Evaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariote

dc.contributor.advisorChaparro Olaya, Jacqueline
dc.contributor.advisorHernández Atehortúa, Paula Constanza
dc.contributor.authorMorales de la Pava, Liliana
dc.date.accessioned2023-03-02T15:23:51Z
dc.date.available2023-03-02T15:23:51Z
dc.date.issued2013
dc.description.abstractLa malaria es la enfermedad parasitaria con el mayor número de casos clínicos y muertes reportadas al año, causados principalmente por Plasmodium falciparum, una de las cinco especies que infecta a humanos. Diversas estrategias de control se han implementado para combatir la enfermedad, desde el desarrollo de campañas de educación para evitar la transmisión, hasta el uso de insecticidas y medicamentos contra el vector y el parásito. En miras de desarrollar nuevas estrategias para bloquear la enfermedad, la invasión del parásito al glóbulo rojo ha despertado gran interés en los últimos años, proceso que es llevado a cabo por un complejo de proteínas denominado Glideosoma, que incluye, entre otras proteínas, un motor actina-miosina. Hasta la fecha se han identificado seis miosinas en P. falciparum y solo una de ellas (PfMyoA) ha sido caracterizada como participante activa en el Glideosoma; sin embargo, resultados previos de nuestro laboratorio acompañan la idea de que otra miosina del parásito posiblemente participa en el proceso de invasión. Para retar dicha hipótesis es necesaria la evaluación de interacciones entre todas las proteínas del Glideosoma y la miosina candidata, para lo cual obtener el repertorio completo de las proteínas es imperativo; de esta manera, la producción de proteínas recombinantes se convierte en la estrategia molecular de elección. Sin embargo, la obtención de proteínas recombinantes solubles de P. falciparum es un desafío, debido a características muy particulares en el genoma del parásito. El objetivo de este trabajo fue evaluar estrategias que permitieran la obtención de proteínas recombinantes solubles, bien sea a partir de la expresión soluble o de la recuperación a partir de cuerpos de inclusión, sin la adición de agentes caotrópicos para la solubilización. Adicionalmente, con el fin de conocer si el genoma de P. falciparum tenía más miosinas (diferentes a las ya descritas) se hizo un análisis bioinformático para la búsqueda de nuevas secuencias. Por otro lado, se realizó una comparación de estructuras terciarias entre PfMyoA y nuestro candidato a homólogo funcional (PfMyoB), para lo cual la identificación de similitudes entre las estructuras, soportaría dicha hipótesis. Los resultados obtenidos en la inducción de la expresión soluble, indicaron que ninguno de los parámetros evaluados en la inducción, como temperatura, concentración de IPTG y densidad óptica (DO), tuvo efecto en la solubilidad de las proteínas recombinantes rPfMyoB y rPfGAP50. Sorprendentemente, el uso de vectores con secuencias fusión y bacterias modificadas para la optimización de la traducción y plegamiento, tampoco ofrecieron ventajas significativas sobre la solubilidad, pues solo un poco de expresión soluble se obtuvo con la combinación del vector pMAL y las bacterias chaperonas; sin embargo, la mayoría de la proteína recombinante se concentró junto con los cuerpos de inclusión; por consiguiente nuestros resultados sugieren que la marcada insolubilidad de las recombinantes producidas, está influenciada por características propias de la secuencia proteica (aún no establecidas) y no a condiciones en la inducción de la expresión. Teniendo en cuenta que las recombinantes siempre se expresaron como proteínas insolubles, se desarrolló una estrategia de electro elusión para la recuperación de recombinantes solubles de P. falciparum desde cuerpos de inclusión. Adicionalmente, con base en la comparación de los resultados en la predicción de solubilidad de programas bioinformáticos y los obtenidos experimentalmente, se concluye que la única manera de conocer el comportamiento soluble de las proteínas recombinantes de P. falciparum producidas en Escherichia coli, es mediante el desarrollo experimental.spa
dc.description.abstractenglishMalaria is a parasitic disease, with millions of clinical cases and deaths reported annually. This mortality is primarily caused by Plasmodium falciparum, one of the five species that cause malaria in humans. Several strategies have been implemented to block the disease but no one of them has been completely successful; as a result, there is a growing interest in studying the biology of the parasite in order to develop new treatment approaches. One of the processes that have gained big interest is the red blood cell invasion, event executed by a protein complex called glideosoma which includes an actin-myosin motor. The myosin A of P. falciparum (PfMyoA) has been identified as the myosin of the glideosome but results from our laboratory suggest that another myosin could be involved in the invasion process. Then, the production of recombinant proteins becomes the molecular strategy of choice to evaluate interactions between glideosome proteins and the candidate myosin. However, the production of soluble recombinant proteins from P. falciparum has become a challenge, because in despite of all the available strategies in genetic engineering, there is not protocol to ensure the production of soluble recombinants. The objective of this study was to evaluate strategies that would permit production of soluble recombinant proteins, either from the expression itself or from solubilized inclusion bodies (without the addition of chaotropic agents for the solubilization). Additionally, in order to determine whether the genome of P. falciparum had more myosins (other than those already described) bioinformatic analysis was performed to look for new sequences. Furthermore, a comparison was made between PfMyoA tertiary structures and our candidate PfMyoB (possible functional homologue), because the identification of similarities in the structures, supports this hypothesis. The results in induction of soluble expression indicated that none of the parameters evaluated in the induction as temperature, concentration of IPTG and optical density (OD) showed effect on the solubility of recombinant proteins rPfGAP50 and rPfMyoB. Surprisingly, neither the use vectors with fusion sequences, nor modified bacteria for optimizing translation and folding, offered significant advantages over solubility, instead the level of expression was increased; these results suggest, that the marked insolubility was due to the sequence characteristics, but not the induction conditions. Considering that the produced recombinant, were always with the inclusion bodies, we developed a strategy for recovering electroelution for the recovery of recombinant soluble proteins from P. falciparum. Based on the comparison of the results of prediction of solubility from bioinformatics programs and the experimental results, we concluded that the only way to know the behavior of soluble recombinant proteins of P. falciparum produced in Escherichia. coli, only is possible through experimental development.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/10092
dc.language.isospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.referencesAhuja S, Ahuja S, Chen Q, Wahlgren M. Prediction of solubility on recombinant expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli. Malaria Journal. 2006. 25:45-52spa
dc.relation.referencesAnkush V, Divya C, Pushkar S. Role of ca2_/calmodulin-pfpkb signaling pathway in erythrocyte invasion by Plasmodium falciparum. The Journal Of Biological Chemistry. 2008. 283:5589–5597spa
dc.relation.referencesAravind L, Lakshminarayan M, Wellems T, Miller L. Plasmodium biology: review genomic gleanings. Cell. 2003. 115: 771–785spa
dc.relation.referencesBaca A, Hol W. Overcoming codón bias: A method for high level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. International Journal of Parasitology. 2000; 113-118spa
dc.relation.referencesBaum J, Papenfuss A, Baum B, Speed T, Cowman A. Regulation of apicomplexan actin-based motility. Nature Review Microbiology. 2006. 8:621-8.spa
dc.relation.referencesBenkert P, Tosatto S, Schomburg, D. "Qmean: a comprehensive scoring function for model quality assessment." Proteins. 2008. 71:261-277.spa
dc.relation.referencesBergman L, Kaiser K, Fujioka H, et al. Myosin a tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. Journal Cell Science. 2003. 116:39-49spa
dc.relation.referencesBirkholtz L, Blatch G, Coetzer T, Hoppe H, et al. Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malaria Journal. 2008. 7:197spa
dc.relation.referencesBoletín vigilancia de la malaria en Colombia 51-2011. Grupo etv – ins- boletín: 1-2012. Disponible en: https://www.reliefweb.int/sites/reliefweb.int/files/reliefweb_pdf/node-spa
dc.relation.referencesBosch J, Turley S, Daly T et al. Structure of the mtip-myoa complex, a key component of the malaria parasite invasion motor. PNAS. 2006. 13: 4852-4857.spa
dc.relation.referencesBosch J, Turley S, Roach C, Daly T, et al. The closed mtip-myosin a tail complex from the malaria parasite invasion machinery. Journal Molecular Biology. 2007. 372:77-88spa
dc.relation.referencesBotero D, Restrepo M. Parasitosis humanas. 1998. Tercera edición. Corporación para investigaciones biológicas. Medellin-Antioquiaspa
dc.relation.referencesBranco A, Ferreira B, Souza G. A paper –based electroelution System for protein recovery from stained sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry. 2008. 267-269.spa
dc.relation.referencesBurgess. Elution of proteins from gels. Methods in Enzymology. 2009. Vol 263spa
dc.relation.referencesCameron L, Machado M, Meza G. Las miosinas en el movimiento celular, estructuras y propiedades cinéticas. Reb. 2003. 2:53-59spa
dc.relation.referencesChaparro J, Rojas M, Wasserman M. Plasmodium falciparum: underestimation of dihydrofolate reductase and dihydropteroate synthase polymorphism in field samples: a technical shortcoming of nested pcr assays with mutation-specific primers. Experimental Parasitology. 2001. 99:115122spa
dc.relation.referencesChaparro-Olaya J, Dluzewski Anton R, Margos G, et al. The multiple myosins of malaria: the smallest malaria myosin, Plasmodium falciparum myosin-b (pfmyo-b) is expressed in mature schizonts and merozoites. European Journal Protistololgy. 2003. 39:423–427.spa
dc.relation.referencesChaparro-Olaya J, Margos G, Coles D, et al. Plasmodium falciparum myosins: transcription and translation during asexual parasite development. Cell Motility And The Cytoskeleton. 2005. 60:200-213spa
dc.relation.referencesChaparro Narvaez Pablo Enrique. Comportamiento de la malaria en colombia según los casos notificados al Sivigila en el año 2009. Instituto nacional de salud. Informe epidemiológico de malaria. Marzo 31 de 2009spa
dc.relation.referencesChen Y, Song J, Sui S, et al. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expression & Purification. 2003. 221-231spa
dc.relation.referencesChoi J, Lee S. Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied. Microbiology &. Biotechnology. 2004. 64:625-635spa
dc.relation.referencesCowman A. Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. Journal Cell Biology. 2012. 198:961-971spa
dc.relation.referencesDutta S, Ware La, Barbosa A, Ockenhouse C, Lanar D. Purification, characterization, and immunogenicity of a disulfide cross-linked Plasmodium vivax vaccine candidate antigen, merozoite surface protein 1, expressed in Escherichia coli. Infection & Immunity. 2001. 69:546470spa
dc.relation.referencesDutta S, Kaushal D, Ware L, Puri S, Kaushal N, et al. Merozoite surface protein 1 of Plasmodium vivax induces a protective response against Plasmodium cynomolgi challenge in rhesus monkeys. Infection And Immunity. 2005. 73:5936-5944spa
dc.relation.referencesFlick K, Ahuja S, Chene A, Bejarano Mt, Chen Q. Optimized expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in escherichia coli. Malaria Journal. 2004. 15:3-50spa
dc.relation.referencesFoth B, Goedecke M, Soldati D. New insights into myosins evolution and classification. PNAS. 2006. 103:3681-3686.spa
dc.relation.referencesFrenai K, Soldati D. Role of the parasite and host cytoskeleton in apicomplexa parasitism. Cell Host & Microbe. 2009. 5:18spa
dc.relation.referencesFrenai K, Polonais V, Marq J, Stratmann R, et al. Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host & Microbe. 2010. 8: 343-357spa
dc.relation.referencesGalloway C, Sowden P, Smth H. Increase the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. Biotechniques. 2033; 524-530spa
dc.relation.referencesGardner M, Hall N, White O, Berriman M, Hyman R, et al. Genome senquence of the human malaria parasite Plasmodium falciparum. Nature. 2002. 419:498-515.spa
dc.relation.referencesGaskins E, Gilk S, De Vore N, Mann T, et al. Identification of the membrane receptor of a class xiv myosin in Toxoplasma gondii. Journal Cell Biology. 2004. 165:383-93spa
dc.relation.referencesGilk S, Gaskins E, Ward G, Beckers C. GAP45 phosphorylation controls assembly of the Toxoplasma myosin xiv complex. Eukaryotic Cell. 2009. 8:190–196spa
dc.relation.referencesGoh L, Loke P, Singh M, Sim T. Soluble expression of a functionally active Plasmodium falciparum falcipain-2 fused to maltose-binding protein in Escherichia coli. Protein Expression And Purification. 2003. 32:194–201spa
dc.relation.referencesGordon E, Horsefield R, Swarts H. Effective high-throughput overproduction of membrane proteins en Escherichia coli. Protein Expression And Purification. 2008. 1-8spa
dc.relation.referencesGreen J, Rees-Channer R, Howell S, Martin S, et al. The motor complex of Plasmodium falciparum. Phosphorylation by a calcium-dependent protein kinase. The Journal of Biological Chemistry. 2008. 45:30980–30989spa
dc.relation.referencesHastings M, Maguire J, Bangs M, Zimmerman P, Reeder J, et al. Novel Plasmodium vivax dhfr alleles from the Indonesian archipelago and Papua New Guinea: association with pyrimethamine resistance determined by a Saccharomyces cerevisiae expression system. Antimicrobial Agents And Chemotherapy. 2005. 733–740spa
dc.relation.referencesHeintzelman M, Schwartzman J. Myosin diversity in apicomplexa. Journal Parasitology. 2001. 2:429-32.spa
dc.relation.referencesHerm-Gotz A, Weisss, Stratmann T, et al. Toxoplasma gondii myosin and its light chain: a fast, single-headed, plus-end directed motor. Embo Journal. 2002. 21:2149-58spa
dc.relation.referencesHettmann C, Herm A, Geiter A, Frank B, et al. A dibasic motif in the tail of a class xiv apicomplexan myosin is an essential determinant of plasma membrane localization. Molecular Biology Of The Cell. 2000. 11:1385–1400spa
dc.relation.referencesHolm L, Park J. Dalilite workbench for protein structure comparison. Bioinformatics. 2000. 16:566-567. Dalilite (https://www.ebi.ac.uk/tools/dalilite/).spa
dc.relation.referencesJayalakshmi R, Sumathy K, Balaram H. Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli. Protein Expression And Purification. 2002. 25:65–72spa
dc.relation.referencesJian P, Jinbo X. Raptorx: exploiting structure information for protein alignment by statistical inference. Proteins. 2011 (https://raptorx.uchicago.edu/).spa
dc.relation.referencesJonasson P, Liljeqvist S, Ai Ke Nygren P, Stahl S. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology. Applied. Biochemical. 2002. 35:91–105spa
dc.relation.referencesJones M, Kitson E, Rayner J. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. Molecular & Biochemical Parasitology. 2006. 147:74-84spa
dc.relation.referencesJohnson T, Rajfur Z, Jacobson K, Beckers J. Immobilization of the type xiv myosin complex in Toxoplasma gondii. Molecular biology of the Cell. 2007. 18:3039–3046spa
dc.relation.referencesJorgensen C, Jagd M, Sorensen B, McGuire J, et al. Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinildifluoride membranes. Analytical Biochemistry. 2004; 87-97spa
dc.relation.referencesKeeley A, Soldati D. The glideosome: a molecular machine powering motility and host-cell invasion by apicomplexa. Trends In Cell Biology. 2004. 10:528-32.spa
dc.relation.referencesKarmodiya K, Srivastav R, Surolia N. Production and purification of refolded recombinant plasmodium falciparum _-ketoacyl-acp reductase from inclusion bodies. Protein Expression And Purification. 2005. 131–136spa
dc.relation.referencesKurien B, Scofield R. Extraction of proteins from gels: A brief Review. Methods in Molecular Biology. 2012; 403-405spa
dc.relation.referencesLack G, Homberger E, Folkers G, Scapozza L, Perozzo R. Recombinant expression and biochemical characterization of the unique elongating _-ketoacyl-acyl carrier protein synthase involved in fatty acid biosynthesis of Plasmodium falciparum using natural and artificial substrates. The Journal Of Biological. Chemistry. 2006. 281:9538–9546spa
dc.relation.referencesLimenitakis J, Soldati D. Functional genetics in apicomplexa: potential and limits. Federation Of The Societies Of Biochemistry And Molecular Biology. 2011. 585:1579-1588spa
dc.relation.referencesLoyevsky M, Mompointa F, Yikilmaz E, Altschul S, Maddenc T. et al. Expression of a recombinant irp-like Plasmodium falciparum protein that specifically binds putative plasmodial ires. Molecular & Biochemical Parasitology. 2003. 126:231–238spa
dc.relation.referencesMagnan C, Randall A, Baldi P. Solpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 2009. 17:2200-7.spa
dc.relation.referencesMakrides S. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews. 1996. 30:512–538spa
dc.relation.referencesMarin A, Bell A. Overexpression, purification and assement of cyclosporin binding of a family of cyclophilins and cyclophilin like proteins of the human malaria parasite Plasmodium falciparum. Protein Expression And Purification. 2011.spa
dc.relation.referencesMatuschewski K, Mota Mm, Pinder Jc, Nussenzweig V, et al. Identification of the class xiv myosins Pb-myoa and Py-myoa and expression in Plasmodium sporozoites. Molecular Biochemical Parasitology. 2001. 112:157-61spa
dc.relation.referencesMehlin C, Boni E, Buckner F, Engel L, Feist T, Gelb M, et al. Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. Molecular. & Biochemical Parasitolology. 2006. 148:144–160spa
dc.relation.referencesMeissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin in powering parasite gliding and host cell invasion. Science. 2002. 298:837-40spa
dc.relation.referencesMénard Robert. The journey of the malaria sporozoite through its hosts: two parasite proteins lead the way. Microbes And Infection. 2000. 2:633−642spa
dc.relation.referencesMiller H, Baruch D, Marsh Kevin, Ogobara K. The pathogenic basis of malaria. Nature. 2002. 415:7spa
dc.relation.referencesMorrissette S, Sibley D. Cytoskeleton of apicomplexan parasites. Microbiology And Molecular Biology Reviews. 2002. 66:21-38spa
dc.relation.referencesMooseker M, Foth B. Functional and structural diversity of myosin family, molecular motor actinbased. Coluccio. 2008. Springer. Chapter 1spa
dc.relation.referencesNishihara K, Kanemori M, Kitagawa M, et al. Chaperone Coexpression plasmids: Differential and Synesgitic roles of DnaK-DnaJ-GrpE and GroeEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cry2, in Escherichia coli. Applied and Environmental Microbiology. 1998.1694-1699spa
dc.relation.referencesNishihara K, Kanemori M, Yanagi H, et al. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Applied and Environmental Microbiology. 2000. 884889spa
dc.relation.referencesOdronitz Florian, Kollmar Martin. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biology. 2007. 8:r196spa
dc.relation.referencesOpitz C, Soldati D. The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Molecular Microbiology 2002. 3:597–604.spa
dc.relation.referencesPeng J, Xu Jinbo. Raptorx: exploiting structure information for protein alignment by statistical inference. Proteins, 2011 (https://raptorx.uchicago.edu/).spa
dc.relation.referencesPinder J, Fowler R, Dluzewski A, Bannister L, Lavin F. Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. Journal Cell Science. 1998. 111:1831–1839spa
dc.relation.referencesPizarro Jc, Chitarra V, Verger D, Holm I, Pêtres S, Dartevelle S. Crystal structure of a fab complex formed with pfmsp1-19, the c-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum: a malaria vaccine candidate. Journal Molecular Biology. 2003. 5:1091103spa
dc.relation.referencesPizzi E, Frontali C. Low-complexity regions in Plasmodium falciparum proteins. Genome Research. 2001. 11:218-229spa
dc.relation.referencesPolonais V, Foth B et al. Unusual anchor of a motor complex (myod-mlc2) to the plasma membrane of Toxoplasma gondii. Traffic. 2011. 1-14.spa
dc.relation.referencesPymol (URL: https://sourceforge.net/projects/pymol/)spa
dc.relation.referencesRees-Channer R, Martin S, Green J, Bowyer P, et al. Dual acylation of the 45 kda glidingassociated protein (gap45) in Plasmodium falciparum merozoites. Molecular Biochemistry Parasitology. 2006. 1:113-6spa
dc.relation.referencesRosano G, Ceccarelli. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial Cell Factories. 2009. 8.41spa
dc.relation.referencesSabbatani S, Fiorino S, Manfredi R. The emerging of the fifth malaria parasite Plasmodium knowlesi. Infection Disease. 2010. 14:299-309spa
dc.relation.referencesSambrook J, Russell D. Molecular Cloning. A laboratory manual. Cold spring harbor laboratory press, third edition, new york, 2001spa
dc.relation.referencesSantos J, Lebrun M, Wassim D, Soldati D, Dubremetz J. Apicomplexan cytoskeleton and motors: key regulators in morphogenesis, cell division, transport and motility. International Journal for Parasitology. 2009. 39:153–162spa
dc.relation.referencesSati P, Singh S, Kumar N, Sharma A. Extra terminal residues have a profound effect on the folding and solubility of a Plasmodium falciparum sexual stage-specific protein over-expressed in Escherichia coli. European Journal. Biochemistry. 2002. 269:5259–5263spa
dc.relation.referencesScheer Justin M, Ryan Clarence A. A method for the quantitative recovery of proteins from polyacrylamide gels. Analytical Biochemistry. 2001. 298:130–132spa
dc.relation.referencesSibley L. Intracellular parasite invasion strategies. Science. 2004. 5668:248-53spa
dc.relation.referencesSibley l. David. How apicomplexan parasites move in and out of cells. Current Opinion Of Biotechnology. 2010. 5:592–598spa
dc.relation.referencesSingh S, Sharma A. Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Molecular & Biochemical Parasitology. 2004. 137:307–319spa
dc.relation.referencesSingh S, Kumar A. Solubilization and refoldin of bacterial inclusion body proteins. Journal Of Bioscience And Bioengeneering. 2005. 4:303-310spa
dc.relation.referencesSingh S, Mahmood A, Ipsita P, Brzostowsk J, Chetan E. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. Plos Pathogens. 2010. 6:e1000746spa
dc.relation.referencesSmialowski P, Martin-Galiano A, Mikolajka A, Girschick T, Holak T, Frishman D. Protein solubility: sequence based prediction and experimental verification. Bioinformatics. 2006. Dec 6.spa
dc.relation.referencesSørensen Hp, Mortensen Kk. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories. 2005. 4: 4(1)spa
dc.relation.referencesStephens L, Shonhai A, Blatch G. Co-expression of the Plasmodium falciparum molecular chaperone, pfhsp70, improves the heterologous production of the antimalarial drug target gtp cyclohydrolase I, pfgchI. Protein. Expression And Purification. 2011. 77:159-165spa
dc.relation.referencesSugita M, Iwataki Y, Nakano K, Numata O. Unique sequences and predicted functions of myosins in Tetrahymena thermophile. Gene. 2011. 480:10-20.spa
dc.relation.referencesTarlan M, Ghosh A, Jones R, Vadim Mett, Farrance C, Musiychuk K, et al. Production of nonglycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial pfgnase . Plant Biotechnology. 2012. 1-10spa
dc.relation.referencesTilley L, Dixon Mw, Kirk K. The Plasmodium falciparum-infected red blood cell. International Journal Biochemistry Cell Biology. 2011. 6:839-42spa
dc.relation.referencesTrager W, Jensen J. Human malarial parasites in continuous culture. Science. 1976. 193:673675 Umetsu M, Tsumotoa K, Nittaa S, Adschirib T, Arakawad T. Nondenaturing solubilization of b2 microglobulin from inclusion bodies by l-arginine. Biochemical And Biophysical Research Communications. 2005. 189–197spa
dc.relation.referencesVedadi M, Lew J, Art J, Amani M, Zhao Y. Genome-scale protein expression and structural biology of Plasmodium falciparum and related apicomplexan organisms. Molecular & Biochemical Parasitology. 2007. 151:100–110spa
dc.relation.referencesVentura S. Sequence determinants of proteins aggregation: tools to increase protein solubility. Microbial Cell Factories. 2005. 4:11spa
dc.relation.referencesWassim D, Soldati-Favre D. Mechanism controlling glidesome function in apicomplexas. Current Opinion in Microbiology. 2009. 12:408-414spa
dc.relation.referencesWho. World health organization. World malaria report 2011 available in: https://www.who.int/malaria/world_malaria_report_2011/en/spa
dc.relation.referencesWalsh D, Noble G, Piro J, et al. Non-reducing alkaline solubilization and rapid on-column refolding of recombinant prion protein. Preparative Biochemistry & Biotechnology. 2012. 77-86spa
dc.relation.referencesWilkinson Dl, Harrison R. Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology. 1991. 9:443-8.spa
dc.relation.referencesXiang-yang fu. Extracelullar accumulation of recombinant protein by Escherichia coli in a defined medium. Applied Microbiological Biotechnology. 2010. 88: 75-86spa
dc.relation.referencesZhentian L. Ajith A. Kirankumar S. Lloyd W. Electroelution of intact proteins from sds-page gel and their subsequent maldi-tof ms analysis. Methods In Molecular Biology. 2007. 335-345.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_14cb
dc.rights.localAcceso cerradospa
dc.subjectProducción de proteínasspa
dc.subjectPlasmodium falciparumspa
dc.subjectSistema procariotespa
dc.subjectGlideosomaspa
dc.subject.keywordsProtein productionspa
dc.subject.keywordsPlasmodium falciparumspa
dc.subject.keywordsProkaryotic systemspa
dc.subject.keywordsGlideosomespa
dc.subject.nlmW 50
dc.titleEvaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariotespa
dc.title.translatedEvaluation of strategies for the production of soluble recombinant proteins of Plasmodium falciparum in a prokaryotic system.spa
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Evaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariote
Tamaño:
2.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Evaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariote
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: