Evaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariote
dc.contributor.advisor | Chaparro Olaya, Jacqueline | |
dc.contributor.advisor | Hernández Atehortúa, Paula Constanza | |
dc.contributor.author | Morales de la Pava, Liliana | |
dc.date.accessioned | 2023-03-02T15:23:51Z | |
dc.date.available | 2023-03-02T15:23:51Z | |
dc.date.issued | 2013 | |
dc.description.abstract | La malaria es la enfermedad parasitaria con el mayor número de casos clínicos y muertes reportadas al año, causados principalmente por Plasmodium falciparum, una de las cinco especies que infecta a humanos. Diversas estrategias de control se han implementado para combatir la enfermedad, desde el desarrollo de campañas de educación para evitar la transmisión, hasta el uso de insecticidas y medicamentos contra el vector y el parásito. En miras de desarrollar nuevas estrategias para bloquear la enfermedad, la invasión del parásito al glóbulo rojo ha despertado gran interés en los últimos años, proceso que es llevado a cabo por un complejo de proteínas denominado Glideosoma, que incluye, entre otras proteínas, un motor actina-miosina. Hasta la fecha se han identificado seis miosinas en P. falciparum y solo una de ellas (PfMyoA) ha sido caracterizada como participante activa en el Glideosoma; sin embargo, resultados previos de nuestro laboratorio acompañan la idea de que otra miosina del parásito posiblemente participa en el proceso de invasión. Para retar dicha hipótesis es necesaria la evaluación de interacciones entre todas las proteínas del Glideosoma y la miosina candidata, para lo cual obtener el repertorio completo de las proteínas es imperativo; de esta manera, la producción de proteínas recombinantes se convierte en la estrategia molecular de elección. Sin embargo, la obtención de proteínas recombinantes solubles de P. falciparum es un desafío, debido a características muy particulares en el genoma del parásito. El objetivo de este trabajo fue evaluar estrategias que permitieran la obtención de proteínas recombinantes solubles, bien sea a partir de la expresión soluble o de la recuperación a partir de cuerpos de inclusión, sin la adición de agentes caotrópicos para la solubilización. Adicionalmente, con el fin de conocer si el genoma de P. falciparum tenía más miosinas (diferentes a las ya descritas) se hizo un análisis bioinformático para la búsqueda de nuevas secuencias. Por otro lado, se realizó una comparación de estructuras terciarias entre PfMyoA y nuestro candidato a homólogo funcional (PfMyoB), para lo cual la identificación de similitudes entre las estructuras, soportaría dicha hipótesis. Los resultados obtenidos en la inducción de la expresión soluble, indicaron que ninguno de los parámetros evaluados en la inducción, como temperatura, concentración de IPTG y densidad óptica (DO), tuvo efecto en la solubilidad de las proteínas recombinantes rPfMyoB y rPfGAP50. Sorprendentemente, el uso de vectores con secuencias fusión y bacterias modificadas para la optimización de la traducción y plegamiento, tampoco ofrecieron ventajas significativas sobre la solubilidad, pues solo un poco de expresión soluble se obtuvo con la combinación del vector pMAL y las bacterias chaperonas; sin embargo, la mayoría de la proteína recombinante se concentró junto con los cuerpos de inclusión; por consiguiente nuestros resultados sugieren que la marcada insolubilidad de las recombinantes producidas, está influenciada por características propias de la secuencia proteica (aún no establecidas) y no a condiciones en la inducción de la expresión. Teniendo en cuenta que las recombinantes siempre se expresaron como proteínas insolubles, se desarrolló una estrategia de electro elusión para la recuperación de recombinantes solubles de P. falciparum desde cuerpos de inclusión. Adicionalmente, con base en la comparación de los resultados en la predicción de solubilidad de programas bioinformáticos y los obtenidos experimentalmente, se concluye que la única manera de conocer el comportamiento soluble de las proteínas recombinantes de P. falciparum producidas en Escherichia coli, es mediante el desarrollo experimental. | spa |
dc.description.abstractenglish | Malaria is a parasitic disease, with millions of clinical cases and deaths reported annually. This mortality is primarily caused by Plasmodium falciparum, one of the five species that cause malaria in humans. Several strategies have been implemented to block the disease but no one of them has been completely successful; as a result, there is a growing interest in studying the biology of the parasite in order to develop new treatment approaches. One of the processes that have gained big interest is the red blood cell invasion, event executed by a protein complex called glideosoma which includes an actin-myosin motor. The myosin A of P. falciparum (PfMyoA) has been identified as the myosin of the glideosome but results from our laboratory suggest that another myosin could be involved in the invasion process. Then, the production of recombinant proteins becomes the molecular strategy of choice to evaluate interactions between glideosome proteins and the candidate myosin. However, the production of soluble recombinant proteins from P. falciparum has become a challenge, because in despite of all the available strategies in genetic engineering, there is not protocol to ensure the production of soluble recombinants. The objective of this study was to evaluate strategies that would permit production of soluble recombinant proteins, either from the expression itself or from solubilized inclusion bodies (without the addition of chaotropic agents for the solubilization). Additionally, in order to determine whether the genome of P. falciparum had more myosins (other than those already described) bioinformatic analysis was performed to look for new sequences. Furthermore, a comparison was made between PfMyoA tertiary structures and our candidate PfMyoB (possible functional homologue), because the identification of similarities in the structures, supports this hypothesis. The results in induction of soluble expression indicated that none of the parameters evaluated in the induction as temperature, concentration of IPTG and optical density (OD) showed effect on the solubility of recombinant proteins rPfGAP50 and rPfMyoB. Surprisingly, neither the use vectors with fusion sequences, nor modified bacteria for optimizing translation and folding, offered significant advantages over solubility, instead the level of expression was increased; these results suggest, that the marked insolubility was due to the sequence characteristics, but not the induction conditions. Considering that the produced recombinant, were always with the inclusion bodies, we developed a strategy for recovering electroelution for the recovery of recombinant soluble proteins from P. falciparum. Based on the comparison of the results of prediction of solubility from bioinformatics programs and the experimental results, we concluded that the only way to know the behavior of soluble recombinant proteins of P. falciparum produced in Escherichia. coli, only is possible through experimental development. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/10092 | |
dc.language.iso | spa | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Ahuja S, Ahuja S, Chen Q, Wahlgren M. Prediction of solubility on recombinant expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in Escherichia coli. Malaria Journal. 2006. 25:45-52 | spa |
dc.relation.references | Ankush V, Divya C, Pushkar S. Role of ca2_/calmodulin-pfpkb signaling pathway in erythrocyte invasion by Plasmodium falciparum. The Journal Of Biological Chemistry. 2008. 283:5589–5597 | spa |
dc.relation.references | Aravind L, Lakshminarayan M, Wellems T, Miller L. Plasmodium biology: review genomic gleanings. Cell. 2003. 115: 771–785 | spa |
dc.relation.references | Baca A, Hol W. Overcoming codón bias: A method for high level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. International Journal of Parasitology. 2000; 113-118 | spa |
dc.relation.references | Baum J, Papenfuss A, Baum B, Speed T, Cowman A. Regulation of apicomplexan actin-based motility. Nature Review Microbiology. 2006. 8:621-8. | spa |
dc.relation.references | Benkert P, Tosatto S, Schomburg, D. "Qmean: a comprehensive scoring function for model quality assessment." Proteins. 2008. 71:261-277. | spa |
dc.relation.references | Bergman L, Kaiser K, Fujioka H, et al. Myosin a tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. Journal Cell Science. 2003. 116:39-49 | spa |
dc.relation.references | Birkholtz L, Blatch G, Coetzer T, Hoppe H, et al. Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malaria Journal. 2008. 7:197 | spa |
dc.relation.references | Boletín vigilancia de la malaria en Colombia 51-2011. Grupo etv – ins- boletín: 1-2012. Disponible en: https://www.reliefweb.int/sites/reliefweb.int/files/reliefweb_pdf/node- | spa |
dc.relation.references | Bosch J, Turley S, Daly T et al. Structure of the mtip-myoa complex, a key component of the malaria parasite invasion motor. PNAS. 2006. 13: 4852-4857. | spa |
dc.relation.references | Bosch J, Turley S, Roach C, Daly T, et al. The closed mtip-myosin a tail complex from the malaria parasite invasion machinery. Journal Molecular Biology. 2007. 372:77-88 | spa |
dc.relation.references | Botero D, Restrepo M. Parasitosis humanas. 1998. Tercera edición. Corporación para investigaciones biológicas. Medellin-Antioquia | spa |
dc.relation.references | Branco A, Ferreira B, Souza G. A paper –based electroelution System for protein recovery from stained sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry. 2008. 267-269. | spa |
dc.relation.references | Burgess. Elution of proteins from gels. Methods in Enzymology. 2009. Vol 263 | spa |
dc.relation.references | Cameron L, Machado M, Meza G. Las miosinas en el movimiento celular, estructuras y propiedades cinéticas. Reb. 2003. 2:53-59 | spa |
dc.relation.references | Chaparro J, Rojas M, Wasserman M. Plasmodium falciparum: underestimation of dihydrofolate reductase and dihydropteroate synthase polymorphism in field samples: a technical shortcoming of nested pcr assays with mutation-specific primers. Experimental Parasitology. 2001. 99:115122 | spa |
dc.relation.references | Chaparro-Olaya J, Dluzewski Anton R, Margos G, et al. The multiple myosins of malaria: the smallest malaria myosin, Plasmodium falciparum myosin-b (pfmyo-b) is expressed in mature schizonts and merozoites. European Journal Protistololgy. 2003. 39:423–427. | spa |
dc.relation.references | Chaparro-Olaya J, Margos G, Coles D, et al. Plasmodium falciparum myosins: transcription and translation during asexual parasite development. Cell Motility And The Cytoskeleton. 2005. 60:200-213 | spa |
dc.relation.references | Chaparro Narvaez Pablo Enrique. Comportamiento de la malaria en colombia según los casos notificados al Sivigila en el año 2009. Instituto nacional de salud. Informe epidemiológico de malaria. Marzo 31 de 2009 | spa |
dc.relation.references | Chen Y, Song J, Sui S, et al. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expression & Purification. 2003. 221-231 | spa |
dc.relation.references | Choi J, Lee S. Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied. Microbiology &. Biotechnology. 2004. 64:625-635 | spa |
dc.relation.references | Cowman A. Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. Journal Cell Biology. 2012. 198:961-971 | spa |
dc.relation.references | Dutta S, Ware La, Barbosa A, Ockenhouse C, Lanar D. Purification, characterization, and immunogenicity of a disulfide cross-linked Plasmodium vivax vaccine candidate antigen, merozoite surface protein 1, expressed in Escherichia coli. Infection & Immunity. 2001. 69:546470 | spa |
dc.relation.references | Dutta S, Kaushal D, Ware L, Puri S, Kaushal N, et al. Merozoite surface protein 1 of Plasmodium vivax induces a protective response against Plasmodium cynomolgi challenge in rhesus monkeys. Infection And Immunity. 2005. 73:5936-5944 | spa |
dc.relation.references | Flick K, Ahuja S, Chene A, Bejarano Mt, Chen Q. Optimized expression of Plasmodium falciparum erythrocyte membrane protein 1 domains in escherichia coli. Malaria Journal. 2004. 15:3-50 | spa |
dc.relation.references | Foth B, Goedecke M, Soldati D. New insights into myosins evolution and classification. PNAS. 2006. 103:3681-3686. | spa |
dc.relation.references | Frenai K, Soldati D. Role of the parasite and host cytoskeleton in apicomplexa parasitism. Cell Host & Microbe. 2009. 5:18 | spa |
dc.relation.references | Frenai K, Polonais V, Marq J, Stratmann R, et al. Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host & Microbe. 2010. 8: 343-357 | spa |
dc.relation.references | Galloway C, Sowden P, Smth H. Increase the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. Biotechniques. 2033; 524-530 | spa |
dc.relation.references | Gardner M, Hall N, White O, Berriman M, Hyman R, et al. Genome senquence of the human malaria parasite Plasmodium falciparum. Nature. 2002. 419:498-515. | spa |
dc.relation.references | Gaskins E, Gilk S, De Vore N, Mann T, et al. Identification of the membrane receptor of a class xiv myosin in Toxoplasma gondii. Journal Cell Biology. 2004. 165:383-93 | spa |
dc.relation.references | Gilk S, Gaskins E, Ward G, Beckers C. GAP45 phosphorylation controls assembly of the Toxoplasma myosin xiv complex. Eukaryotic Cell. 2009. 8:190–196 | spa |
dc.relation.references | Goh L, Loke P, Singh M, Sim T. Soluble expression of a functionally active Plasmodium falciparum falcipain-2 fused to maltose-binding protein in Escherichia coli. Protein Expression And Purification. 2003. 32:194–201 | spa |
dc.relation.references | Gordon E, Horsefield R, Swarts H. Effective high-throughput overproduction of membrane proteins en Escherichia coli. Protein Expression And Purification. 2008. 1-8 | spa |
dc.relation.references | Green J, Rees-Channer R, Howell S, Martin S, et al. The motor complex of Plasmodium falciparum. Phosphorylation by a calcium-dependent protein kinase. The Journal of Biological Chemistry. 2008. 45:30980–30989 | spa |
dc.relation.references | Hastings M, Maguire J, Bangs M, Zimmerman P, Reeder J, et al. Novel Plasmodium vivax dhfr alleles from the Indonesian archipelago and Papua New Guinea: association with pyrimethamine resistance determined by a Saccharomyces cerevisiae expression system. Antimicrobial Agents And Chemotherapy. 2005. 733–740 | spa |
dc.relation.references | Heintzelman M, Schwartzman J. Myosin diversity in apicomplexa. Journal Parasitology. 2001. 2:429-32. | spa |
dc.relation.references | Herm-Gotz A, Weisss, Stratmann T, et al. Toxoplasma gondii myosin and its light chain: a fast, single-headed, plus-end directed motor. Embo Journal. 2002. 21:2149-58 | spa |
dc.relation.references | Hettmann C, Herm A, Geiter A, Frank B, et al. A dibasic motif in the tail of a class xiv apicomplexan myosin is an essential determinant of plasma membrane localization. Molecular Biology Of The Cell. 2000. 11:1385–1400 | spa |
dc.relation.references | Holm L, Park J. Dalilite workbench for protein structure comparison. Bioinformatics. 2000. 16:566-567. Dalilite (https://www.ebi.ac.uk/tools/dalilite/). | spa |
dc.relation.references | Jayalakshmi R, Sumathy K, Balaram H. Purification and characterization of recombinant Plasmodium falciparum adenylosuccinate synthetase expressed in Escherichia coli. Protein Expression And Purification. 2002. 25:65–72 | spa |
dc.relation.references | Jian P, Jinbo X. Raptorx: exploiting structure information for protein alignment by statistical inference. Proteins. 2011 (https://raptorx.uchicago.edu/). | spa |
dc.relation.references | Jonasson P, Liljeqvist S, Ai Ke Nygren P, Stahl S. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology. Applied. Biochemical. 2002. 35:91–105 | spa |
dc.relation.references | Jones M, Kitson E, Rayner J. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. Molecular & Biochemical Parasitology. 2006. 147:74-84 | spa |
dc.relation.references | Johnson T, Rajfur Z, Jacobson K, Beckers J. Immobilization of the type xiv myosin complex in Toxoplasma gondii. Molecular biology of the Cell. 2007. 18:3039–3046 | spa |
dc.relation.references | Jorgensen C, Jagd M, Sorensen B, McGuire J, et al. Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinildifluoride membranes. Analytical Biochemistry. 2004; 87-97 | spa |
dc.relation.references | Keeley A, Soldati D. The glideosome: a molecular machine powering motility and host-cell invasion by apicomplexa. Trends In Cell Biology. 2004. 10:528-32. | spa |
dc.relation.references | Karmodiya K, Srivastav R, Surolia N. Production and purification of refolded recombinant plasmodium falciparum _-ketoacyl-acp reductase from inclusion bodies. Protein Expression And Purification. 2005. 131–136 | spa |
dc.relation.references | Kurien B, Scofield R. Extraction of proteins from gels: A brief Review. Methods in Molecular Biology. 2012; 403-405 | spa |
dc.relation.references | Lack G, Homberger E, Folkers G, Scapozza L, Perozzo R. Recombinant expression and biochemical characterization of the unique elongating _-ketoacyl-acyl carrier protein synthase involved in fatty acid biosynthesis of Plasmodium falciparum using natural and artificial substrates. The Journal Of Biological. Chemistry. 2006. 281:9538–9546 | spa |
dc.relation.references | Limenitakis J, Soldati D. Functional genetics in apicomplexa: potential and limits. Federation Of The Societies Of Biochemistry And Molecular Biology. 2011. 585:1579-1588 | spa |
dc.relation.references | Loyevsky M, Mompointa F, Yikilmaz E, Altschul S, Maddenc T. et al. Expression of a recombinant irp-like Plasmodium falciparum protein that specifically binds putative plasmodial ires. Molecular & Biochemical Parasitology. 2003. 126:231–238 | spa |
dc.relation.references | Magnan C, Randall A, Baldi P. Solpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 2009. 17:2200-7. | spa |
dc.relation.references | Makrides S. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews. 1996. 30:512–538 | spa |
dc.relation.references | Marin A, Bell A. Overexpression, purification and assement of cyclosporin binding of a family of cyclophilins and cyclophilin like proteins of the human malaria parasite Plasmodium falciparum. Protein Expression And Purification. 2011. | spa |
dc.relation.references | Matuschewski K, Mota Mm, Pinder Jc, Nussenzweig V, et al. Identification of the class xiv myosins Pb-myoa and Py-myoa and expression in Plasmodium sporozoites. Molecular Biochemical Parasitology. 2001. 112:157-61 | spa |
dc.relation.references | Mehlin C, Boni E, Buckner F, Engel L, Feist T, Gelb M, et al. Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. Molecular. & Biochemical Parasitolology. 2006. 148:144–160 | spa |
dc.relation.references | Meissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin in powering parasite gliding and host cell invasion. Science. 2002. 298:837-40 | spa |
dc.relation.references | Ménard Robert. The journey of the malaria sporozoite through its hosts: two parasite proteins lead the way. Microbes And Infection. 2000. 2:633−642 | spa |
dc.relation.references | Miller H, Baruch D, Marsh Kevin, Ogobara K. The pathogenic basis of malaria. Nature. 2002. 415:7 | spa |
dc.relation.references | Morrissette S, Sibley D. Cytoskeleton of apicomplexan parasites. Microbiology And Molecular Biology Reviews. 2002. 66:21-38 | spa |
dc.relation.references | Mooseker M, Foth B. Functional and structural diversity of myosin family, molecular motor actinbased. Coluccio. 2008. Springer. Chapter 1 | spa |
dc.relation.references | Nishihara K, Kanemori M, Kitagawa M, et al. Chaperone Coexpression plasmids: Differential and Synesgitic roles of DnaK-DnaJ-GrpE and GroeEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cry2, in Escherichia coli. Applied and Environmental Microbiology. 1998.1694-1699 | spa |
dc.relation.references | Nishihara K, Kanemori M, Yanagi H, et al. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Applied and Environmental Microbiology. 2000. 884889 | spa |
dc.relation.references | Odronitz Florian, Kollmar Martin. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biology. 2007. 8:r196 | spa |
dc.relation.references | Opitz C, Soldati D. The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Molecular Microbiology 2002. 3:597–604. | spa |
dc.relation.references | Peng J, Xu Jinbo. Raptorx: exploiting structure information for protein alignment by statistical inference. Proteins, 2011 (https://raptorx.uchicago.edu/). | spa |
dc.relation.references | Pinder J, Fowler R, Dluzewski A, Bannister L, Lavin F. Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. Journal Cell Science. 1998. 111:1831–1839 | spa |
dc.relation.references | Pizarro Jc, Chitarra V, Verger D, Holm I, Pêtres S, Dartevelle S. Crystal structure of a fab complex formed with pfmsp1-19, the c-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum: a malaria vaccine candidate. Journal Molecular Biology. 2003. 5:1091103 | spa |
dc.relation.references | Pizzi E, Frontali C. Low-complexity regions in Plasmodium falciparum proteins. Genome Research. 2001. 11:218-229 | spa |
dc.relation.references | Polonais V, Foth B et al. Unusual anchor of a motor complex (myod-mlc2) to the plasma membrane of Toxoplasma gondii. Traffic. 2011. 1-14. | spa |
dc.relation.references | Pymol (URL: https://sourceforge.net/projects/pymol/) | spa |
dc.relation.references | Rees-Channer R, Martin S, Green J, Bowyer P, et al. Dual acylation of the 45 kda glidingassociated protein (gap45) in Plasmodium falciparum merozoites. Molecular Biochemistry Parasitology. 2006. 1:113-6 | spa |
dc.relation.references | Rosano G, Ceccarelli. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial Cell Factories. 2009. 8.41 | spa |
dc.relation.references | Sabbatani S, Fiorino S, Manfredi R. The emerging of the fifth malaria parasite Plasmodium knowlesi. Infection Disease. 2010. 14:299-309 | spa |
dc.relation.references | Sambrook J, Russell D. Molecular Cloning. A laboratory manual. Cold spring harbor laboratory press, third edition, new york, 2001 | spa |
dc.relation.references | Santos J, Lebrun M, Wassim D, Soldati D, Dubremetz J. Apicomplexan cytoskeleton and motors: key regulators in morphogenesis, cell division, transport and motility. International Journal for Parasitology. 2009. 39:153–162 | spa |
dc.relation.references | Sati P, Singh S, Kumar N, Sharma A. Extra terminal residues have a profound effect on the folding and solubility of a Plasmodium falciparum sexual stage-specific protein over-expressed in Escherichia coli. European Journal. Biochemistry. 2002. 269:5259–5263 | spa |
dc.relation.references | Scheer Justin M, Ryan Clarence A. A method for the quantitative recovery of proteins from polyacrylamide gels. Analytical Biochemistry. 2001. 298:130–132 | spa |
dc.relation.references | Sibley L. Intracellular parasite invasion strategies. Science. 2004. 5668:248-53 | spa |
dc.relation.references | Sibley l. David. How apicomplexan parasites move in and out of cells. Current Opinion Of Biotechnology. 2010. 5:592–598 | spa |
dc.relation.references | Singh S, Sharma A. Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Molecular & Biochemical Parasitology. 2004. 137:307–319 | spa |
dc.relation.references | Singh S, Kumar A. Solubilization and refoldin of bacterial inclusion body proteins. Journal Of Bioscience And Bioengeneering. 2005. 4:303-310 | spa |
dc.relation.references | Singh S, Mahmood A, Ipsita P, Brzostowsk J, Chetan E. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. Plos Pathogens. 2010. 6:e1000746 | spa |
dc.relation.references | Smialowski P, Martin-Galiano A, Mikolajka A, Girschick T, Holak T, Frishman D. Protein solubility: sequence based prediction and experimental verification. Bioinformatics. 2006. Dec 6. | spa |
dc.relation.references | Sørensen Hp, Mortensen Kk. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories. 2005. 4: 4(1) | spa |
dc.relation.references | Stephens L, Shonhai A, Blatch G. Co-expression of the Plasmodium falciparum molecular chaperone, pfhsp70, improves the heterologous production of the antimalarial drug target gtp cyclohydrolase I, pfgchI. Protein. Expression And Purification. 2011. 77:159-165 | spa |
dc.relation.references | Sugita M, Iwataki Y, Nakano K, Numata O. Unique sequences and predicted functions of myosins in Tetrahymena thermophile. Gene. 2011. 480:10-20. | spa |
dc.relation.references | Tarlan M, Ghosh A, Jones R, Vadim Mett, Farrance C, Musiychuk K, et al. Production of nonglycosylated recombinant proteins in Nicotiana benthamiana plants by co-expressing bacterial pfgnase . Plant Biotechnology. 2012. 1-10 | spa |
dc.relation.references | Tilley L, Dixon Mw, Kirk K. The Plasmodium falciparum-infected red blood cell. International Journal Biochemistry Cell Biology. 2011. 6:839-42 | spa |
dc.relation.references | Trager W, Jensen J. Human malarial parasites in continuous culture. Science. 1976. 193:673675 Umetsu M, Tsumotoa K, Nittaa S, Adschirib T, Arakawad T. Nondenaturing solubilization of b2 microglobulin from inclusion bodies by l-arginine. Biochemical And Biophysical Research Communications. 2005. 189–197 | spa |
dc.relation.references | Vedadi M, Lew J, Art J, Amani M, Zhao Y. Genome-scale protein expression and structural biology of Plasmodium falciparum and related apicomplexan organisms. Molecular & Biochemical Parasitology. 2007. 151:100–110 | spa |
dc.relation.references | Ventura S. Sequence determinants of proteins aggregation: tools to increase protein solubility. Microbial Cell Factories. 2005. 4:11 | spa |
dc.relation.references | Wassim D, Soldati-Favre D. Mechanism controlling glidesome function in apicomplexas. Current Opinion in Microbiology. 2009. 12:408-414 | spa |
dc.relation.references | Who. World health organization. World malaria report 2011 available in: https://www.who.int/malaria/world_malaria_report_2011/en/ | spa |
dc.relation.references | Walsh D, Noble G, Piro J, et al. Non-reducing alkaline solubilization and rapid on-column refolding of recombinant prion protein. Preparative Biochemistry & Biotechnology. 2012. 77-86 | spa |
dc.relation.references | Wilkinson Dl, Harrison R. Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology. 1991. 9:443-8. | spa |
dc.relation.references | Xiang-yang fu. Extracelullar accumulation of recombinant protein by Escherichia coli in a defined medium. Applied Microbiological Biotechnology. 2010. 88: 75-86 | spa |
dc.relation.references | Zhentian L. Ajith A. Kirankumar S. Lloyd W. Electroelution of intact proteins from sds-page gel and their subsequent maldi-tof ms analysis. Methods In Molecular Biology. 2007. 335-345. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_14cb | |
dc.rights.local | Acceso cerrado | spa |
dc.subject | Producción de proteínas | spa |
dc.subject | Plasmodium falciparum | spa |
dc.subject | Sistema procariote | spa |
dc.subject | Glideosoma | spa |
dc.subject.keywords | Protein production | spa |
dc.subject.keywords | Plasmodium falciparum | spa |
dc.subject.keywords | Prokaryotic system | spa |
dc.subject.keywords | Glideosome | spa |
dc.subject.nlm | W 50 | |
dc.title | Evaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariote | spa |
dc.title.translated | Evaluation of strategies for the production of soluble recombinant proteins of Plasmodium falciparum in a prokaryotic system. | spa |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Evaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariote
- Tamaño:
- 2.55 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Evaluación de estrategias para la producción de proteínas recombinantes solubles de Plasmodium falciparum, en un sistema procariote
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: