Evolucionando la segmentación de clientes a través de machine learning
dc.contributor.advisor | Rojas Sánchez, Germán Mauricio | |
dc.contributor.advisor | Gonzaléz Bríñez, Mario Hernán | |
dc.contributor.author | Angel Peralta, Santiago | |
dc.contributor.author | Gallardo Moncaleano, Andrés Alejandro | |
dc.contributor.author | Giraldo Orozco, Sara Carolina | |
dc.date.accessioned | 2024-12-10T15:13:26Z | |
dc.date.available | 2024-12-10T15:13:26Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | El artículo tiene como propósito analizar el uso de la inteligencia artificial, específicamente el aprendizaje automático, en la segmentación de clientes y su aplicación en estrategias de marketing. El estudio abarca el análisis del impacto de una segmentación inadecuada en las empresas, destacando ejemplos de algunas campañas, y propone la implementación de técnicas de clustering para mejorar la segmentación de sus clientes, como es el caso de Yufun, una empresa de servicios de comercio logístico internacional. La metodología utilizada incluyó la limpieza de datos, el análisis descriptivo y la aplicación de modelos de clustering no supervisado y supervisado para agrupar a los clientes en diferentes segmentos. Los resultados mostraron que, mediante la personalización de servicios para cada grupo, como la oferta de tutoriales y la optimización de procesos logísticos, se logró una mejora en las tasas de retención y aumento de ingresos, lo que permite ajustar las estrategias de marketing y las ofertas de acuerdo con sus necesidades específicas. Se concluye que una segmentación eficaz, basada en el uso de inteligencia artificial, contribuye a tener mejores resultados con los clientes en un menor tiempo, recomendando estar en constante actualización, para mantenerse competitivos en el mercado. | |
dc.description.abstractenglish | The purpose of this article is to analyze the use of artificial intelligence, specifically machine learning, in customer segmentation and its application in marketing strategies. The study covers the analysis of the impact of inadequate segmentation in companies, highlighting examples of some campaigns, and proposes the implementation of clustering techniques to improve the segmentation of its customers, as is the case of Yufun, an international logistics trade services company. The methodology used included data cleaning, descriptive analysis and the application of unsupervised and supervised clustering models to group customers into different segments. The results showed that by customizing services for each group, such as offering tutorials and optimizing logistics processes, improved retention rates and increased revenues were achieved, allowing marketing strategies and offers to be adjusted according to their specific needs. It is concluded that an effective segmentation, based on the use of artificial intelligence, contributes to have better results with customers in a shorter time, recommending to be constantly updated, to remain competitive in the market. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Profesional en Marketing y Transformación Digital | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13660 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias Económicas y Administrativas | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Marketing y Transformación Digital | spa |
dc.relation.references | Al Khaldy, M. A., Al-Obaydi, B. A. A., & al Shari, A. J. (2023, May). The impact of predictive analytics and AI on digital marketing strategy and ROI. In Conference on Sustainability and Cutting-Edge Business Technologies (pp. 367-379). Cham: Springer Nature Switzerland. Recuperado de: https://link.springer.com/chapter/10.1007/978-3-031-42455-7_31 | |
dc.relation.references | Collica, R. S. (2017). Customer segmentation and clustering using SAS Enterprise Miner. Sas Institute. | |
dc.relation.references | Dolnicar, S. (2003). Using cluster analysis for market segmentation-typical misconceptions, established methodological weaknesses and some recommendations for improvement. Recuperado de: https://www.researchgate.net/publication/284690668_Using_cluster_analysis_for_market_segmentation | |
dc.relation.references | Ezenkwu, C. P., Ozuomba, S., & Kalu, C. (2015). Application of K-Means algorithm for efficient customer segmentation: A strategy for targeted customer services. International Journal of Advanced Research in Artificial Intelligence (IJARAI), 4(10), 40-44. | |
dc.relation.references | Fisher, B. (2023, October 11). The real reason Pepsi A.M. disappeared. Mashed. https://www.mashed.com/224011/the-real-reason-pepsi-a-m-disappeared/ | |
dc.relation.references | Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O'Reilly Media. Recuperado de: https://acortar.link/6kjfnQ | |
dc.relation.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer. | |
dc.relation.references | Murty, M. N., & Raghava, R. (2016). Support vector machines and perceptrons: Learning, optimization, classification, and application to social networks. Springer. Recuperado de: https://acortar.link/zyddjn | |
dc.relation.references | Ozan, Ş. (2018, September). A case study on customer segmentation by using machine learning methods. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1-6). IEEE. | |
dc.relation.references | Rathor, A. S., Agarwal, A., & Dimri, P. (2018). Comparative study of machine learning approaches for Amazon reviews. Procedia Computer Science, 132, 1552-1561. Recuperado de: https://www.sciencedirect.com/science/article/pii/S1877050918308512 | |
dc.relation.references | Sullivan, R., & Sullivan, R. (2012). Machine-Learning Techniques. Introduction to Data Mining for the Life Sciences, 363-454. Recuperado de: https://acortar.link/8kN96r | |
dc.relation.references | Wang, L. (Ed.). (2005). Support vector machines: Theory and applications. Springer. | |
dc.relation.references | Wassan, S., Chen, X., Shen, T., Waqar, M., & Jhanjhi, N. Z. (2021). Amazon product sentiment analysis using machine learning techniques. Revista Argentina de Clínica Psicológica, 30(1), 695. Recuperado de: https://www.researchgate.net/profile/Sobia-Wassan-2/publication/349772322_Amazon_Product_Sentiment_Analysis_using_Machine_Learning_Techniques/links/60411e09a6fdcc9c78121992/Amazon-Product-Sentiment-Analysis-using-Machine-Learning-Techniques.pdf | |
dc.relation.references | Wierzchoń, S. T., & Kłopotek, M. A. (2015). Algorithms of cluster analysis (Vol. 3). Warszaw, Poland: Institute of Computer Science Polish Academy of Sciences. Recuperado de: https://ipipan.waw.pl/pliki/wydawnictwo/Monografie_cz%203_Wierzchon_Klopotek.pdf. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject | Análisis Cluster | |
dc.subject | Aprendizaje automático | |
dc.subject | Inteligencia artificial | |
dc.subject | Marketing | |
dc.subject | Segmentación del mercado | |
dc.subject.ddc | 382 | |
dc.subject.keywords | Cluster analysis | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Artificial Intelligence | |
dc.subject.keywords | Marketing | |
dc.subject.keywords | Market segmentation | |
dc.title | Evolucionando la segmentación de clientes a través de machine learning | |
dc.title.translated | Evolving customer segmentation through machine learning | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 179.42 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1. Acta de aprobacion.pdf
- Tamaño:
- 244.11 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 194.73 KB
- Formato:
- Adobe Portable Document Format
- Descripción: