Evaluación in vitro de la integridad de la barrera hematoencefálica y su alteración causada por el virus dengue
dc.contributor.advisor | Velandia-Romero, Myriam Lucía | |
dc.contributor.advisor | Castellanos, Jaime | |
dc.contributor.author | Calderón Peláez, María Angélica | |
dc.contributor.orcid | Calderón Peláez, María Angélica [0000-0003-0788-0795] | |
dc.contributor.orcid | Castellanos, Jaime [0000-0003-1596-8383] | |
dc.contributor.orcid | Velandia-Romero, Myriam Lucía [0000-0002-3340-7304] | |
dc.date.accessioned | 2021-02-23T17:02:24Z | |
dc.date.available | 2021-02-23T17:02:24Z | |
dc.date.issued | 2014 | |
dc.description.abstract | El sistema nervioso (SN), está protegido por una barrera de difusión celular conocida como Barrera Hematoencefálica (BHE), compuesta por diferentes tipos de células que limitan el paso de moléculas desde los capilares hacia el parénquima cerebral, lo cual garantiza la homeostasis del tejido. A pesar de esto, algunas moléculas y agentes infecciosos logran atravesar la BHE e ingresar al tejido nervioso para inducir graves daños en la fisiología de este. Dentro de los patógenos que logran alterar la BHE e infectar el tejido nervioso, se encuentran algunos miembros de la familia flaviviridae típicamente neurotrópicos, sin embargo el virus del dengue (DENV), un virus considerado no neurotrópico, puede infectar y alterar la fisiología del tejido nervioso ocasionando signos como encefalitis, parálisis y alteraciones motoras y cognitivas que pueden ser permanentes. Para comprender los cambios de tropismo y los factores neurológicos e inmunológicos asociados a la neuroinfección por DENV, en nuestro laboratorio se desarrolló un modelo de neuroinfección en ratones lactantes utilizando una cepa de virus neuroadaptado (D4MB-6), que infecta neuronas y otras células del tejido nervioso e induce la alteración de la BHE en ratones lactantes. Por lo tanto, el presente proyecto buscó evaluar en un modelo de BHE in vitro, si la alteración de la permeabilidad de la barrera endotelial cerebrovascular asociada a la infección con el DENV-4 neuroadaptado o no, favorece el paso de virus libre o asociado a células del sistema inmune lo cual, permitiría la infección y dispersión viral en el tejido nervioso. Para esto, se estableció un modelo de BHE in vitro en monocapa o co-cultivo utilizando cultivos primarios de endotelio cerebrovascular con o sin astrocitos obtenidos a partir de cerebros de ratones lactantes, siendo únicamente las células endoteliales susceptibles a la infección con el virus parental o D4MB-6. Los resultados obtenidos mostraron en ambos modelos de BHE que a las 10 horas post-infección (hpi) con cada virus, hubo una disminución en los valores de resistencia transendotelial (TEER), asociada a un aumento en la permeabilidad. Adicionalmente en este mismo tiempo post infección se detectaron partículas virales infecciosas en la cámara inferior de los insertos, lo que sugiere que la infección ocasionó una alteración en la integridad de las células endoteliales, lo que permitió el paso paracelular de las partículas virales. Se encontró que la infección con el D4MB-6 indujo la relocalización -sin afectar la expresión-, de la proteína ZO-1 y un aumento en la expresión de los transcritos para las proteínas VCAM, PECAM, TNFα y MCP-1 comparado con lo observado durante la infección con el virus parental. Esto último está relacionado con un proceso de activación endotelial que al parecer favoreció el proceso de transmigración de monocitos/macrófagos J774 en ambos modelos de BHE estandarizados. Lo anterior convierte el proceso de alteración de la BHE en uno de los posibles mecanismos utilizados por el DENV para ingresar y dispersarse dentro del tejido nervioso. | spa |
dc.description.abstractenglish | The nervous system (NS) is protected by a cellular diffusion barrier named Blood Brain Barrier (BBB). This barrier is formed by different cell types that limit the passage of molecules from the capillaries into the brain parenchyma, nevertheless some molecules and infectious agents are able to cross the BBB and infect the nervous tissue. Among the viruses that manage to alter the BBB and infect nervous tissue, there are some flaviviridae family members known as neurotropic flavivirus, however Dengue virus (DENV), a no-neurotropic flavivirus, can alter the physiology of the nervous tissue, causing clinical signs such as encephalitis, paralysis and motor and cognitive alterations that might be permanent. To understand some of the changes in the virus tropism, and in the neurological and immunological factors associated with DENV infection in the NS, we developed a neuroinfection model in suckling mice using a strain of neuroadapted virus (D4MB-6) than infects neurons and some others cells of the nervous tissue and can alter the BBB permeability in suckling mice. Therefore, the present project evaluated the permeability alteration of the cerebrovascular endothelial barrier, associated with DENV-4 or D4MB-6 infection in an in vitro BBB model. We tried to answer if this alteration can promote the passage of virus into the nervous tissue allowing infection and viral spread. We establish a BBB in vitro model using primary cultures (isolated from suckling mice) of endothelial cells (BBB model in monolayer) or endothelial cells and astrocytes (co-culture BBB model). The results showed that only the endothelial cells were susceptible to the infection with each evaluated virus; also in both BBB models at 10 hours post-infection, there was a decreased in the transendothelial resistance values (TEER), associated with an increase in the permeability of the model. Additionally at this time, we detected infectious viral particles in the supernatants of the lower chamber of the inserts, suggesting that infection results in an alteration in the integrity of the endothelial cells and permits the paracellular passage of viral particles. We also found that the infection with D4MB-6 induced the relocation of the ZO-1 protein, but it did not affect the expression pattern of this protein. Infection also induced the over expression of primary transcripts of VCAM, PECAM, TNFα y MCP-1 proteins, compared with the observations made when the cells were infected with DENV-4. This is related with an endothelial activation process that favored the transmigration of immune cells (J774) in both BBB models. Our results suggest that the alteration process of the BBB is one of the possible mechanisms used by the DENV to enter and spread in to the nervous tissue. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/5422 | |
dc.language.iso | spa | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Abbott, N. J. (2002). Astrocyte–endothelial interactions and blood–brain barrier permeability. Journal of Anatomy, 200, 629–638. | spa |
dc.relation.references | Abbott, N. J. (2005). Dynamics of CNS Barriers: Evolution, Differentiation, and Modulation. Cellular and Molecular Neurobiology, 25 (1), 5-23. | spa |
dc.relation.references | Abbott, N. J. (2013). Blood–brain barrier structure and function and the challenges for CNS drug delivery. Journal of inherited metabolic disease, 36, 437–449. | spa |
dc.relation.references | Abbott, N. J, Patabendige, A. A, Dolman, D. E, Yusof, S. R, & Begley, D. J. (2010). Structure and function of the blood–brain barrier. Neurobiology of Disease, 37, 13–25. | spa |
dc.relation.references | Abbott, N. J, Rönnbäck, L. & Hans, E. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews| Neuroscience, 7, 41-53. | spa |
dc.relation.references | Agrawal T, Sharvani V, Nair D, Medigeshi GR (2013). Japanese encephalitis virus disrupts cell-cell junctions and affects the epithelial permeability barrier functions. PLoS One, 24, 8(7) | spa |
dc.relation.references | Anderson, R, Wang, S, Osiowy, C, & Issekutz, A. C. (1997). Activation of Endothelial Cells via AntibodyEnhanced Dengue Virus Infection of Peripheral Blood Monocytes. Journal of Neurovirology, 71(6), 4226–4232. | spa |
dc.relation.references | Andrews, B. S, Theofilopoulos, A. N, Peters, C. J, Loskutoff, D. J, Brandt, W. E, & Dixon, F. J. (1978). Replication of Dengue and Junin Viruses in Cultured Rabbit and Human Endothelial Cells. Infection and Inmunity, 776-781. | spa |
dc.relation.references | Avirutnan, P., Malasit, P., Seliger, B., Bhakdi, S., & Husmann, M. (1998). Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. Journal of Immunology (Baltimore, Md.: 1950), 161(11) 6338-46 | spa |
dc.relation.references | Ballabh, P, Braun, A, & Nedergaar, M. (2004). The blood–brain barrier: an overview Structure, regulation, and clinical implications. Neurobiology of Disease, 16, 1-13. | spa |
dc.relation.references | Banks, W. A, & Erickson, M. A. (2010). The blood–brain barrier and immune function and dysfunction. Neurobiology of Disease, 37, 26–32. | spa |
dc.relation.references | Bastidas L, (2013). Identificación de las vías de propagación utilizadas por un virus dengue neuroadaptado para ingresar al sistema nervioso. Tesis de Mestría, Laboratorio de Virología, Universidad El Bosque | spa |
dc.relation.references | Basu, A & Chaturvedi, U. C. (2008). Vascular endothelium: the battlefield of dengue viruses. FEMS immunology and medical microbiology, 53, 287–299. | spa |
dc.relation.references | Bevilaqua, M, Pober, J, Mendrick, D, Cotran, R, & Gimbrone, M. (1987). Identification of an inducible endothelial-leukocyte adhesion molecule. Proceedings of the National Academy of Sciences of the United States of America, 84, 9238-9242. | spa |
dc.relation.references | Brown, R. C, Morris, A, & O'Neil, R. G. (2007). Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain research, 1130, 17-30. | spa |
dc.relation.references | Buckner, C. M, Luers, A. J, Calderon, T. M, Eugenin, E. A, & Berman, J. W. (2006). Neuroimmunity and the Blood–Brain Barrier: Molecular Regulation of Leukocyte Transmigration and Viral Entry into the Nervous System with a Focus on NeuroAIDS. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology, 1, 160–181. | spa |
dc.relation.references | Bordignon, J., Strottmann, D. M., Mosimann, A. L., Probst, C. M., Stella, V., Noronha, L,… Dos Santos, C. N. (2007). Dengue neurovirulence in mice: Identification of molecular signatures in the E and NS3 helicase domains. Journal of Medical Virology, 79(10), 1506-1517. | spa |
dc.relation.references | Cardier, J. E, Rivas, B, Romano, E, Rothman, A. L, Perez-Perez, C, Ochoa, M, y otros. (2006). Evidence of Vascular Damage in Dengue Disease:Demonstration of High Levels of Soluble Cell Adhesion Molecules and Circulating Endothelial Cells. Endothelium, 13, 335–340. | spa |
dc.relation.references | Cardoso, F. L, Brites, D, & Brito, M. A. (2010). Looking at the blood–brain barrier: Molecular anatomy and possible investigation approaches. Brain research reviews, 1-36. | spa |
dc.relation.references | Carlos, T & Harlan, J. (1994). Leukocyte-endothelial adhesion molecules. Blood, 84(7), 2068-2101. | spa |
dc.relation.references | Carman, C. V, Sage, P. T, Sciuto, T. E, de la Fuente, M. A, Geha, R. S, Ochs, H. D, y otros. (2007). Transcellular Diapedesis Is Initiated by Invasive Podosomes. Immunity, 26(6), 784–797. | spa |
dc.relation.references | Carvey, P, Hendey, B, & Monahan, A. (2009). The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. Journal of Neurochemestry, 111, 291–314. | spa |
dc.relation.references | Chaturvedi, U., Agarwal, R., Elbishbish, E., & Mustafa, A. (2000). Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunology and Medical Microbiology, 28, 183-188. | spa |
dc.relation.references | Chaturvedi, U. C, Dhawan, R, Khanna, M, & Mathur, A. (1991). Breakdown of the blood-brain barrier during dengue virus infection of mice. Journal of General Virology, 72, 859-866. | spa |
dc.relation.references | Chau, T., Quyen, N., Thuy, T., Tuan, N., Hoang, D., Dung, N.,…Simmons, C. (2008). Dengue in Vietnamese Infants—Results of Infection Enhancement Assays Correlate with Age-Related Disease Severity. Journal of Infectious Disease, 198(4), 516–524. | spa |
dc.relation.references | Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., & Wu-Hsieh, B. A. (2007b). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. Journal of Virology, 81(11), 5518-5526. | spa |
dc.relation.references | Dalrymple, N. A, & Mackow, E. R. (2012). Roles for Endothelial Cells in Dengue Virus Infection. Advances in Virology, 1-8. | spa |
dc.relation.references | Dalrymple, N, & Mackow, E. R. (2011). Productive Dengue Virus Infection of Human Endothelial Cells Is Directed by Heparan Sulfate-Containing Proteoglycan Receptors. Journal of Virology, 9478–9485. | spa |
dc.relation.references | Deli, M. A, Abraham, C. S, Kataoka, Y, & Niwa, M. (2005). Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology. Cellular and Molecular Neurobiology, 25(1), 59-127. | spa |
dc.relation.references | Demeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, van den Bosch de Aguilar P, (2002). Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the bloodbrain barrier. Journal of Neurosciences Methods. 121(1):21-31. | spa |
dc.relation.references | Domingues R. B., Kuster, G. W., Onuki-Castro, F. L., Souza, V. A., Levi, J. E., & Pannuti, C. S. (2008). Involvement of the central nervous system in patients with dengue virus infection. Journal of the Neurological Sciences, 267(1-2), 36-40 | spa |
dc.relation.references | Engelhardt, B, & Sorokin, L. (2009). The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Seminars in immunopathology, 31, 497–511. | spa |
dc.relation.references | Feldman, G. J, Mullin, J. M, & Ryan, M. P. (2005). Occludin: Structure, function and regulation. Advanced Drug Delivery Reviews, 57, 883 – 917. | spa |
dc.relation.references | Feng, S, Cen, J, Huang, Y, Shen, H, Yao, L, Wang, Y, y otros. (2011). Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins. Plos One, 6(8), 1-11. | spa |
dc.relation.references | Fernandez-Borja, M, van Buul, J, & Hordijk, P. (2010). The regulation of leucocyte transendothelial migration by endothelial signalling events. Cardiovascular Research, 86, 202–210. | spa |
dc.relation.references | Fletcher, N. F, Bexiga, M. G, Brayden, D. J, Brankin, B, Willett, B. J, Hosie, M. J, Jacque J.-M, Callanan J. J, (2009). Neuropathology and Applied Neurobiology 35, 592–602. | spa |
dc.relation.references | Furuse, M, Fujita, K, Hiiragi, T, Fujimoto, K, & Tsukita, S. (1998). Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin. The Journal of Cell Biology, 141, 1539-1550. | spa |
dc.relation.references | Furuse, M, Hirase, T, Itoh, M, Nagafuch, A, Yonemura, S, Tsukita, S, y otros. (1993). Occludin: A Novel Integral Membrane Protein Localizing at Tight Junctions. The Journal of Cell Biology, 123(6), 1777-1788. | spa |
dc.relation.references | González-Mariscal, L, Betanzos, A, Nava, P, & Jaramillo, B. E. (2003). Tight junction proteins. Progress in Biophysics & Molecular Biology, 81, 1-44. | spa |
dc.relation.references | Gulati, S., & Maheshwari, A. (2007). Atypical manifestations of dengue. Tropical Medicine & International Health : TM & IH, 12(9), 1087-1095. | spa |
dc.relation.references | Günzel, D, & Yu, A. S. (2013). Claudins and the modulation of tight junction permeability. Physiological reviews, 525-569. | spa |
dc.relation.references | Halstead, S. B, & Simasthien, P. (1970). Observations related to the pathogenesis of dengue hemorrhagic fever. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. Yale Journal of biology and medicine, 42, 276-292. | spa |
dc.relation.references | Harhaj, N. S, & Antonetti, D. A. (2004). Regulation of tight junctions and loss of barrier function in pathophysiology. The International Journal of Biochemistry & Cell Biology, 36, 1206–1237. | spa |
dc.relation.references | Haseloff, R. F, Blasig, I. E, Bauer, H. C, & Bauer, H. (2005). In Search of the Astrocytic Factor(s) Modulating Blood–Brain Barrier Functions in Brain Capillary Endothelial Cells In Vitro. Cellular and Molecular Neurobiology, 25(1), 25-39. | spa |
dc.relation.references | Hawkins, B. T, & Davis, T. P. (2005). The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57(2), 173-185. | spa |
dc.relation.references | Hicks, K, O’Neil, R. G, Dubinsky, W. S, & Brown, R. C. (2010). TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. American journal of physiology. Cell physiology 298, 15831593. | spa |
dc.relation.references | Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ. (1998). Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochemical and Biophysical Research Communication. 244(1), 312-6. | spa |
dc.relation.references | Hu, Y. J, Wang, Y.D, & Tan, F.Q. (2013). Regulation of paracellular permeability: factors and mechanisms. Molecular biology reports, 40, 6123-6142. | spa |
dc.relation.references | Hung, S. L, Lee, P. L, Chen H. W, Chen L. K, Kao, C. L, King C. C. (1999), Analysis of the steps involved in Dengue Virus entry into host. Virology 257, 156-167 | spa |
dc.relation.references | Hussmann KL, Samuel MA, Kim KS, Diamond MS, Fredericksen BL. (2013). Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. Journal of virology, 87(5):2814-22. | spa |
dc.relation.references | Imbert JL, Guevara P, Ramos-Castañeda J, Ramos C, Sotelo J. (1994), Dengue virus infects mouse cultured neurons but not astrocytes. Journal of medical virology, 42(3):228-33. | spa |
dc.relation.references | Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V, (2009). Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. Journal of Proteome Research,8(5),2551-62. | spa |
dc.relation.references | Keller, A. (2013). Breaking and building the wall: the biology of the blood-brain barrier in health and disease. The European Journal of Medical Sciences, 143, 1-13. | spa |
dc.relation.references | Kyle, J. L, & Harris, E. (2008). Global spread and persistence of Dengue. Annual Review of Microbiology, 62, 71-92. | spa |
dc.relation.references | Laia, C. H, Kuob, K. H, & Leo, J. M. (2005). Critical role of actin in modulating BBB permeability. Brain Research Reviews, 50, 7-13. | spa |
dc.relation.references | Lippmann E. S, Al-Ahmad A, ,,, Shusta E.V (2013) Modeling the blood–brain barrier using stem cell sources. Fluids and barriers of the CNS 10(1). | spa |
dc.relation.references | Martina, B. E, Koraka, P, & Osterhaus, A. D. (2009). Dengue Virus Pathogenesis: an Integrated View. Clinical microbiology reviews, 22, 564–581. | spa |
dc.relation.references | Martínez-Gutierrez, M., & Castellanos, J. E. (2006). Dengue hemorrágico, ¿una aberración inmunológica? Revista de la facultad de medicina, 11(2), 1-10. | spa |
dc.relation.references | Mathur, A, Khanna, N, & Chaturvedi, U. (1992). Breakdown of blood-brain barrier by virus-induced cytokine during Japanese encephalitis virus infection. International journal of experimental pathology, 73, 603-611. | spa |
dc.relation.references | Mishra, M. K, Dutta, K, Khaleelull, S, Saheb, S. K, & Basu, A. (2009). Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: Correlation with minocycline administration as a therapeutic agent. Neurochemistry International, 55, 717–723. | spa |
dc.relation.references | Misra, U, Kalita, J, Syam, U, & Dhole, T. (2006). Neurological manifestations of dengue virus infection. Journal of the Neurological Sciences, 244, 117 – 122. | spa |
dc.relation.references | Nakaoke, R, & Banks, W. A. (2003). In Vitro Methods in the Study of Viral and Prion Permeability Across the Blood–Brain Barrier. Cellular and Molecular Neurobiology, 25(1), 171-180. | spa |
dc.relation.references | Nazli, A, Chan, O, Dobson-Belaire, W, Ouellet, M y otros. (2010). Exposure to HIV-1 Directly Impairs Mucosal Epithelial Barrier Integrity Allowing Microbial Translocation. Plos Pathogens, 6(4), 1-20. | spa |
dc.relation.references | Nielsen, D. G. (2009). The relationship of interacting immunological components in dengue pathogenesis. Virology Journal, 6(211), 1-7. | spa |
dc.relation.references | Nimmerjahn, A. (2009). Astrocytes going live: advances and challenges. The Journal of physiology, 1639–1647. | spa |
dc.relation.references | Nitz, T., Eisenblatter, T., Psathaki, K., and Galla, H.-J. (2003). Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Research. 981, 30–40. | spa |
dc.relation.references | OMS, & TRD. (2009). Dengue, guías para el diagnóstico, tratamiento, prevención y control. Programa regional de dengue, 1-170. | spa |
dc.relation.references | Pekny M, Stanness KA, Eliasson C, Betsholtz C, Janigro D. (1998), Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia, 4, 390-400. | spa |
dc.relation.references | Perrière, N, Demeuse, P, Garcia, E, Regina, A, Debray, M, Andreux, J. P, y otros. (2005). Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. Journal of Neurochemistry, 93, 279–289. | spa |
dc.relation.references | Persidsky, Y, Ramirez, S, Haorah, J, & Kanmogne, G. (2006). Blood–brain Barrier: Structural Components and Function Under Physiologic and Pathologic Conditions. Journal of Neuroimmune Pharmacology, 1, 223–236. | spa |
dc.relation.references | Puschmann, T. B., Dixon, K. J, & Turnley, A. M. (2010). Species Differences in Reactivity of Mouse and Rat Astrocytes in vitro. Neurosignals(18), 152-163. | spa |
dc.relation.references | Roe, K, Kumar, M, Lum, S, Orillo, B, Nerurkar, V. R, & Verma, S. (2012). West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. Journal of General Virology, 93, 1193–1203. | spa |
dc.relation.references | Rubin, L. L, Hall, D. E, Porter, S, Barbu, K, Cannon, C, Homer, H. C, y otros. (1991). A Cell Culture Model of the Blood-Brain Barrier. The Journal of Cell Biology, 115, 1725-1735. | spa |
dc.relation.references | Schreibelt, G, Kooij, G, Reijerker, A, van Doorn, R, Gringhuis, S. I, van der Pol, S, y otros. (2007). Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. The FASEB Journal, 21, 3666-3676. | spa |
dc.relation.references | Shen J, T-To SS, Schrieber L, King NJ (1997), Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibility complex antigen induction on humanendothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. Journal of Virology. 71(12), 9323-32 | spa |
dc.relation.references | Sips, G. J., Wilschut, J., & Smit, J. M. (2012). Neuroinvasive flavivirus infections. Reviews in Medical Virology, 22(2), 69-87. | spa |
dc.relation.references | Solomon, T. (2004). Flavivirus encephalitis. The New England Journal of Medicine, 351(4), 370-378 | spa |
dc.relation.references | Sofroniew, M. V, & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathology, 7-35. | spa |
dc.relation.references | Spindler, K. R, & Hsu, T. H. (2012). Viral disruption of the blood–brain barrier. Trends in Microbiology, 1-9. | spa |
dc.relation.references | Srikiatkhachorn, A. (2009). Plasma leakage in dengue haemorrhagic fever. Thrombosis and haemostasis 2009, 102, 1042–1049. | spa |
dc.relation.references | Skaper, S. D, Argentini, C, Barbierato, M. (2012) Culture of Neonatal Rodent Microglia, Astrocytes, and Oligodendrocytes from Cortex and Spinal Cord. Neurotrophic Factors: Methods and Protocols, Methods in Molecular Biology, 846, 67-77. | spa |
dc.relation.references | Stamatovic, S. M, Keep, R. F, Kunkel, S. L, & Andjelkovic, A. V. (2003). Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. Journal of Cell Science, 116(22), 4615-4627. | spa |
dc.relation.references | Stevenson, B. R, & Keon, B. H. (1998). The tight junction: Morphology to molecules. Annual review of cell and developmental biology, 14, 89-109. | spa |
dc.relation.references | Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I (2004). IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. Journal of general virology, 85(Pt 7):1801-13.Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I (2004). IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. Journal of general virology, 85(Pt 7):1801-13. | spa |
dc.relation.references | Tao-Cheng JH, Nagy Z, Brightman MW, (1998). Tight junctions of brain endothelium in vitro are enhanced by astroglia. Journal of Neurosciences, 10, 3293-9. | spa |
dc.relation.references | Tilling, T., Korte, D., Hoheisel, D., and Galla, H.-J. (1998). Basement membrane proteins influence brain capillary endothelial barrier function in vitro. Journal of. Neurochemestry. 71,1151–1157. | spa |
dc.relation.references | Togashi, H, Sakisaka, T, & Takai, Y. (2009). Cell adhesion molecules in the central nervous system. Cell adhesion & Migration, 3(1), 29-35. | spa |
dc.relation.references | Varatharaj , A. (2010). Encephalitis in the clinical spectrum of dengue infection. Neurology India, 58(4) 585-559 | spa |
dc.relation.references | Velandia, M. L. (2012). Desarrollo de un modelo experimental para evaluar la neuro e inmunopatogenia por virus dengue. Bogotá: Tesis doctoral-Universidad Nacional de Colombia. | spa |
dc.relation.references | Velandia, M. L, & Castellanos, J. E. (2011). Virus del dengue: estructura y ciclo viral. Infectio, 15(1), 33-43. | spa |
dc.relation.references | Velandia, M. L, Acosta-Losada, O, & Castellanos, J. E. (2012). In vivo infection by a neuroinvasive neurovirulent dengue virus. Journal of neurovirology, 18, 374–387. | spa |
dc.relation.references | Verma, S, Lo, Y, Chapagain, M, Lum, S, Kumar, M, Gurja, U, y otros. (2009). West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology, 385, 425–433. | spa |
dc.relation.references | Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J (2010), Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Neglected Tropical Disease. 31;4(8). | spa |
dc.relation.references | Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J (2010), Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Neglected Tropical Disease. 31;4(8). | spa |
dc.relation.references | Weiss, N, Miller, F, Cazaubon, S, & Couraud, P. O. (2009). The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et Biophysica Acta, 1788, 842–857. | spa |
dc.relation.references | Weksler, B. B, Subileau, E. A, Perrière, N, Charneau, P, Holloway, K, Leveque, M, y otros. (2005). Blood-brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal, 1-26. | spa |
dc.relation.references | Wilhelm, I, Fazakas, C, & Krizb, I. A. (2011). In vitro models of the blood-brain barrier. Acta neurobiologiae experimentalis, 71, 113–128. | spa |
dc.relation.references | Whitehorn J, Simmons CP (2011). The pathogenesis of dengue.Vaccine, 29(42), 7221-8. | spa |
dc.relation.references | Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994). Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. Journal of Cell Science. 107 (Pt 5):1347-57. | spa |
dc.relation.references | Xu, Z, Waeckerlin, R, Urbanowski, M. D, van Marle, G, Hobman, T. C, (2010). West Nile Virus infection causes endocytosis of a specific subset of tight junction membrane proteins. Plos One, 7 (5), 1-11 | spa |
dc.relation.references | Yábar, C. (2003). Rol de las proteinas no estructurales en los eventos de replicación del ARN del virus Dengue: propuesta de un modelo de replicación del ARN. Revista peruana de medicina experimental y salud pública, 20(1), 51-57. | spa |
dc.relation.references | Yang, C. M, Lin, C. C., Lee, I. T, Lin, Y. H., Yang, C. M, Chen, W. J, y otros. (2012). Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/ PDGFR/PI3K/Akt/MAPKs-dependent AP1 pathway in rat brain astrocytes. Journal of Neuroinflammation, 9(12), 1-15. | spa |
dc.relation.references | Yang, Y, Estrada, E. Y, Thompson, J. F, Liu, W, & Rosenberg, G. A. (2007). Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. Journal of Cerebral Blood Flow & Metabolism, 27, 697–709. | spa |
dc.relation.references | Yauch, L.E, Shresta S, (2008). Mouse models of dengue virus infection and disease. Antiviral Research 0(2):87-93 | spa |
dc.relation.references | Zhang, Z, (2010). Blood-Brain Barrier in vitro Model: A Tissue Engineering Approach and Validation. FIU Electronic Theses and Dissertations. Paper 246, 1-136. | spa |
dc.relation.references | Zenker D, Begley D, Bratzke H, Rübsamen-Waigmann H, von Briesen H.(2003). Human blood-derived macrophages enhance barrier function of cultured primary bovine and human brain capillary endothelial cells. The Journal of Physiology, 551(Pt 3),1023-32. | spa |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | 2013 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | Alteración endotelial | spa |
dc.subject | BHE | spa |
dc.subject | Infección | spa |
dc.subject | DENV | spa |
dc.subject | Transmigración celular | spa |
dc.subject | Transporte paracelular | spa |
dc.subject.decs | Técnicas in vitro | spa |
dc.subject.decs | Virus del dengue | spa |
dc.subject.decs | Barrera hematoencefálica | spa |
dc.subject.keywords | Endothelial alteration | spa |
dc.subject.keywords | BBB | spa |
dc.subject.keywords | Infection | spa |
dc.subject.keywords | DENV | spa |
dc.subject.keywords | Cellular transmigration | spa |
dc.subject.keywords | Paracellular transport | spa |
dc.subject.nlm | W 50 | |
dc.title | Evaluación in vitro de la integridad de la barrera hematoencefálica y su alteración causada por el virus dengue | spa |
dc.title.translated | In vitro integrity evaluation of the Blood Brain Barrier and its disturbance caused by dengue virus infection | spa |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- Calderón_Peláez_María_Angélica_2013.pdf
- Tamaño:
- 4.17 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Calderón_Peláez_María_Angélica_2013_Carta_autorizacion.pdf
- Tamaño:
- 128.84 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: