Comparación del contenido proteico del esmalte de dientes permanentes sanos y con fluorosis
dc.contributor.advisor | Mejía Naranjo, Wilson Alfonso | |
dc.contributor.advisor | Castellanos Parra, Jaime Eduardo | |
dc.contributor.advisor | Martignon, Stefania | |
dc.contributor.author | Castiblanco Rubio, Gina Alejandra | |
dc.date.accessioned | 2021-09-10T16:50:22Z | |
dc.date.available | 2021-09-10T16:50:22Z | |
dc.date.issued | 2014 | |
dc.description.abstract | El esmalte con fluorosis es menos mineralizado y más poroso que el esmalte sano y durante el desarrollo retiene mayor contenido proteico. La evidencia en esmalte fluorótico erupcionado es contradictoria y no se conoce (en comparación al esmalte sano) si tiene mayor abundancia de péptidos, sus características, ni las proteínas de las que provienen. Identificar y comparar el material proteico del esmalte dental erupcionado sano y con fluorosis moderada usando Cromatografía Líquida acoplada a Espectrometría de Masas en Tándem (LC-MS/MS). Se estandarizó el protocolo de extracción de proteínas con TCA. Se obtuvo el extracto proteico del esmalte de 8 molares sanos (n=4) y con fluorosis dental moderada (n=4). Sin digestión previa con tripsina, se analizaron con LC-MS/MS y se utilizó la base de datos de SwissProt usando Mascot 2.3. Se consideraron identificaciones con puntaje ≥24 y se elaboró un listado con los péptidos de AMELX comunes a todas las muestras (puntaje ≥10), se determinó su abundancia relativa y se comparó entre los grupos (sano/fluorosis) con la prueba t-Student. Los sitios naturales de corte se compararon con los reportados en la literatura. Se predijo la estructura terciaria de la amelogenina con el servidor I-Tasser y la cuaternaria con Z-DOCK. Las imágenes se editaron en Pymol. Se identificaron tres proteínas específicas del esmalte: AMELX/Y, AMBN y ENAM, estas dos últimas se reportan por primera vez en esmalte erupcionado. Mientras que AMEL se identificó en todas las muestras, ENAM se encontró solo en el 50% de los dientes fluoróticos. Se obtuvieron las secuencias de 19 péptidos de AMELX comunes a los dos tipos de esmalte que mostraron sitios de clivaje previamente reportados para MMP-20 y KLK-4; tienen de 8 a 18 residuos, masas moleculares menores a 2 kDa, provienen en su mayoría de la región N-terminal y se ubican internamente en nuestra predicción de la estructura terciaria y cuaternaria de AMELX. No encontramos diferencias significativas en la abundancia relativa de los péptidos de los dos tipos de esmalte. Con estos resultados sugerimos un posible papel de ENAM en la patogénesis de la fluorosis dental y soportamos la hipótesis de que en la fluorosis se presenta retraso en el corte de amelogenina y no retención permanente de sus péptidos en el esmalte erupcionado. | spa |
dc.description.abstractenglish | Fluorosed enamel is less mineralized and more porous than sound enamel and during its development, retains more protein content. There is contradictory evidence in erupted human teeth: no reports are available on its protein identities, nor the characteristics and relative abundance of the peptides from erupted sound and fluorosed enamel. To identify and compare the proteins from human erupted sound and moderately fluorosed enamel by Liquid Chromatography coupled with Tandem Mass Spectrometry (LC-MS/MS). Permanent human erupted third molars were collected (TFI-0/TFI-3). Protein extraction was performed with TCA as previously reported. The extract from 8 erupted permanent sound (n=4) and mildly-fluorosed (n=4) erupted molars was processed for LCMS/MS without prior trypsin digestion. The chromatographic separation was achieved with acetonitrile/water solvent system containing 0.2% formic acid. The MS acquisition method was comprised of one survey scan ranging from m/z 300 to m/z 1650 with R=70,000 at m/z 400, followed by 10 data-dependent MS/MS scans from the top 10 precursor ions with a charge status ≥ 2. The data was searched against SwissProt protein database using Mascot 2.3. Peptides common to all samples with scores ≥ 10 were selected for quantification of relative abundance. Comparisons between peptide abundances were made with student’s t test. Amelogenin structure was predicted with I-Tasser server and molecular interactions with Z-DOCK.. Images were edited in Pymol. Four enamel-specific proteins were identified: AMEL isoforms X/Y, ENAM, and AMBN. While we found AMEL in 100% of samples, ENAM was only in 50% of fluorosed teeth. We found 19 peptide sequences common for both types of enamel, displaying natural cleavage sites previously reported for MMP-20 and KLK-4: they had 8-18 residues and molecular masses less than 2 kDa. Most of them belong to the AMEL N-terminal region and localize in the inner part of our amelogenin predicted structure. We didn’t find significant differences between relative abundances of the peptides. We suggest a possible role for ENAM in dental fluorosis and support the hypothesis that in fluorosis there are delays in amelogenin removal rather than permanent retention of its peptides. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/6048 | |
dc.language.iso | spa | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Bartlett, J. D., Ganss, B., Goldberg, M., Moradian‐Oldak, J., Paine, M. L., Snead, M. L. ... & Zhou, Y. L. (2006). Protein–protein interactions of the developing enamel matrix. Current Topics in Developmental Biology, 74, 57-115. | spa |
dc.relation.references | Black, G. V., & McKay, F. S. (1916). An investigation of mottled teeth. Dental Cosmos, 58, 477-484. | spa |
dc.relation.references | Bouropoulos, N., & Moradian-Oldak, J. (2004). Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelin. Journal of Dental Research, 83(4), 278-282. | spa |
dc.relation.references | Boyde, A. (2007). Microstructure of Enamel, en Ciba Foundation Symposium 205 – Dental Enamel (eds D. J. Chadwick y G. Cardew), John Wiley & Sons, Ltd., Chichester, UK. doi: 10.1002/9780470515303.ch3 | spa |
dc.relation.references | Bronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893. | spa |
dc.relation.references | Brookes, S. J., Kingswell, N. J., Barron, M. J., Dixon, M. J., & Kirkham, J. (2011). Is the 32‐kDa fragment the functional enamelin unit in all species? European Journal of Oral Sciences, 119(s1), 345-350. | spa |
dc.relation.references | Buzalaf, M. A. R., Pessan, J. P., Honório, H. M., & Ten Cate, J. M. (2011). Mechanisms of action of fluoride for caries control. En: Buzalaf M.A.R (Ed.), Monographs in Oral Science Vol 22: Fluoride and the Oral Environment (pp 97–114). Basel: Karger. | spa |
dc.relation.references | Castiblanco, G.A., Ilag, L.L., Castellanos, J.E., Martignon, S. & Mejía, W.A. (2012). Estandarización de un protocolo de extracción y caracterización del material proteico del esmalte dental erupcionado. Revista Salud Bosque, 2(2), 7-13. | spa |
dc.relation.references | Centers for Disease Control and Prevention. (1999). Achievements in public health, 19001999: Fluoridation of drinking water to prevent dental caries. MMWR Morb Mortal Wkly Rep, 48(41), 933-940. | spa |
dc.relation.references | Chen, L. S., Couwenhoven, R. I., Hsu, D., Luo, W., & Snead, M. L. (1992). Maintenance of amelogenin gene expression by transformed epithelial cells of mouse enamel organ. Archives of Oral Biology, 37(10), 771-778. | spa |
dc.relation.references | Colinge, J., & Bennett, K. L. (2007). Introduction to computational proteomics. PLoS Computational Biology, 3(7), e114, doi:10.1371/journal.pcbi.0030114. | spa |
dc.relation.references | Deakins, M., & Volker, J. F. (1941). Amount of organic matter in enamel from several types of human teeth. Journal of Dental Research, 20(2), 117-121. | spa |
dc.relation.references | Dean, H. T. (1938). Endemic fluorosis and its relation to dental caries. Public Health Report, 53(33), 1443-1452. | spa |
dc.relation.references | Den Besten, P. K. (1986). Effects of fluoride on protein secretion and removal during enamel development in the rat. Journal of Dental Research, 65(10), 1272-1277. | spa |
dc.relation.references | Den Besten, P. K., Gao, C., Li, W., Mathews, C. H., & Gruenert, D. C. (1999). Development and characterization of an SV40 immortalized porcine ameloblast‐like cell line. European Journal of Oral Sciences, 107(4), 276-281. | spa |
dc.relation.references | Den Besten, P. K., Zhu, L., Li, W., Tanimoto, K., Liu, H., & Witkowska, H. E. (2011). Fluoride incorporation into apatite crystals delays amelogenin hydrolysis. European Journal of Oral Sciences, 119(s1), 3-7. | spa |
dc.relation.references | DenBesten, P. K., & Li, W. (2011). Chronic fluoride toxicity: dental fluorosis. En: Buzalaf M.A.R (Ed.), Monographs in Oral Science Vol 22: Fluoride and the Oral Environment (pp 81–96). Basel: Karger. | spa |
dc.relation.references | Department of Health and Human Services (HHS). (2011). Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental Caries. Federal Register, 76(9), 2383-2388. | spa |
dc.relation.references | Duan, X., Mao, Y., Wen, X., Yang, T., & Xue, Y. (2011). Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. Journal of Dental Research, 90(2), 175-180. | spa |
dc.relation.references | Eastoe, J. E., & Fejerskov, O. (1984). Composition of mature enamel proteins from fluorosed teeth. Tooth Enamel IV. Amsterdam, Elsevier, 326-330. | spa |
dc.relation.references | Eidhammer, I., Flikka, K., Martens, L., & Mikalsen, S. O. (2008). Fundamentals of Mass Spectrometry. En: Computational methods for mass spectrometry proteomics. Chichester: Wiley-Interscience. | spa |
dc.relation.references | Fan, D., Du, C., Sun, Z., Lakshminarayanan, R., & Moradian-Oldak, J. (2009). In vitro study on the interaction between the 32kDa enamelin and amelogenin. Journal of Structural Biology, 166(1), 88-94. | spa |
dc.relation.references | Fang, P. A., Conway, J. F., Margolis, H. C., Simmer, J. P., & Beniash, E. (2011). Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proceedings of the National Academy of Sciences, 108(34), 1409714102. | spa |
dc.relation.references | Fejerskov, O. (2004). Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Research, 38(3), 182-191 | spa |
dc.relation.references | Fejerskov, O., Thylstrup, A., & Larsen, M. J. (1977). Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. European Journal of Oral Sciences, 85(7), 510-534. | spa |
dc.relation.references | Fincham, A. G., Belcourt, A. B., Termine, J. D., Butler, W. T., & Cothran, W. C. (1981). Dental enamel matrix: sequences of two amelogenin polypeptides. Bioscience Reports, 1(10), 771-778. | spa |
dc.relation.references | Fincham, A. G., Moradian-Oldak, J., & Simmer, J. P. (1999). The structural biology of the developing dental enamel matrix. Journal of Structural Biology, 126(3), 270-299. | spa |
dc.relation.references | Franco, A. M., Saldarriaga, A., González, M. C., Martignon, S., Arbeláez, M. I., Ocampo, A., & Luna, L. M. (2003). Concentración de fluoruro en la sal de cocina en cuatro ciudades Colombianas. CES Odontología, 16(1), 21-26. | spa |
dc.relation.references | Gallon, V., Chen, L., Yang, X., & Moradian-Oldak, J. (2013). Localization and Quantitative co-localization of Enamelin with Amelogenin. Journal of Structural Biology, disponible en línea 4 Abril de 2013, doi: 10.1016/j.bbr.2011.03.031. | spa |
dc.relation.references | Gartler, S. M., & Riggs, A. D. (1983). Mammalian X-chromosome inactivation. Annual review of genetics, 17(1), 155-190. | spa |
dc.relation.references | Gerlach, R. F., De Souza, A. P., Cury, J. A., & Line, S. R. P. (2000). Fluoride effect on the activity of enamel matrix proteinases in vitro. European Journal of Oral Sciences, 108(1), 48-53. | spa |
dc.relation.references | Glimcher, M. J., & Levine, P. T. (1966). Studies of the proteins, peptides and free amino acids of mature bovine enamel. Biochemical Journal, 98(3), 742-753. | spa |
dc.relation.references | Glimcher, M. J., & Levine, P. T. (1966). Studies of the proteins, peptides and free amino acids of mature bovine enamel. Biochemical Journal, 98(3), 742. | spa |
dc.relation.references | Gonzalez-Begne, M., Lu, B., Han, X., Hagen, F. K., Hand, A. R., Melvin, J. E., & Yates III, J. R. (2009). Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). Journal of Proteome Research, 8(3), 1304-1314. | spa |
dc.relation.references | Hart, P. S., Hart, T. C., Michalec, M. D., Ryu, O. H., Simmons, D., Hong, S., & Wright, J. T. (2004). Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. Journal of Medical Genetics, 41(7), 545-549. | spa |
dc.relation.references | Hellwig, E., & Lennon, A. M. (2004). Systemic versus topical fluoride. Caries Research, 38(3), 258-262. | spa |
dc.relation.references | Hu, J. C., Chun, Y. H., Al Hazzazzi, T., & Simmer, J. P. (2007). Enamel formation and amelogenesis imperfecta. Cells Tissues Organs, 186(1), 78-85. | spa |
dc.relation.references | Hu, J. C., Hu, Y., Smith, C. E., McKee, M. D., Wright, J. T., Yamakoshi, Y., ... & Simmer, J. P. (2008). Enamel defects and ameloblast-specific expression in Enam knockout/lacz knock-in mice. Journal of Biological Chemistry, 283(16), 10858-10871. | spa |
dc.relation.references | Iijima, M., Fan, D., Bromley, K. M., Sun, Z., & Moradian-Oldak, J. (2010). Tooth enamel proteins enamelin and amelogenin cooperate to regulate the growth morphology of octacalcium phosphate crystals. Crystal Growth & Design, 10(11), 4815-4822. | spa |
dc.relation.references | Instituto Nacional de Salud. (2012). Protocolo de Vigilancia y Control Centinela de la Exposición a Flúor. Proceso R-02 de Vigilancia y Control en Salud Pública. Disponible en https://www.ins.gov.co/lineas-de-accion/SubdireccionVigilancia/sivigila/Protocolos%20SIVIGILA/CENTINELA%20EXPOSICION%20FLUOR.pdf | spa |
dc.relation.references | Kerebel, B., Daculsi, G., & Verbaere, A. (1976). High-resolution electron microscopy and crystallographic study of some biological apatites. Journal of Ultrastructure Research, 57(3), 266-275. | spa |
dc.relation.references | Kubota, K., Lee, D. H., Tsuchiya, M., Young, C. S., Everett, E. T., Martinez-Mier, E. A., & Bartlett, J. D. (2005). Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. Journal of Biological Chemistry, 280(24), 23194-23202. | spa |
dc.relation.references | Lacruz, R. S., Smith, C. E., Smith, S. M., Hu, P., Bringas, P., Sahin-Tóth, M. ... & Paine, M. L. (2011). Chymotrypsin C (caldecrin) is associated with enamel development. Journal of Dental Research, 90(10), 1228-1233. | spa |
dc.relation.references | Le Norcy, E., Kwak, S. Y., Wiedemann-Bidlack, F. B., Beniash, E., Yamakoshi, Y., Simmer, J. P., & Margolis, H. C. (2011). Leucine-rich amelogenin peptides regulate mineralization in vitro. Journal of Dental Research, 90(9), 1091-1097. | spa |
dc.relation.references | Lu, Y., Papagerakis, P., Yamakoshi, Y., Hu, J. C. C., Bartlett, J. D., & Simmer, J. P. (2008). Functions of KLK4 and MMP-20 in dental enamel formation. Biological Chemistry, 389(6), 695-700. | spa |
dc.relation.references | Lyutvinskiy, Y., Yang, H., Rutishauser, D., & Zubarev, R. (2013). In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models. Molecular & Cellular Proteomics, 12(8), 23242331 | spa |
dc.relation.references | Mangum, J. E., Crombie, F. A., Kilpatrick, N., Manton, D. J., & Hubbard, M. J. (2010). Surface integrity governs the proteome of hypomineralized enamel. Journal of Dental Research, 89(10), 1160-1165. | spa |
dc.relation.references | Margolis, H. C., Beniash, E., & Fowler, C. E. (2006). Role of macromolecular assembly of enamel matrix proteins in enamel formation. Journal of Dental Research, 85(9), 775793. | spa |
dc.relation.references | McCollum, E. V., Simmonds, N., Becker, J. E., & Bunting, R. W. (1925). The effect of additions of fluorine to the diet of the rat on the quality of the teeth. Journal of Biological Chemistry, 63(3), 553-562. | spa |
dc.relation.references | Ministerio de la Protección Social, República de Colombia. (2007). Plan Nacional de Salud Pública, Decreto 3039 de 2007. | spa |
dc.relation.references | Ministerio de Salud - República de Colombia, Centro Nacional de Consultoría – CNC. (1999). III Estudio Nacional de Salud Bucal - ENSAB III, Tomo VII. Bogotá: Lito Servicios ALER. | spa |
dc.relation.references | Ministerio de Salud, República de Colombia. (1984). Decreto Número 2024 del 21 de Agosto de 1984. | spa |
dc.relation.references | Moradian-Oldak, J. (2009). The regeneration of tooth enamel. Dimensions of Dental Hygiene, 7(8), 12-15. | spa |
dc.relation.references | Moradian-Oldak, J. (2012). Protein-mediated enamel mineralization. Frontiers in Bioscience, 17(1), 1996-2023. | spa |
dc.relation.references | Morotomi, T., Kawano, S., Toyono, T., Kitamura, C., Terashita, M., Uchida, T.,.& Harada, H. (2005). In vitro differentiation of dental epithelial progenitor cells through epithelial–mesenchymal interactions. Archives of Oral Biology, 50(8), 695-705. | spa |
dc.relation.references | Nagano, T., Kakegawa, A., Yamakoshi, Y., Tsuchiya, S., Hu, J. C., Gomi, K., & Simmer, J. P. (2009). Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. Journal of Dental Research, 88(9), 823-828. | spa |
dc.relation.references | Nanci, A. (2007). Structure of the oral tissues. En: Ten Cate's Oral Histology: Development, Structure, and Function (pp. 1-4). St Louis, Missouri: Mosby. | spa |
dc.relation.references | Nielsen-Marsh, C. M., Stegemann, C., Hoffmann, R., Smith, T., Feeney, R., Toussaint, M., & Richards, M. P. (2009). Extraction and sequencing of human and Neanderthal mature enamel proteins using MALDI-TOF/TOF MS. Journal of Archaeological Science, 36(8), 1758-1763. | spa |
dc.relation.references | Park, E. S., Cho, H. S., Kwon, T. G., Jang, S. N., Lee, S. H., An, C. H., ... & Cho, J. Y. (2009). Proteomics analysis of human dentin reveals distinct protein expression profiles. Journal of Proteome Research, 8(3), 1338-1346. | spa |
dc.relation.references | Porto, I. M., Laure, H. J., de Sousa, F. B., Rosa, J. C., & Gerlach, R. F. (2011). New techniques for the recovery of small amounts of mature enamel proteins. Journal of Archaeological Science, 38(12), 3596-3604. | spa |
dc.relation.references | Porto, I. M., Laure, H. J., Tykot, R. H., de Sousa, F. B., Rosa, J. C., & Gerlach, R. F. (2011). Recovery and identification of mature enamel proteins in ancient teeth. European Journal of Oral Sciences, 119(s1), 83-87. | spa |
dc.relation.references | Porto, I. M., Line, S. R., Laure, H. J., & Gerlach, R. F. (2006). Comparison of three methods for enamel protein extraction in different developmental phases of rat lower incisors. European Journal of Oral Sciences, 114(s1), 272-275. | spa |
dc.relation.references | Ramírez, B. S., Franco, Á. M., Sierra, J. L., López, R. V., Alzate Y, T., Sarrazola, Á. M., & Morales R, C. (2009). Fluorosis dental en escolares y exploración de factores de riesgo. Municipio de Frontino, 2003. Revista Facultad de Odontología Universidad de Antioquia, 17(2) (2), 26-33. | spa |
dc.relation.references | Riksen, E. A., Kalvik, A., Brookes, S., Hynne, A., L Snead, M., Lyngstadaas, S. P., & Reseland, J. E. (2011). Fluoride reduces the expression of enamel proteins and cytokines in an ameloblast-derived cell line. Archives of Oral Biology, 56(4), 324-330. | spa |
dc.relation.references | Ripa, L. W. (1991). A Critique of Topical Fluoride Methods (Dentifrices, Mouthrinses, Operator and Self‐applied Gels) in an Era of Decreased Caries and Increased Fluorosis Prevalence. Journal of Public Health Dentistry, 51(1), 23-41. | spa |
dc.relation.references | Ryu, O. H., Fincham, A. G., Hu, C. C., Zhang, C., Qian, Q., Bartlett, J. D., & Simmer, J. P. (1999). Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. Journal of Dental Research, 78(3), 743750. | spa |
dc.relation.references | Sampaio, F. C., & Levy, S. M. (2011). Systemic fluoride. En: Buzalaf M.A.R (Ed.), Monographs in Oral Science Vol 22: Fluoride and the Oral Environment (pp 133–145). Basel: Karger. | spa |
dc.relation.references | Sharma, R., Tsuchiya, M., & Bartlett, J. D. (2008). Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environmental health perspectives, 116(9), 1142-1146. | spa |
dc.relation.references | Sharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: how pH modulates toxicity. PloS one, 5(5), e10895. doi:10.1371/journal.pone.0010895 | spa |
dc.relation.references | Sierant, M. L., & Bartlett, J. D. (2012). A Potential Mechanism for the Development of Dental Fluorosis. En: Interface Oral Health Science 2011 (pp. 408-412). Japón: Springer. | spa |
dc.relation.references | Simmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108. | spa |
dc.relation.references | Simmer, J. P., & Hu, J. C. (2001). Dental enamel formation and its impact on clinical dentistry. Journal of Dental Education, 65(9), 896-905. | spa |
dc.relation.references | Sire, J. Y., Delgado, S., Fromentin, D., & Girondot, M. (2005). Amelogenin: lessons from evolution. Archives of Oral Biology, 50(2), 205-212. | spa |
dc.relation.references | Tanimoto, K., Le, T., Zhu, L., Chen, J., Featherstone, J. D. B., Li, W., & DenBesten, P. (2008). Effects of fluoride on the interactions between amelogenin and apatite crystals. Journal of Dental Research, 87(1), 39-44. | spa |
dc.relation.references | Tellez, M., Santamaria, R. M., Gomez, J., & Martignon, S. (2012). Dental fluorosis, dental caries, and quality of life factors among schoolchildren in a Colombian fluorotic area. | spa |
dc.relation.references | Community Dental Health, 29(1), 95-99. Thylstrup, A., & Fejerskov, O. (1978). Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dentistry and Oral Epidemiology, 6(6), 315-328. | spa |
dc.relation.references | Tye, C. E., Antone, J. V., & Bartlett, J. D. (2011). Fluoride does not inhibit enamel protease activity. Journal of Dental Research, 90(4), 489-494. | spa |
dc.relation.references | Wei, W., Gao, Y., Wang, C., Zhao, L., & Sun, D. (2011). Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion. Environmental Toxicology, 28(6), 332-341. | spa |
dc.relation.references | Wright, J. T., Chen, S. C., Hall, K. I., Yamauchi, M., & Bawden, J. W. (1996). Protein characterization of fluorosed human enamel. Journal of Dental Research, 75(12), 1936-1941. | spa |
dc.relation.references | Yamakoshi, Y., Hu, J. C. C., Fukae, M., Yamakoshi, F., & Simmer, J. P. (2006). How do enamelysin and kallikrein 4 process the 32‐kDa enamelin?. European Journal of Oral Sciences, 114(s1), 45-51. | spa |
dc.relation.references | Yamakoshi, Y., Hu, J. C. C., Zhang, H., Iwata, T., Yamakoshi, F., & Simmer, J. P. (2006). Proteomic analysis of enamel matrix using a two‐dimensional protein fractionation system. European Journal of Oral Sciences, 114(s1), 266-271. | spa |
dc.relation.references | Yan, Q., Zhang, Y., Li, W., & DenBesten, P. K. (2007). Micromolar fluoride alters ameloblast lineage cells in vitro. Journal of Dental Research, 86(4), 336-340. | spa |
dc.relation.references | Yanagisawa, T., Takuma, S., & Fejerskov, O. (1989). Ultrastructure and composition of enamel in human dental fluorosis. Advances in Dental Research, 3(2), 203-210. | spa |
dc.relation.references | Zhang, Y., Li, W., Chi, H. S., Chen, J., & DenBesten, P. K. (2007). JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro. Matrix Biology, 26(8), 633-641. | spa |
dc.relation.references | Zhang, Y., Yan, Q., Li, W., & DenBesten, P. K. (2006). Fluoride down‐regulates the expression of matrix metalloproteinase‐20 in human fetal tooth ameloblast‐lineage cells in vitro. European Journal of Oral Sciences, 114(s1), 105-110. | spa |
dc.relation.references | Zhang, Y., Yan, Q., Li, W., & DenBesten, P. K. (2006). Fluoride down‐regulates the expression of matrix metalloproteinase‐20 in human fetal tooth ameloblast‐lineage cells in vitro. European Journal of Oral Sciences, 114(s1), 105-110. | spa |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | 2014 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | Esmalte dental | spa |
dc.subject | Proteínas del esmalte dental | spa |
dc.subject | Fluorosis dental | spa |
dc.subject.decs | Esmalte dental | spa |
dc.subject.decs | Fluorosis dental | spa |
dc.subject.decs | Proteínas del esmalte dental | spa |
dc.subject.keywords | Dental enamel | spa |
dc.subject.keywords | Dental enamel proteins | spa |
dc.subject.keywords | Dental fluorosis | spa |
dc.subject.keywords | Amelogenin | spa |
dc.subject.nlm | W 50 | |
dc.title | Comparación del contenido proteico del esmalte de dientes permanentes sanos y con fluorosis | spa |
dc.title.translated | Comparison between protein content from permanent sound and fluorosed teeth | spa |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- Castiblanco_Rubio_Gina_Alejandra_2014.pdf
- Tamaño:
- 1.4 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Castiblanco_Rubio_Gina_Alejandra_2014_Carta_Autorizacion.pdf
- Tamaño:
- 189.66 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: