismo y los factores neurológicos e inmunológicos asociados a la neuroinfección por DENV, en nuestro laboratorio se desarrolló un modelo de neuroinfección en ratones lactantes utilizando una cepa de virus neuroadaptado (D4MB-6), que infecta neuronas y otras células del tejido nervioso e induce la alteración de la BHE en ratones lactantes. Por lo tanto, el presente proyecto buscó evaluar en un modelo de BHE in vitro, si la alteración de la permeabilidad de la barrera endotelial cerebrovascular asociada a la infección con el DENV-4 neuroadaptado o no, favorece el paso de virus libre o asociado a células del sistema inmune lo cual, permitiría la infección y dispersión viral en el tejido nervioso. Para esto, se estableció un modelo de BHE in vitro en monocapa o co-cultivo utilizando cultivos primarios de endotelio cerebrovascular con o sin astrocitos obtenidos a partir de cerebros de ratones lactantes, siendo únicamente las células endoteliales susceptibles a la infección con el virus parental o D4MB-6. Los resultados obtenidos mostraron en ambos modelos de BHE que a las 10 horas post-infección (hpi) con cada virus, hubo una disminución en los valores de resistencia transendotelial (TEER), asociada a un aumento en la permeabilidad. Adicionalmente en este mismo tiempo post infección se detectaron partículas virales infecciosas en la cámara inferior de los insertos, lo que sugiere que la infección ocasionó una alteración en la integridad de las células endoteliales, lo que permitió el paso paracelular de las partículas virales. Se encontró que la infección con el D4MB-6 indujo la relocalización -sin afectar la expresión-, de la proteína ZO-1 y un aumento en la expresión de los transcritos para las proteínas VCAM, PECAM, TNFα y MCP-1 comparado con lo observado durante la infección con el virus parental. Esto último está relacionado con un proceso de activación endotelial que al parecer favoreció el proceso de transmigración de monocitos/macrófagos J774 en ambos modelos de BHE estandarizados. Lo anterior convierte el proceso de alteración de la BHE en uno de los posibles mecanismos utilizados por el DENV para ingresar y dispersarse dentro del tejido nervioso.spa
dc.description.abstractenglishThe nervous system (NS) is protected by a cellular diffusion barrier named Blood Brain Barrier (BBB). This barrier is formed by different cell types that limit the passage of molecules from the capillaries into the brain parenchyma, nevertheless some molecules and infectious agents are able to cross the BBB and infect the nervous tissue. Among the viruses that manage to alter the BBB and infect nervous tissue, there are some flaviviridae family members known as neurotropic flavivirus, however Dengue virus (DENV), a no-neurotropic flavivirus, can alter the physiology of the nervous tissue, causing clinical signs such as encephalitis, paralysis and motor and cognitive alterations that might be permanent. To understand some of the changes in the virus tropism, and in the neurological and immunological factors associated with DENV infection in the NS, we developed a neuroinfection model in suckling mice using a strain of neuroadapted virus (D4MB-6) than infects neurons and some others cells of the nervous tissue and can alter the BBB permeability in suckling mice. Therefore, the present project evaluated the permeability alteration of the cerebrovascular endothelial barrier, associated with DENV-4 or D4MB-6 infection in an in vitro BBB model. We tried to answer if this alteration can promote the passage of virus into the nervous tissue allowing infection and viral spread. We establish a BBB in vitro model using primary cultures (isolated from suckling mice) of endothelial cells (BBB model in monolayer) or endothelial cells and astrocytes (co-culture BBB model). The results showed that only the endothelial cells were susceptible to the infection with each evaluated virus; also in both BBB models at 10 hours post-infection, there was a decreased in the transendothelial resistance values (TEER), associated with an increase in the permeability of the model. Additionally at this time, we detected infectious viral particles in the supernatants of the lower chamber of the inserts, suggesting that infection results in an alteration in the integrity of the endothelial cells and permits the paracellular passage of viral particles. We also found that the infection with D4MB-6 induced the relocation of the ZO-1 protein, but it did not affect the expression pattern of this protein. Infection also induced the over expression of primary transcripts of VCAM, PECAM, TNFα y MCP-1 proteins, compared with the observations made when the cells were infected with DENV-4. This is related with an endothelial activation process that favored the transmigration of immune cells (J774) in both BBB models. Our results suggest that the alteration process of the BBB is one of the possible mechanisms used by the DENV to enter and spread in to the nervous tissue.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/5422
dc.language.isospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.referencesAbbott, N. J. (2002). Astrocyte–endothelial interactions and blood–brain barrier permeability. Journal of Anatomy, 200, 629–638.spa
dc.relation.referencesAbbott, N. J. (2005). Dynamics of CNS Barriers: Evolution, Differentiation, and Modulation. Cellular and Molecular Neurobiology, 25 (1), 5-23.spa
dc.relation.referencesAbbott, N. J. (2013). Blood–brain barrier structure and function and the challenges for CNS drug delivery. Journal of inherited metabolic disease, 36, 437–449.spa
dc.relation.referencesAbbott, N. J, Patabendige, A. A, Dolman, D. E, Yusof, S. R, & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of Disease, 37, 13–25.spa
dc.relation.referencesAbbott, N. J, Rönnbäck, L. & Hans, E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews| Neuroscience, 7, 41-53.spa
dc.relation.referencesAgrawal T, Sharvani V, Nair D, Medigeshi GR (2013). Japanese encephalitis virus disrupts cell-cell junctions and affects the epithelial permeability barrier functions. PLoS One, 24, 8(7)spa
dc.relation.referencesAnderson, R, Wang, S, Osiowy, C, & Issekutz, A. C. (1997). Activation of Endothelial Cells via AntibodyEnhanced Dengue Virus Infection of Peripheral Blood Monocytes. Journal of Neurovirology, 71(6), 4226–4232.spa
dc.relation.referencesAndrews, B. S, Theofilopoulos, A. N, Peters, C. J, Loskutoff, D. J, Brandt, W. E, & Dixon, F. J. (1978). Replication of Dengue and Junin Viruses in Cultured Rabbit and Human Endothelial Cells. Infection and Inmunity, 776-781.spa
dc.relation.referencesAvirutnan, P., Malasit, P., Seliger, B., Bhakdi, S., & Husmann, M. (1998). Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. Journal of Immunology (Baltimore, Md.: 1950), 161(11) 6338-46spa
dc.relation.referencesBallabh, P, Braun, A, & Nedergaar, M. (2004). The blood–brain barrier: an overview Structure, regulation, and clinical implications. Neurobiology of Disease, 16, 1-13.spa
dc.relation.referencesBanks, W. A, & Erickson, M. A. (2010). The blood–brain barrier and immune function and dysfunction. Neurobiology of Disease, 37, 26–32.spa
dc.relation.referencesBastidas L, (2013). Identificación de las vías de propagación utilizadas por un virus dengue neuroadaptado para ingresar al sistema nervioso. Tesis de Mestría, Laboratorio de Virología, Universidad El Bosquespa
dc.relation.referencesBasu, A & Chaturvedi, U. C. (2008). Vascular endothelium: the battlefield of dengue viruses. FEMS immunology and medical microbiology, 53, 287–299.spa
dc.relation.referencesBevilaqua, M, Pober, J, Mendrick, D, Cotran, R, & Gimbrone, M. (1987). Identification of an inducible endothelial-leukocyte adhesion molecule. Proceedings of the National Academy of Sciences of the United States of America, 84, 9238-9242.spa
dc.relation.referencesBrown, R. C, Morris, A, & O'Neil, R. G. (2007). Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain research, 1130, 17-30.spa
dc.relation.referencesBuckner, C. M, Luers, A. J, Calderon, T. M, Eugenin, E. A, & Berman, J. W. (2006). Neuroimmunity and the Blood–Brain Barrier: Molecular Regulation of Leukocyte Transmigration and Viral Entry into the Nervous System with a Focus on NeuroAIDS. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology, 1, 160–181.spa
dc.relation.referencesBordignon, J., Strottmann, D. M., Mosimann, A. L., Probst, C. M., Stella, V., Noronha, L,… Dos Santos, C. N. (2007). Dengue neurovirulence in mice: Identification of molecular signatures in the E and NS3 helicase domains. Journal of Medical Virology, 79(10), 1506-1517.spa
dc.relation.referencesCardier, J. E, Rivas, B, Romano, E, Rothman, A. L, Perez-Perez, C, Ochoa, M, y otros. (2006). Evidence of Vascular Damage in Dengue Disease:Demonstration of High Levels of Soluble Cell Adhesion Molecules and Circulating Endothelial Cells. Endothelium, 13, 335–340.spa
dc.relation.referencesCardoso, F. L, Brites, D, & Brito, M. A. (2010). Looking at the blood–brain barrier: Molecular anatomy and possible investigation approaches. Brain research reviews, 1-36.spa
dc.relation.referencesCarlos, T & Harlan, J. (1994). Leukocyte-endothelial adhesion molecules. Blood, 84(7), 2068-2101.spa
dc.relation.referencesCarman, C. V, Sage, P. T, Sciuto, T. E, de la Fuente, M. A, Geha, R. S, Ochs, H. D, y otros. (2007). Transcellular Diapedesis Is Initiated by Invasive Podosomes. Immunity, 26(6), 784–797.spa
dc.relation.referencesCarvey, P, Hendey, B, & Monahan, A. (2009). The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. Journal of Neurochemestry, 111, 291–314.spa
dc.relation.referencesChaturvedi, U., Agarwal, R., Elbishbish, E., & Mustafa, A. (2000). Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunology and Medical Microbiology, 28, 183-188.spa
dc.relation.referencesChaturvedi, U. C, Dhawan, R, Khanna, M, & Mathur, A. (1991). Breakdown of the blood-brain barrier during dengue virus infection of mice. Journal of General Virology, 72, 859-866.spa
dc.relation.referencesChau, T., Quyen, N., Thuy, T., Tuan, N., Hoang, D., Dung, N.,…Simmons, C. (2008). Dengue in Vietnamese Infants—Results of Infection Enhancement Assays Correlate with Age-Related Disease Severity. Journal of Infectious Disease, 198(4), 516–524.spa
dc.relation.referencesChen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., & Wu-Hsieh, B. A. (2007b). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. Journal of Virology, 81(11), 5518-5526.spa
dc.relation.referencesDalrymple, N. A, & Mackow, E. R. (2012). Roles for Endothelial Cells in Dengue Virus Infection. Advances in Virology, 1-8.spa
dc.relation.referencesDalrymple, N, & Mackow, E. R. (2011). Productive Dengue Virus Infection of Human Endothelial Cells Is Directed by Heparan Sulfate-Containing Proteoglycan Receptors. Journal of Virology, 9478–9485.spa
dc.relation.referencesDeli, M. A, Abraham, C. S, Kataoka, Y, & Niwa, M. (2005). Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology. Cellular and Molecular Neurobiology, 25(1), 59-127.spa
dc.relation.referencesDemeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, van den Bosch de Aguilar P, (2002). Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the bloodbrain barrier. Journal of Neurosciences Methods. 121(1):21-31.spa
dc.relation.referencesDomingues R. B., Kuster, G. W., Onuki-Castro, F. L., Souza, V. A., Levi, J. E., & Pannuti, C. S. (2008). Involvement of the central nervous system in patients with dengue virus infection. Journal of the Neurological Sciences, 267(1-2), 36-40spa
dc.relation.referencesEngelhardt, B, & Sorokin, L. (2009). The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Seminars in immunopathology, 31, 497–511.spa
dc.relation.referencesFeldman, G. J, Mullin, J. M, & Ryan, M. P. (2005). Occludin: Structure, function and regulation. Advanced Drug Delivery Reviews, 57, 883 – 917.spa
dc.relation.referencesFeng, S, Cen, J, Huang, Y, Shen, H, Yao, L, Wang, Y, y otros. (2011). Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins. Plos One, 6(8), 1-11.spa
dc.relation.referencesFernandez-Borja, M, van Buul, J, & Hordijk, P. (2010). The regulation of leucocyte transendothelial migration by endothelial signalling events. Cardiovascular Research, 86, 202–210.spa
dc.relation.referencesFletcher, N. F, Bexiga, M. G, Brayden, D. J, Brankin, B, Willett, B. J, Hosie, M. J, Jacque J.-M, Callanan J. J, (2009). Neuropathology and Applied Neurobiology 35, 592–602.spa
dc.relation.referencesFuruse, M, Fujita, K, Hiiragi, T, Fujimoto, K, & Tsukita, S. (1998). Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin. The Journal of Cell Biology, 141, 1539-1550.spa
dc.relation.referencesFuruse, M, Hirase, T, Itoh, M, Nagafuch, A, Yonemura, S, Tsukita, S, y otros. (1993). Occludin: A Novel Integral Membrane Protein Localizing at Tight Junctions. The Journal of Cell Biology, 123(6), 1777-1788.spa
dc.relation.referencesGonzález-Mariscal, L, Betanzos, A, Nava, P, & Jaramillo, B. E. (2003). Tight junction proteins. Progress in Biophysics & Molecular Biology, 81, 1-44.spa
dc.relation.referencesGulati, S., & Maheshwari, A. (2007). Atypical manifestations of dengue. Tropical Medicine & International Health : TM & IH, 12(9), 1087-1095.spa
dc.relation.referencesGünzel, D, & Yu, A. S. (2013). Claudins and the modulation of tight junction permeability. Physiological reviews, 525-569.spa
dc.relation.referencesHalstead, S. B, & Simasthien, P. (1970). Observations related to the pathogenesis of dengue hemorrhagic fever. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. Yale Journal of biology and medicine, 42, 276-292.spa
dc.relation.referencesHarhaj, N. S, & Antonetti, D. A. (2004). Regulation of tight junctions and loss of barrier function in pathophysiology. The International Journal of Biochemistry & Cell Biology, 36, 1206–1237.spa
dc.relation.referencesHaseloff, R. F, Blasig, I. E, Bauer, H. C, & Bauer, H. (2005). In Search of the Astrocytic Factor(s) Modulating Blood–Brain Barrier Functions in Brain Capillary Endothelial Cells In Vitro. Cellular and Molecular Neurobiology, 25(1), 25-39.spa
dc.relation.referencesHawkins, B. T, & Davis, T. P. (2005). The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57(2), 173-185.spa
dc.relation.referencesHicks, K, O’Neil, R. G, Dubinsky, W. S, & Brown, R. C. (2010). TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. American journal of physiology. Cell physiology 298, 15831593.spa
dc.relation.referencesHoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ. (1998). Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochemical and Biophysical Research Communication. 244(1), 312-6.spa
dc.relation.referencesHu, Y. J, Wang, Y.D, & Tan, F.Q. (2013). Regulation of paracellular permeability: factors and mechanisms. Molecular biology reports, 40, 6123-6142.spa
dc.relation.referencesHung, S. L, Lee, P. L, Chen H. W, Chen L. K, Kao, C. L, King C. C. (1999), Analysis of the steps involved in Dengue Virus entry into host. Virology 257, 156-167spa
dc.relation.referencesHussmann KL, Samuel MA, Kim KS, Diamond MS, Fredericksen BL. (2013). Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. Journal of virology, 87(5):2814-22.spa
dc.relation.referencesImbert JL, Guevara P, Ramos-Castañeda J, Ramos C, Sotelo J. (1994), Dengue virus infects mouse cultured neurons but not astrocytes. Journal of medical virology, 42(3):228-33.spa
dc.relation.referencesKanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V, (2009). Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. Journal of Proteome Research,8(5),2551-62.spa
dc.relation.referencesKeller, A. (2013). Breaking and building the wall: the biology of the blood-brain barrier in health and disease. The European Journal of Medical Sciences, 143, 1-13.spa
dc.relation.referencesKyle, J. L, & Harris, E. (2008). Global spread and persistence of Dengue. Annual Review of Microbiology, 62, 71-92.spa
dc.relation.referencesLaia, C. H, Kuob, K. H, & Leo, J. M. (2005). Critical role of actin in modulating BBB permeability. Brain Research Reviews, 50, 7-13.spa
dc.relation.referencesLippmann E. S, Al-Ahmad A, ,,, Shusta E.V (2013) Modeling the blood–brain barrier using stem cell sources. Fluids and barriers of the CNS 10(1).spa
dc.relation.referencesMartina, B. E, Koraka, P, & Osterhaus, A. D. (2009). Dengue Virus Pathogenesis: an Integrated View. Clinical microbiology reviews, 22, 564–581.spa
dc.relation.referencesMartínez-Gutierrez, M., & Castellanos, J. E. (2006). Dengue hemorrágico, ¿una aberración inmunológica? Revista de la facultad de medicina, 11(2), 1-10.spa
dc.relation.referencesMathur, A, Khanna, N, & Chaturvedi, U. (1992). Breakdown of blood-brain barrier by virus-induced cytokine during Japanese encephalitis virus infection. International journal of experimental pathology, 73, 603-611.spa
dc.relation.referencesMishra, M. K, Dutta, K, Khaleelull, S, Saheb, S. K, & Basu, A. (2009). Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: Correlation with minocycline administration as a therapeutic agent. Neurochemistry International, 55, 717–723.spa
dc.relation.referencesMisra, U, Kalita, J, Syam, U, & Dhole, T. (2006). Neurological manifestations of dengue virus infection. Journal of the Neurological Sciences, 244, 117 – 122.spa
dc.relation.referencesNakaoke, R, & Banks, W. A. (2003). In Vitro Methods in the Study of Viral and Prion Permeability Across the Blood–Brain Barrier. Cellular and Molecular Neurobiology, 25(1), 171-180.spa
dc.relation.referencesNazli, A, Chan, O, Dobson-Belaire, W, Ouellet, M y otros. (2010). Exposure to HIV-1 Directly Impairs Mucosal Epithelial Barrier Integrity Allowing Microbial Translocation. Plos Pathogens, 6(4), 1-20.spa
dc.relation.referencesNielsen, D. G. (2009). The relationship of interacting immunological components in dengue pathogenesis. Virology Journal, 6(211), 1-7.spa
dc.relation.referencesNimmerjahn, A. (2009). Astrocytes going live: advances and challenges. The Journal of physiology, 1639–1647.spa
dc.relation.referencesNitz, T., Eisenblatter, T., Psathaki, K., and Galla, H.-J. (2003). Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Research. 981, 30–40.spa
dc.relation.referencesOMS, & TRD. (2009). Dengue, guías para el diagnóstico, tratamiento, prevención y control. Programa regional de dengue, 1-170.spa
dc.relation.referencesPekny M, Stanness KA, Eliasson C, Betsholtz C, Janigro D. (1998), Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia, 4, 390-400.spa
dc.relation.referencesPerrière, N, Demeuse, P, Garcia, E, Regina, A, Debray, M, Andreux, J. P, y otros. (2005). Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. Journal of Neurochemistry, 93, 279–289.spa
dc.relation.referencesPersidsky, Y, Ramirez, S, Haorah, J, & Kanmogne, G. (2006). Blood–brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions. Journal of Neuroimmune Pharmacology, 1, 223–236.spa
dc.relation.referencesPuschmann, T. B., Dixon, K. J, & Turnley, A. M. (2010). Species Differences in Reactivity of Mouse and Rat Astrocytes in vitro. Neurosignals(18), 152-163.spa
dc.relation.referencesRoe, K, Kumar, M, Lum, S, Orillo, B, Nerurkar, V. R, & Verma, S. (2012). West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. Journal of General Virology, 93, 1193–1203.spa
dc.relation.referencesRubin, L. L, Hall, D. E, Porter, S, Barbu, K, Cannon, C, Homer, H. C, y otros. (1991). A Cell Culture Model of the Blood-Brain Barrier. The Journal of Cell Biology, 115, 1725-1735.spa
dc.relation.referencesSchreibelt, G, Kooij, G, Reijerker, A, van Doorn, R, Gringhuis, S. I, van der Pol, S, y otros. (2007). Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. The FASEB Journal, 21, 3666-3676.spa
dc.relation.referencesShen J, T-To SS, Schrieber L, King NJ (1997), Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibility complex antigen induction on humanendothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. Journal of Virology. 71(12), 9323-32spa
dc.relation.referencesSips, G. J., Wilschut, J., & Smit, J. M. (2012). Neuroinvasive flavivirus infections. Reviews in Medical Virology, 22(2), 69-87.spa
dc.relation.referencesSolomon, T. (2004). Flavivirus encephalitis. The New England Journal of Medicine, 351(4), 370-378spa
dc.relation.referencesSofroniew, M. V, & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathology, 7-35.spa
dc.relation.referencesSpindler, K. R, & Hsu, T. H. (2012). Viral disruption of the blood–brain barrier. Trends in Microbiology, 1-9.spa
dc.relation.referencesSrikiatkhachorn, A. (2009). Plasma leakage in dengue haemorrhagic fever. Thrombosis and haemostasis 2009, 102, 1042–1049.spa
dc.relation.referencesSkaper, S. D, Argentini, C, Barbierato, M. (2012) Culture of Neonatal Rodent Microglia, Astrocytes, and Oligodendrocytes from Cortex and Spinal Cord. Neurotrophic Factors: Methods and Protocols, Methods in Molecular Biology, 846, 67-77.spa
dc.relation.referencesStamatovic, S. M, Keep, R. F, Kunkel, S. L, & Andjelkovic, A. V. (2003). Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. Journal of Cell Science, 116(22), 4615-4627.spa
dc.relation.referencesStevenson, B. R, & Keon, B. H. (1998). The tight junction: Morphology to molecules. Annual review of cell and developmental biology, 14, 89-109.spa
dc.relation.referencesTalavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I (2004). IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. Journal of general virology, 85(Pt 7):1801-13.Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I (2004). IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. Journal of general virology, 85(Pt 7):1801-13.spa
dc.relation.referencesTao-Cheng JH, Nagy Z, Brightman MW, (1998). Tight junctions of brain endothelium in vitro are enhanced by astroglia. Journal of Neurosciences, 10, 3293-9.spa
dc.relation.referencesTilling, T., Korte, D., Hoheisel, D., and Galla, H.-J. (1998). Basement membrane proteins influence brain capillary endothelial barrier function in vitro. Journal of. Neurochemestry. 71,1151–1157.spa
dc.relation.referencesTogashi, H, Sakisaka, T, & Takai, Y. (2009). Cell adhesion molecules in the central nervous system. Cell adhesion & Migration, 3(1), 29-35.spa
dc.relation.referencesVaratharaj , A. (2010). Encephalitis in the clinical spectrum of dengue infection. Neurology India, 58(4) 585-559spa
dc.relation.referencesVelandia, M. L. (2012). Desarrollo de un modelo experimental para evaluar la neuro e inmunopatogenia por virus dengue. Bogotá: Tesis doctoral-Universidad Nacional de Colombia.spa
dc.relation.referencesVelandia, M. L, & Castellanos, J. E. (2011). Virus del dengue: estructura y ciclo viral. Infectio, 15(1), 33-43.spa
dc.relation.referencesVelandia, M. L, Acosta-Losada, O, & Castellanos, J. E. (2012). In vivo infection by a neuroinvasive neurovirulent dengue virus. Journal of neurovirology, 18, 374–387.spa
dc.relation.referencesVerma, S, Lo, Y, Chapagain, M, Lum, S, Kumar, M, Gurja, U, y otros. (2009). West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology, 385, 425–433.spa
dc.relation.referencesWang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J (2010), Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Neglected Tropical Disease. 31;4(8).spa
dc.relation.referencesWang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J (2010), Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Neglected Tropical Disease. 31;4(8).spa
dc.relation.referencesWeiss, N, Miller, F, Cazaubon, S, & Couraud, P. O. (2009). The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et Biophysica Acta, 1788, 842–857.spa
dc.relation.referencesWeksler, B. B, Subileau, E. A, Perrière, N, Charneau, P, Holloway, K, Leveque, M, y otros. (2005). Blood-brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal, 1-26.spa
dc.relation.referencesWilhelm, I, Fazakas, C, & Krizb, I. A. (2011). In vitro models of the blood-brain barrier. Acta neurobiologiae experimentalis, 71, 113–128.spa
dc.relation.referencesWhitehorn J, Simmons CP (2011). The pathogenesis of dengue.Vaccine, 29(42), 7221-8.spa
dc.relation.referencesWolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994). Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. Journal of Cell Science. 107 (Pt 5):1347-57.spa
dc.relation.referencesXu, Z, Waeckerlin, R, Urbanowski, M. D, van Marle, G, Hobman, T. C, (2010). West Nile Virus infection causes endocytosis of a specific subset of tight junction membrane proteins. Plos One, 7 (5), 1-11spa
dc.relation.referencesYábar, C. (2003). Rol de las proteinas no estructurales en los eventos de replicación del ARN del virus Dengue: propuesta de un modelo de replicación del ARN. Revista peruana de medicina experimental y salud pública, 20(1), 51-57.spa
dc.relation.referencesYang, C. M, Lin, C. C., Lee, I. T, Lin, Y. H., Yang, C. M, Chen, W. J, y otros. (2012). Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/ PDGFR/PI3K/Akt/MAPKs-dependent AP1 pathway in rat brain astrocytes. Journal of Neuroinflammation, 9(12), 1-15.spa
dc.relation.referencesYang, Y, Estrada, E. Y, Thompson, J. F, Liu, W, & Rosenberg, G. A. (2007). Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. Journal of Cerebral Blood Flow & Metabolism, 27, 697–709.spa
dc.relation.referencesYauch, L.E, Shresta S, (2008). Mouse models of dengue virus infection and disease. Antiviral Research 0(2):87-93spa
dc.relation.referencesZhang, Z, (2010). Blood-Brain Barrier in vitro Model: A Tissue Engineering Approach and Validation. FIU Electronic Theses and Dissertations. Paper 246, 1-136.spa
dc.relation.referencesZenker D, Begley D, Bratzke H, Rübsamen-Waigmann H, von Briesen H.(2003). Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. The Journal of Physiology, 551(Pt 3),1023-32.spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons2013
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectAlteración endotelialspa
dc.subjectBHEspa
dc.subjectInfecciónspa
dc.subjectDENVspa
dc.subjectTransmigración celularspa
dc.subjectTransporte paracelularspa
dc.subject.decsTécnicas in vitrospa
dc.subject.decsVirus del denguespa
dc.subject.decsBarrera hematoencefálicaspa
dc.subject.keywordsEndothelial alterationspa
dc.subject.keywordsBBBspa
dc.subject.keywordsInfectionspa
dc.subject.keywordsDENVspa
dc.subject.keywordsCellular transmigrationspa
dc.subject.keywordsParacellular transportspa
dc.subject.nlmW 50
dc.titleEvaluación in vitro de la integridad de la barrera hematoencefálica y su alteración causada por el virus denguespa
dc.title.translatedIn vitro integrity evaluation of the Blood Brain Barrier and its disturbance caused by dengue virus infectionspa
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Calderón_Peláez_María_Angélica_2013.pdf
Tamaño:
4.17 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Calderón_Peláez_María_Angélica_2013_Carta_autorizacion.pdf
Tamaño:
128.84 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: