Comparación del contenido proteico del esmalte de dientes permanentes sanos y con fluorosis

dc.contributor.advisorMejía Naranjo, Wilson Alfonso
dc.contributor.advisorCastellanos Parra, Jaime Eduardo
dc.contributor.advisorMartignon, Stefania
dc.contributor.authorCastiblanco Rubio, Gina Alejandra
dc.date.accessioned2021-09-10T16:50:22Z
dc.date.available2021-09-10T16:50:22Z
dc.date.issued2014
dc.description.abstractEl esmalte con fluorosis es menos mineralizado y más poroso que el esmalte sano y durante el desarrollo retiene mayor contenido proteico. La evidencia en esmalte fluorótico erupcionado es contradictoria y no se conoce (en comparación al esmalte sano) si tiene mayor abundancia de péptidos, sus características, ni las proteínas de las que provienen. Identificar y comparar el material proteico del esmalte dental erupcionado sano y con fluorosis moderada usando Cromatografía Líquida acoplada a Espectrometría de Masas en Tándem (LC-MS/MS). Se estandarizó el protocolo de extracción de proteínas con TCA. Se obtuvo el extracto proteico del esmalte de 8 molares sanos (n=4) y con fluorosis dental moderada (n=4). Sin digestión previa con tripsina, se analizaron con LC-MS/MS y se utilizó la base de datos de SwissProt usando Mascot 2.3. Se consideraron identificaciones con puntaje ≥24 y se elaboró un listado con los péptidos de AMELX comunes a todas las muestras (puntaje ≥10), se determinó su abundancia relativa y se comparó entre los grupos (sano/fluorosis) con la prueba t-Student. Los sitios naturales de corte se compararon con los reportados en la literatura. Se predijo la estructura terciaria de la amelogenina con el servidor I-Tasser y la cuaternaria con Z-DOCK. Las imágenes se editaron en Pymol. Se identificaron tres proteínas específicas del esmalte: AMELX/Y, AMBN y ENAM, estas dos últimas se reportan por primera vez en esmalte erupcionado. Mientras que AMEL se identificó en todas las muestras, ENAM se encontró solo en el 50% de los dientes fluoróticos. Se obtuvieron las secuencias de 19 péptidos de AMELX comunes a los dos tipos de esmalte que mostraron sitios de clivaje previamente reportados para MMP-20 y KLK-4; tienen de 8 a 18 residuos, masas moleculares menores a 2 kDa, provienen en su mayoría de la región N-terminal y se ubican internamente en nuestra predicción de la estructura terciaria y cuaternaria de AMELX. No encontramos diferencias significativas en la abundancia relativa de los péptidos de los dos tipos de esmalte. Con estos resultados sugerimos un posible papel de ENAM en la patogénesis de la fluorosis dental y soportamos la hipótesis de que en la fluorosis se presenta retraso en el corte de amelogenina y no retención permanente de sus péptidos en el esmalte erupcionado.spa
dc.description.abstractenglishFluorosed enamel is less mineralized and more porous than sound enamel and during its development, retains more protein content. There is contradictory evidence in erupted human teeth: no reports are available on its protein identities, nor the characteristics and relative abundance of the peptides from erupted sound and fluorosed enamel. To identify and compare the proteins from human erupted sound and moderately fluorosed enamel by Liquid Chromatography coupled with Tandem Mass Spectrometry (LC-MS/MS). Permanent human erupted third molars were collected (TFI-0/TFI-3). Protein extraction was performed with TCA as previously reported. The extract from 8 erupted permanent sound (n=4) and mildly-fluorosed (n=4) erupted molars was processed for LCMS/MS without prior trypsin digestion. The chromatographic separation was achieved with acetonitrile/water solvent system containing 0.2% formic acid. The MS acquisition method was comprised of one survey scan ranging from m/z 300 to m/z 1650 with R=70,000 at m/z 400, followed by 10 data-dependent MS/MS scans from the top 10 precursor ions with a charge status ≥ 2. The data was searched against SwissProt protein database using Mascot 2.3. Peptides common to all samples with scores ≥ 10 were selected for quantification of relative abundance. Comparisons between peptide abundances were made with student’s t test. Amelogenin structure was predicted with I-Tasser server and molecular interactions with Z-DOCK.. Images were edited in Pymol. Four enamel-specific proteins were identified: AMEL isoforms X/Y, ENAM, and AMBN. While we found AMEL in 100% of samples, ENAM was only in 50% of fluorosed teeth. We found 19 peptide sequences common for both types of enamel, displaying natural cleavage sites previously reported for MMP-20 and KLK-4: they had 8-18 residues and molecular masses less than 2 kDa. Most of them belong to the AMEL N-terminal region and localize in the inner part of our amelogenin predicted structure. We didn’t find significant differences between relative abundances of the peptides. We suggest a possible role for ENAM in dental fluorosis and support the hypothesis that in fluorosis there are delays in amelogenin removal rather than permanent retention of its peptides.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/6048
dc.language.isospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.referencesBartlett, J. D., Ganss, B., Goldberg, M., Moradian‐Oldak, J., Paine, M. L., Snead, M. L. ... & Zhou, Y. L. (2006). Protein–protein interactions of the developing enamel matrix. Current Topics in Developmental Biology, 74, 57-115.spa
dc.relation.referencesBlack, G. V., & McKay, F. S. (1916). An investigation of mottled teeth. Dental Cosmos, 58, 477-484.spa
dc.relation.referencesBouropoulos, N., & Moradian-Oldak, J. (2004). Induction of apatite by the cooperative effect of amelogenin and the 32-kDa enamelin. Journal of Dental Research, 83(4), 278-282.spa
dc.relation.referencesBoyde, A. (2007). Microstructure of Enamel, en Ciba Foundation Symposium 205 – Dental Enamel (eds D. J. Chadwick y G. Cardew), John Wiley & Sons, Ltd., Chichester, UK. doi: 10.1002/9780470515303.ch3spa
dc.relation.referencesBronckers, A. L. J. J., Lyaruu, D. M., & DenBesten, P. K. (2009). The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Journal of Dental Research, 88(10), 877-893.spa
dc.relation.referencesBrookes, S. J., Kingswell, N. J., Barron, M. J., Dixon, M. J., & Kirkham, J. (2011). Is the 32‐kDa fragment the functional enamelin unit in all species? European Journal of Oral Sciences, 119(s1), 345-350.spa
dc.relation.referencesBuzalaf, M. A. R., Pessan, J. P., Honório, H. M., & Ten Cate, J. M. (2011). Mechanisms of action of fluoride for caries control. En: Buzalaf M.A.R (Ed.), Monographs in Oral Science Vol 22: Fluoride and the Oral Environment (pp 97–114). Basel: Karger.spa
dc.relation.referencesCastiblanco, G.A., Ilag, L.L., Castellanos, J.E., Martignon, S. & Mejía, W.A. (2012). Estandarización de un protocolo de extracción y caracterización del material proteico del esmalte dental erupcionado. Revista Salud Bosque, 2(2), 7-13.spa
dc.relation.referencesCenters for Disease Control and Prevention. (1999). Achievements in public health, 19001999: Fluoridation of drinking water to prevent dental caries. MMWR Morb Mortal Wkly Rep, 48(41), 933-940.spa
dc.relation.referencesChen, L. S., Couwenhoven, R. I., Hsu, D., Luo, W., & Snead, M. L. (1992). Maintenance of amelogenin gene expression by transformed epithelial cells of mouse enamel organ. Archives of Oral Biology, 37(10), 771-778.spa
dc.relation.referencesColinge, J., & Bennett, K. L. (2007). Introduction to computational proteomics. PLoS Computational Biology, 3(7), e114, doi:10.1371/journal.pcbi.0030114.spa
dc.relation.referencesDeakins, M., & Volker, J. F. (1941). Amount of organic matter in enamel from several types of human teeth. Journal of Dental Research, 20(2), 117-121.spa
dc.relation.referencesDean, H. T. (1938). Endemic fluorosis and its relation to dental caries. Public Health Report, 53(33), 1443-1452.spa
dc.relation.referencesDen Besten, P. K. (1986). Effects of fluoride on protein secretion and removal during enamel development in the rat. Journal of Dental Research, 65(10), 1272-1277.spa
dc.relation.referencesDen Besten, P. K., Gao, C., Li, W., Mathews, C. H., & Gruenert, D. C. (1999). Development and characterization of an SV40 immortalized porcine ameloblast‐like cell line. European Journal of Oral Sciences, 107(4), 276-281.spa
dc.relation.referencesDen Besten, P. K., Zhu, L., Li, W., Tanimoto, K., Liu, H., & Witkowska, H. E. (2011). Fluoride incorporation into apatite crystals delays amelogenin hydrolysis. European Journal of Oral Sciences, 119(s1), 3-7.spa
dc.relation.referencesDenBesten, P. K., & Li, W. (2011). Chronic fluoride toxicity: dental fluorosis. En: Buzalaf M.A.R (Ed.), Monographs in Oral Science Vol 22: Fluoride and the Oral Environment (pp 81–96). Basel: Karger.spa
dc.relation.referencesDepartment of Health and Human Services (HHS). (2011). Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental Caries. Federal Register, 76(9), 2383-2388.spa
dc.relation.referencesDuan, X., Mao, Y., Wen, X., Yang, T., & Xue, Y. (2011). Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. Journal of Dental Research, 90(2), 175-180.spa
dc.relation.referencesEastoe, J. E., & Fejerskov, O. (1984). Composition of mature enamel proteins from fluorosed teeth. Tooth Enamel IV. Amsterdam, Elsevier, 326-330.spa
dc.relation.referencesEidhammer, I., Flikka, K., Martens, L., & Mikalsen, S. O. (2008). Fundamentals of Mass Spectrometry. En: Computational methods for mass spectrometry proteomics. Chichester: Wiley-Interscience.spa
dc.relation.referencesFan, D., Du, C., Sun, Z., Lakshminarayanan, R., & Moradian-Oldak, J. (2009). In vitro study on the interaction between the 32kDa enamelin and amelogenin. Journal of Structural Biology, 166(1), 88-94.spa
dc.relation.referencesFang, P. A., Conway, J. F., Margolis, H. C., Simmer, J. P., & Beniash, E. (2011). Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proceedings of the National Academy of Sciences, 108(34), 1409714102.spa
dc.relation.referencesFejerskov, O. (2004). Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Research, 38(3), 182-191spa
dc.relation.referencesFejerskov, O., Thylstrup, A., & Larsen, M. J. (1977). Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. European Journal of Oral Sciences, 85(7), 510-534.spa
dc.relation.referencesFincham, A. G., Belcourt, A. B., Termine, J. D., Butler, W. T., & Cothran, W. C. (1981). Dental enamel matrix: sequences of two amelogenin polypeptides. Bioscience Reports, 1(10), 771-778.spa
dc.relation.referencesFincham, A. G., Moradian-Oldak, J., & Simmer, J. P. (1999). The structural biology of the developing dental enamel matrix. Journal of Structural Biology, 126(3), 270-299.spa
dc.relation.referencesFranco, A. M., Saldarriaga, A., González, M. C., Martignon, S., Arbeláez, M. I., Ocampo, A., & Luna, L. M. (2003). Concentración de fluoruro en la sal de cocina en cuatro ciudades Colombianas. CES Odontología, 16(1), 21-26.spa
dc.relation.referencesGallon, V., Chen, L., Yang, X., & Moradian-Oldak, J. (2013). Localization and Quantitative co-localization of Enamelin with Amelogenin. Journal of Structural Biology, disponible en línea 4 Abril de 2013, doi: 10.1016/j.bbr.2011.03.031.spa
dc.relation.referencesGartler, S. M., & Riggs, A. D. (1983). Mammalian X-chromosome inactivation. Annual review of genetics, 17(1), 155-190.spa
dc.relation.referencesGerlach, R. F., De Souza, A. P., Cury, J. A., & Line, S. R. P. (2000). Fluoride effect on the activity of enamel matrix proteinases in vitro. European Journal of Oral Sciences, 108(1), 48-53.spa
dc.relation.referencesGlimcher, M. J., & Levine, P. T. (1966). Studies of the proteins, peptides and free amino acids of mature bovine enamel. Biochemical Journal, 98(3), 742-753.spa
dc.relation.referencesGlimcher, M. J., & Levine, P. T. (1966). Studies of the proteins, peptides and free amino acids of mature bovine enamel. Biochemical Journal, 98(3), 742.spa
dc.relation.referencesGonzalez-Begne, M., Lu, B., Han, X., Hagen, F. K., Hand, A. R., Melvin, J. E., & Yates III, J. R. (2009). Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). Journal of Proteome Research, 8(3), 1304-1314.spa
dc.relation.referencesHart, P. S., Hart, T. C., Michalec, M. D., Ryu, O. H., Simmons, D., Hong, S., & Wright, J. T. (2004). Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. Journal of Medical Genetics, 41(7), 545-549.spa
dc.relation.referencesHellwig, E., & Lennon, A. M. (2004). Systemic versus topical fluoride. Caries Research, 38(3), 258-262.spa
dc.relation.referencesHu, J. C., Chun, Y. H., Al Hazzazzi, T., & Simmer, J. P. (2007). Enamel formation and amelogenesis imperfecta. Cells Tissues Organs, 186(1), 78-85.spa
dc.relation.referencesHu, J. C., Hu, Y., Smith, C. E., McKee, M. D., Wright, J. T., Yamakoshi, Y., ... & Simmer, J. P. (2008). Enamel defects and ameloblast-specific expression in Enam knockout/lacz knock-in mice. Journal of Biological Chemistry, 283(16), 10858-10871.spa
dc.relation.referencesIijima, M., Fan, D., Bromley, K. M., Sun, Z., & Moradian-Oldak, J. (2010). Tooth enamel proteins enamelin and amelogenin cooperate to regulate the growth morphology of octacalcium phosphate crystals. Crystal Growth & Design, 10(11), 4815-4822.spa
dc.relation.referencesInstituto Nacional de Salud. (2012). Protocolo de Vigilancia y Control Centinela de la Exposición a Flúor. Proceso R-02 de Vigilancia y Control en Salud Pública. Disponible en https://www.ins.gov.co/lineas-de-accion/SubdireccionVigilancia/sivigila/Protocolos%20SIVIGILA/CENTINELA%20EXPOSICION%20FLUOR.pdfspa
dc.relation.referencesKerebel, B., Daculsi, G., & Verbaere, A. (1976). High-resolution electron microscopy and crystallographic study of some biological apatites. Journal of Ultrastructure Research, 57(3), 266-275.spa
dc.relation.referencesKubota, K., Lee, D. H., Tsuchiya, M., Young, C. S., Everett, E. T., Martinez-Mier, E. A., & Bartlett, J. D. (2005). Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. Journal of Biological Chemistry, 280(24), 23194-23202.spa
dc.relation.referencesLacruz, R. S., Smith, C. E., Smith, S. M., Hu, P., Bringas, P., Sahin-Tóth, M. ... & Paine, M. L. (2011). Chymotrypsin C (caldecrin) is associated with enamel development. Journal of Dental Research, 90(10), 1228-1233.spa
dc.relation.referencesLe Norcy, E., Kwak, S. Y., Wiedemann-Bidlack, F. B., Beniash, E., Yamakoshi, Y., Simmer, J. P., & Margolis, H. C. (2011). Leucine-rich amelogenin peptides regulate mineralization in vitro. Journal of Dental Research, 90(9), 1091-1097.spa
dc.relation.referencesLu, Y., Papagerakis, P., Yamakoshi, Y., Hu, J. C. C., Bartlett, J. D., & Simmer, J. P. (2008). Functions of KLK4 and MMP-20 in dental enamel formation. Biological Chemistry, 389(6), 695-700.spa
dc.relation.referencesLyutvinskiy, Y., Yang, H., Rutishauser, D., & Zubarev, R. (2013). In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models. Molecular & Cellular Proteomics, 12(8), 23242331spa
dc.relation.referencesMangum, J. E., Crombie, F. A., Kilpatrick, N., Manton, D. J., & Hubbard, M. J. (2010). Surface integrity governs the proteome of hypomineralized enamel. Journal of Dental Research, 89(10), 1160-1165.spa
dc.relation.referencesMargolis, H. C., Beniash, E., & Fowler, C. E. (2006). Role of macromolecular assembly of enamel matrix proteins in enamel formation. Journal of Dental Research, 85(9), 775793.spa
dc.relation.referencesMcCollum, E. V., Simmonds, N., Becker, J. E., & Bunting, R. W. (1925). The effect of additions of fluorine to the diet of the rat on the quality of the teeth. Journal of Biological Chemistry, 63(3), 553-562.spa
dc.relation.referencesMinisterio de la Protección Social, República de Colombia. (2007). Plan Nacional de Salud Pública, Decreto 3039 de 2007.spa
dc.relation.referencesMinisterio de Salud - República de Colombia, Centro Nacional de Consultoría – CNC. (1999). III Estudio Nacional de Salud Bucal - ENSAB III, Tomo VII. Bogotá: Lito Servicios ALER.spa
dc.relation.referencesMinisterio de Salud, República de Colombia. (1984). Decreto Número 2024 del 21 de Agosto de 1984.spa
dc.relation.referencesMoradian-Oldak, J. (2009). The regeneration of tooth enamel. Dimensions of Dental Hygiene, 7(8), 12-15.spa
dc.relation.referencesMoradian-Oldak, J. (2012). Protein-mediated enamel mineralization. Frontiers in Bioscience, 17(1), 1996-2023.spa
dc.relation.referencesMorotomi, T., Kawano, S., Toyono, T., Kitamura, C., Terashita, M., Uchida, T.,.& Harada, H. (2005). In vitro differentiation of dental epithelial progenitor cells through epithelial–mesenchymal interactions. Archives of Oral Biology, 50(8), 695-705.spa
dc.relation.referencesNagano, T., Kakegawa, A., Yamakoshi, Y., Tsuchiya, S., Hu, J. C., Gomi, K., & Simmer, J. P. (2009). Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. Journal of Dental Research, 88(9), 823-828.spa
dc.relation.referencesNanci, A. (2007). Structure of the oral tissues. En: Ten Cate's Oral Histology: Development, Structure, and Function (pp. 1-4). St Louis, Missouri: Mosby.spa
dc.relation.referencesNielsen-Marsh, C. M., Stegemann, C., Hoffmann, R., Smith, T., Feeney, R., Toussaint, M., & Richards, M. P. (2009). Extraction and sequencing of human and Neanderthal mature enamel proteins using MALDI-TOF/TOF MS. Journal of Archaeological Science, 36(8), 1758-1763.spa
dc.relation.referencesPark, E. S., Cho, H. S., Kwon, T. G., Jang, S. N., Lee, S. H., An, C. H., ... & Cho, J. Y. (2009). Proteomics analysis of human dentin reveals distinct protein expression profiles. Journal of Proteome Research, 8(3), 1338-1346.spa
dc.relation.referencesPorto, I. M., Laure, H. J., de Sousa, F. B., Rosa, J. C., & Gerlach, R. F. (2011). New techniques for the recovery of small amounts of mature enamel proteins. Journal of Archaeological Science, 38(12), 3596-3604.spa
dc.relation.referencesPorto, I. M., Laure, H. J., Tykot, R. H., de Sousa, F. B., Rosa, J. C., & Gerlach, R. F. (2011). Recovery and identification of mature enamel proteins in ancient teeth. European Journal of Oral Sciences, 119(s1), 83-87.spa
dc.relation.referencesPorto, I. M., Line, S. R., Laure, H. J., & Gerlach, R. F. (2006). Comparison of three methods for enamel protein extraction in different developmental phases of rat lower incisors. European Journal of Oral Sciences, 114(s1), 272-275.spa
dc.relation.referencesRamírez, B. S., Franco, Á. M., Sierra, J. L., López, R. V., Alzate Y, T., Sarrazola, Á. M., & Morales R, C. (2009). Fluorosis dental en escolares y exploración de factores de riesgo. Municipio de Frontino, 2003. Revista Facultad de Odontología Universidad de Antioquia, 17(2) (2), 26-33.spa
dc.relation.referencesRiksen, E. A., Kalvik, A., Brookes, S., Hynne, A., L Snead, M., Lyngstadaas, S. P., & Reseland, J. E. (2011). Fluoride reduces the expression of enamel proteins and cytokines in an ameloblast-derived cell line. Archives of Oral Biology, 56(4), 324-330.spa
dc.relation.referencesRipa, L. W. (1991). A Critique of Topical Fluoride Methods (Dentifrices, Mouthrinses, Operator and Self‐applied Gels) in an Era of Decreased Caries and Increased Fluorosis Prevalence. Journal of Public Health Dentistry, 51(1), 23-41.spa
dc.relation.referencesRyu, O. H., Fincham, A. G., Hu, C. C., Zhang, C., Qian, Q., Bartlett, J. D., & Simmer, J. P. (1999). Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. Journal of Dental Research, 78(3), 743750.spa
dc.relation.referencesSampaio, F. C., & Levy, S. M. (2011). Systemic fluoride. En: Buzalaf M.A.R (Ed.), Monographs in Oral Science Vol 22: Fluoride and the Oral Environment (pp 133–145). Basel: Karger.spa
dc.relation.referencesSharma, R., Tsuchiya, M., & Bartlett, J. D. (2008). Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environmental health perspectives, 116(9), 1142-1146.spa
dc.relation.referencesSharma, R., Tsuchiya, M., Skobe, Z., Tannous, B. A., & Bartlett, J. D. (2010). The acid test of fluoride: how pH modulates toxicity. PloS one, 5(5), e10895. doi:10.1371/journal.pone.0010895spa
dc.relation.referencesSierant, M. L., & Bartlett, J. D. (2012). A Potential Mechanism for the Development of Dental Fluorosis. En: Interface Oral Health Science 2011 (pp. 408-412). Japón: Springer.spa
dc.relation.referencesSimmer, J. P., & Fincham, A. G. (1995). Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6(2), 84-108.spa
dc.relation.referencesSimmer, J. P., & Hu, J. C. (2001). Dental enamel formation and its impact on clinical dentistry. Journal of Dental Education, 65(9), 896-905.spa
dc.relation.referencesSire, J. Y., Delgado, S., Fromentin, D., & Girondot, M. (2005). Amelogenin: lessons from evolution. Archives of Oral Biology, 50(2), 205-212.spa
dc.relation.referencesTanimoto, K., Le, T., Zhu, L., Chen, J., Featherstone, J. D. B., Li, W., & DenBesten, P. (2008). Effects of fluoride on the interactions between amelogenin and apatite crystals. Journal of Dental Research, 87(1), 39-44.spa
dc.relation.referencesTellez, M., Santamaria, R. M., Gomez, J., & Martignon, S. (2012). Dental fluorosis, dental caries, and quality of life factors among schoolchildren in a Colombian fluorotic area.spa
dc.relation.referencesCommunity Dental Health, 29(1), 95-99. Thylstrup, A., & Fejerskov, O. (1978). Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dentistry and Oral Epidemiology, 6(6), 315-328.spa
dc.relation.referencesTye, C. E., Antone, J. V., & Bartlett, J. D. (2011). Fluoride does not inhibit enamel protease activity. Journal of Dental Research, 90(4), 489-494.spa
dc.relation.referencesWei, W., Gao, Y., Wang, C., Zhao, L., & Sun, D. (2011). Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion. Environmental Toxicology, 28(6), 332-341.spa
dc.relation.referencesWright, J. T., Chen, S. C., Hall, K. I., Yamauchi, M., & Bawden, J. W. (1996). Protein characterization of fluorosed human enamel. Journal of Dental Research, 75(12), 1936-1941.spa
dc.relation.referencesYamakoshi, Y., Hu, J. C. C., Fukae, M., Yamakoshi, F., & Simmer, J. P. (2006). How do enamelysin and kallikrein 4 process the 32‐kDa enamelin?. European Journal of Oral Sciences, 114(s1), 45-51.spa
dc.relation.referencesYamakoshi, Y., Hu, J. C. C., Zhang, H., Iwata, T., Yamakoshi, F., & Simmer, J. P. (2006). Proteomic analysis of enamel matrix using a two‐dimensional protein fractionation system. European Journal of Oral Sciences, 114(s1), 266-271.spa
dc.relation.referencesYan, Q., Zhang, Y., Li, W., & DenBesten, P. K. (2007). Micromolar fluoride alters ameloblast lineage cells in vitro. Journal of Dental Research, 86(4), 336-340.spa
dc.relation.referencesYanagisawa, T., Takuma, S., & Fejerskov, O. (1989). Ultrastructure and composition of enamel in human dental fluorosis. Advances in Dental Research, 3(2), 203-210.spa
dc.relation.referencesZhang, Y., Li, W., Chi, H. S., Chen, J., & DenBesten, P. K. (2007). JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro. Matrix Biology, 26(8), 633-641.spa
dc.relation.referencesZhang, Y., Yan, Q., Li, W., & DenBesten, P. K. (2006). Fluoride down‐regulates the expression of matrix metalloproteinase‐20 in human fetal tooth ameloblast‐lineage cells in vitro. European Journal of Oral Sciences, 114(s1), 105-110.spa
dc.relation.referencesZhang, Y., Yan, Q., Li, W., & DenBesten, P. K. (2006). Fluoride down‐regulates the expression of matrix metalloproteinase‐20 in human fetal tooth ameloblast‐lineage cells in vitro. European Journal of Oral Sciences, 114(s1), 105-110.spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons2014
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectEsmalte dentalspa
dc.subjectProteínas del esmalte dentalspa
dc.subjectFluorosis dentalspa
dc.subject.decsEsmalte dentalspa
dc.subject.decsFluorosis dentalspa
dc.subject.decsProteínas del esmalte dentalspa
dc.subject.keywordsDental enamelspa
dc.subject.keywordsDental enamel proteinsspa
dc.subject.keywordsDental fluorosisspa
dc.subject.keywordsAmelogeninspa
dc.subject.nlmW 50
dc.titleComparación del contenido proteico del esmalte de dientes permanentes sanos y con fluorosisspa
dc.title.translatedComparison between protein content from permanent sound and fluorosed teethspa
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Castiblanco_Rubio_Gina_Alejandra_2014.pdf
Tamaño:
1.4 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Castiblanco_Rubio_Gina_Alejandra_2014_Carta_Autorizacion.pdf
Tamaño:
189.66 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: