Análisis de algunas técnicas de caracterización de sistemas nanotecnológicos orientados al tratamiento de la Diabetes Mellitus

dc.contributor.advisorVargas Mantilla, Jors Steven
dc.contributor.advisorAmaya Méndez, Sergio
dc.contributor.authorDurango Vargas, Jhared Santiago
dc.contributor.orcidDurango Vargas, Jhared Santiago [0009-0000-1108-5562]
dc.date.accessioned2024-11-21T13:10:13Z
dc.date.available2024-11-21T13:10:13Z
dc.date.issued2024-10
dc.description.abstractLa Diabetes Mellitus (DM) es un problema de salud global que afectaba a 422 millones de personas en 2021 y va en crecimiento, Está asociada a complicaciones macro y microvasculares como retinopatía, neuropatía, y fallos renales y cardíacos. La nanotecnología ofrece una alternativa prometedora en el tratamiento de la DM a través de la nanomedicina, con sistemas nanotecnológicos que mejoran la entrega de fármacos. En particular, nanopartículas inorgánicas como las AgNPs y ZnONPs, que tienen actividad antidiabética inherente, también funcionan como transportadores de fármacos. Estas nanopartículas requieren una caracterización rigurosa mediante técnicas como UV-Vis, EDX, TEM, SEM, XRD y ELS, para confirmar su síntesis, tamaño, morfología y estabilidad expresada como potencial zeta respectivamente. En cuanto a su actividad biológica, han demostrado igualar o superar la eficacia de fármacos como la metformina y la acarbosa, utilizados como estándares de referencia, con el potencial de reducir efectos adversos, aunque se necesita una evaluación clínica para confirmar estas ventajas.
dc.description.abstractenglishDiabetes Mellitus (DM) is a global health issue affecting 422 million people as of 2021, and it is steadily increasing. It is associated with macrovascular and microvascular complications such as retinopathy, neuropathy, and renal and cardiac failure. Nanotechnology offers a promising alternative in DM treatment through nanomedicine, utilizing nanotechnological systems to enhance drug delivery. In particular, inorganic nanoparticles like AgNPs and ZnONPs, which possess inherent antidiabetic activity, also serve as drug carriers. These nanoparticles require rigorous characterization using techniques such as UV-Vis, EDX, TEM, SEM, XRD, and ELS to confirm synthesis, size, morphology, and stability (expressed as zeta potential). Regarding their biological activity, they have shown efficacy comparable to or surpassing drugs like metformin and acarbose, commonly used as reference standards, with the potential to reduce adverse effects; however, clinical evaluation is necessary to confirm these advantages.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13305
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.referencesOrganización Mundial de la Salud -OMS, “Diabetes.” Accessed: Apr. 23, 2024. [Online]. Available: https://www.who.int/health-topics/diabetes#tab=tab_1
dc.relation.referencesMinisterio de Salud y Protección Social, “ En el Día Mundial de la Diabetes: MinSalud promueve prácticas de vida saludable,” Boletín 543 de 2022. Accessed: Apr. 23, 2024. [Online]. Available: https://www.minsalud.gov.co/Paginas/En-el-Dia-Mundial-de-la-Diabetes-MinSalud-promueve-praticas-de-vida-saludable.aspx
dc.relation.referencesSafia Kousar, “Type 1 Diabetes: Causes, Symptoms and Treatments, Review with Personal Experience,” Curr Res Diabetes Obes J, vol. 11, Aug. 2019, Accessed: Apr. 24, 2024. [Online]. Available: https://juniperpublishers.com/crdoj/pdf/CRDOJ.MS.ID.555817.pdf
dc.relation.referencesMarcela Gómez-Garzón, M. Alejandra Martínez-Ceballos, Arley Gómez-López, and Adriana Rojas-Villarraga, “Aplicaciones de la nanotecnología en el campo de la oftalmología: ¿dónde estamos?,” 2020. Accessed: Apr. 24, 2024. [Online]. Available: https://www.scielo.org.mx/pdf/rmof/v94n5/0187-4519-rmo-94-5-221.pdf
dc.relation.referencesVillafuerte-Robles Leopoldo, “Nanotecnología Farmacéutica,” Nanotecnología Farmacéutica, vol. 68, pp. 1–20, 2009, Accessed: Apr. 24, 2024. [Online]. Available: https://www.redalyc.org/pdf/1995/199520297009.pdf
dc.relation.referencesPaulina ABRICA-GONZÁLEZ and Sandra GÓMEZ-ARROYO, “EFECTOS Y CARACTERIZACIÓN DE NANOPARTÍCULAS ATMOSFÉRICAS (NP-CuO, ZnO) EN PLANTAS,” Aug. 2021, Accessed: Apr. 24, 2024. [Online]. Available: https://www.scielo.org.mx/pdf/rica/v38/0188-4999-rica-38-54303.pdf
dc.relation.referencesVasile-Dan Hodoroaba, Wolfgang E.S, and Alexander G. Shard, Characterization of Nanoparticles Measurement Processes for Nanoparticles. 2019. Accessed: Apr. 24, 2024. [Online]. Available: https://www.sciencedirect.com/book/9780128141823/characterization-of-nanoparticles
dc.relation.referencesA. C. Quevedo et al., “UV-vis spectroscopic characterization of nanomaterials in aqueous media,” Journal of Visualized Experiments, no. 176, Oct. 2021, doi: 10.3791/61764.
dc.relation.referencesnanoComposix, “UV-Visible Nanoparticle Analysis.” Accessed: Sep. 17, 2024. [Online]. Available: https://nanocomposix.com/products/uv-visible-nanoparticle-analysis
dc.relation.referencesRamya P, “Anti-Diabetic Activity of Silver Nanoparticles Synthesized From The Hydroethanolic Extract of Myristica Fragrans Seeds”, doi: 10.21203/rs.3.rs-676500/v1.
dc.relation.referencesR. A. Sarfraz, R. Ashraf, S. Bedi, and I. Sardar, “Bioactivity-guided nanoparticle synthesis from Zingiber officinale and Mentha longifolia,” Bioinspired, Biomimetic and Nanobiomaterials, vol. 10, no. 3, pp. 70–77, Sep. 2021, doi: 10.1680/jbibn.21.00018.
dc.relation.referencesS. Pradhan et al., “Bioinspired synthesis of silver nanoparticles using Luffa aegyptiaca seed extract and assessment of pharmacological properties,” Biocatal Agric Biotechnol, vol. 58, Jun. 2024, doi: 10.1016/j.bcab.2024.103209.
dc.relation.referencesD. Jini and S. Sharmila, “Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 432–438. doi: 10.1016/j.matpr.2019.07.672.
dc.relation.referencesI. Jallali, A. Hédi, R. Nouir, H. Hannachi, and B. Essghaier, “Green synthesis of silver nanoparticles from Fraxinus angustifolia Vahl. Extract: Characterization and assessment of their biological activities,” Biocatal Agric Biotechnol, vol. 57, Apr. 2024, doi: 10.1016/j.bcab.2024.103086.
dc.relation.referencesD. Jini, S. Sharmila, A. Anitha, M. Pandian, and R. M. H. Rajapaksha, “In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-24818-x.
dc.relation.referencesS. Majeed et al., “In Vitro Evaluation of Antibacterial, Antioxidant, and Antidiabetic Activities and Glucose Uptake through 2-NBDG by Hep-2 Liver Cancer Cells Treated with Green Synthesized Silver Nanoparticles,” Oxid Med Cell Longev, vol. 2022, 2022, doi: 10.1155/2022/1646687.
dc.relation.referencesJ. A. Badmus et al., “Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities,” Heliyon, vol. 6, no. 11, Nov. 2020, doi: 10.1016/j.heliyon.2020.e05413.
dc.relation.referencesS. Sudha and A. Mary Saral, “Studies on phytochemical, mineral content, in vitro anti-urolithiatic and anti-diabetic activities of horse gram flour extracts and its biosynthesized Ag nanoparticles,” Heliyon, vol. 9, no. 6, Jun. 2023, doi: 10.1016/j.heliyon.2023.e16572.
dc.relation.referencesP. Rani et al., “Synthesis of Silver Nanoparticles by Leaf Extract of Cucumis melo L. and Their In Vitro Antidiabetic and Anticoccidial Activities,” Molecules, vol. 28, no. 13, Jul. 2023, doi: 10.3390/molecules28134995.
dc.relation.referencesN. R. Shailaja, M. Arulmozhi, B. Balraj, and C. Siva, “Corallocarpus epigaeus mediated synthesis of ZnO/CuO integrated ZrO2 nanoparticles for enhanced in-vitro antibacterial, antifungal and antidiabetic activities,” Journal of the Indian Chemical Society, vol. 100, no. 5, May 2023, doi: 10.1016/j.jics.2023.100991.
dc.relation.referencesM. A. Pavan Kumar, D. Suresh, and A. H. Sneharani, “Eco-friendly Ag-CuO nanoparticles for antidiabetic, antimicrobial, anti-cancer, platelet aggregation inducing, antioxidant and photocatalytic applications,” Results Chem, vol. 7, Jan. 2024, doi: 10.1016/j.rechem.2024.101391.
dc.relation.referencesR. Shanmugam, T. Munusamy, A. Nisha M, A. Rajaselin, and S. Govindharaj, “Exploring the In Vitro Antidiabetic Potential of Metal Oxide Nanoparticles Synthesized Using Lemongrass and Mint Formulation,” Cureus, Feb. 2024, doi: 10.7759/cureus.53489.
dc.relation.referencesV. Ramachandran et al., “Antidiabetic activity of gold nanoparticles synthesized using wedelolactone in RIN-5F cell line,” Antioxidants, vol. 9, no. 1, Jan. 2020, doi: 10.3390/antiox9010008.
dc.relation.referencesU. M. Badeggi et al., “Green synthesis of gold nanoparticles capped with procyanidins from leucosidea sericea as potential antidiabetic and antioxidant agents,” Biomolecules, vol. 10, no. 3, Mar. 2020, doi: 10.3390/biom10030452.
dc.relation.referencesS. Ameena et al., “Antioxidant, Antibacterial, and Anti-diabetic Activity of Green Synthesized Copper Nanoparticles of Cocculus hirsutus (Menispermaceae),” Appl Biochem Biotechnol, vol. 194, no. 10, pp. 4424–4438, Oct. 2022, doi: 10.1007/s12010-022-03899-4.
dc.relation.referencesV. K., S. S., M. P., M. S., and S. S., “Ecofriendly green synthesis, characterization and biomedical applications of CuO nanoparticles synthesized using leaf extract of Capsicum frutescens,” J Environ Chem Eng, vol. 9, no. 5, Oct. 2021, doi: 10.1016/j.jece.2021.106299.
dc.relation.referencesD. Kirubakaran, K. Selvam, P. Prakash, M. S. Shivakumar, and M. Rajkumar, “In-vitro antioxidant, antidiabetic, anticholinergic activity of iron/copper nanoparticles synthesized using Strobilanthes cordifolia leaf extract,” OpenNano, vol. 14, Nov. 2023, doi: 10.1016/j.onano.2023.100188.
dc.relation.referencesI. Meydan, H. Burhan, T. Gür, H. Seçkin, B. Tanhaei, and F. Sen, “Characterization of Rheum ribes with ZnO nanoparticle and its antidiabetic, antibacterial, DNA damage prevention and lipid peroxidation prevention activity of in vitro,” Environ Res, vol. 204, Mar. 2022, doi: 10.1016/j.envres.2021.112363.
dc.relation.referencesK. M. Eswari et al., “Green synthesis of ZnO nanoparticles using Abutilon Indicum and Tectona Grandis leaf extracts for evaluation of anti-diabetic, anti-inflammatory and in-vitro cytotoxicity activities,” Ceram Int, vol. 48, no. 22, pp. 33624–33634, Nov. 2022, doi: 10.1016/j.ceramint.2022.07.308.
dc.relation.referencesM. I. Khan et al., “Monotheca buxifolia Driven Synthesis of Zinc Oxide Nano Material Its Characterization and Biomedical Applications,” Micromachines (Basel), vol. 13, no. 5, May 2022, doi: 10.3390/mi13050668.
dc.relation.referencesN. Samad et al., “A novel approach to assessing the antioxidant and anti-diabetic potential of synthesized calcium carbonate nanoparticles using various extracts of Ailanthus altissima,” Front Chem, vol. 12, 2024, doi: 10.3389/fchem.2024.1345950.
dc.relation.referencesD. Ayodhya, A. Ambala, G. Balraj, M. Pradeep Kumar, and P. Shyam, “Green synthesis of CeO2 NPs using Manilkara zapota fruit peel extract for photocatalytic treatment of pollutants, antimicrobial, and antidiabetic activities,” Results Chem, vol. 4, Jan. 2022, doi: 10.1016/j.rechem.2022.100441.
dc.relation.referencesG. Maheshwaran, M. Malai Selvi, R. Selva Muneeswari, A. Nivedhitha Bharathi, M. Krishna Kumar, and S. Sudhahar, “Green synthesis of lanthanum oxide nanoparticles using Moringa oleifera leaves extract and its biological activities,” Advanced Powder Technology, vol. 32, no. 6, pp. 1963–1971, Jun. 2021, doi: 10.1016/j.apt.2021.04.004.
dc.relation.referencesM. A. Ammulu, K. Vinay Viswanath, A. K. Giduturi, P. K. Vemuri, U. Mangamuri, and S. Poda, “Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications,” Journal of Genetic Engineering and Biotechnology, vol. 19, no. 1, Dec. 2021, doi: 10.1186/s43141-021-00119-0.
dc.relation.referencesR. Pecora, “Dynamic light scattering measurement of nanometer particles in liquids,” Journal of Nanoparticle Research, vol. 2, no. 2, pp. 123–131, 2000, doi: 10.1023/A:1010067107182.
dc.relation.referencesP. J. Goodhew, “General Introduction to Transmission Electron Microscopy TEM,” Jul. 26, 2011, John Wiley and Sons. doi: 10.1002/9781119978848.ch1.
dc.relation.referencesW. Zhou, R. P. Apkarian, Z. Lin Wang, and D. Joy, “Fundamentals of Scanning Electron Microscopy.”
dc.relation.referencesG. George, R. Wilson, and J. Joy, “Ultraviolet Spectroscopy: A Facile Approach for the Characterization of Nanomaterials,” Spectroscopic Methods for Nanomaterials Characterization, vol. 2, pp. 55–72, Jan. 2017, doi: 10.1016/B978-0-323-46140-5.00003-0.
dc.relation.referencesA. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Oct. 02, 2015, Taylor and Francis Ltd. doi: 10.1080/10408347.2014.949616.
dc.relation.referencesK. M. Navada, G. K. Nagaraja, J. N. D’Souza, S. Kouser, C. R. Ravikumar, and D. J. Manasa, “Bio-fabrication of multifunctional quasi-spherical green α-Fe2O3 nanostructures for paracetamol sensing and biomedical applications,” Ceram Int, vol. 47, no. 23, pp. 33651–33666, Dec. 2021, doi: 10.1016/j.ceramint.2021.08.275.
dc.relation.referencesH. Ullah et al., “Bionanocomposite scaffolds based on MnS-nanorods loaded acacia-Senegal-gum hydrogels: Fabrication, characterization and biological evaluation,” Bioactive Carbohydrates and Dietary Fibre, vol. 30, Nov. 2023, doi: 10.1016/j.bcdf.2023.100368.
dc.relation.referencesJ. O. Adeyemi, D. C. Onwudiwe, and A. O. Oyedeji, “In vitro α-glucosidase enzyme inhibition and anti-inflammatory studies of Mn3O4 nanoparticles mediated using extract of Dalbergiella welwitschia,” Results Chem, vol. 4, Jan. 2022, doi: 10.1016/j.rechem.2022.100497.
dc.relation.referencesS. U. R et al., “Facile synthesis of silver doped-copper oxide nano materials utilizing areca catechu (AC) leaf extract and their antidiabetic and anticancer studies,” Journal of the Indian Chemical Society, vol. 99, no. 9, Sep. 2022, doi: 10.1016/j.jics.2022.100606.
dc.relation.referencesH. Jan et al., “Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other in Vitro Properties,” Oxid Med Cell Longev, vol. 2021, 2021, doi: 10.1155/2021/4786227.
dc.relation.referencesH. Rehman, W. Ali, N. Zaman Khan, M. Aasim, T. Khan, and A. Ali Khan, “Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities,” Saudi J Biol Sci, vol. 30, no. 1, Jan. 2023, doi: 10.1016/j.sjbs.2022.103485.
dc.relation.referencesK. S. U. Suganya, K. Govindaraju, C. V. Vani, M. Premanathan, and V. K. G. Kumar, “In vitro biological evaluation of anti-diabetic activity of organic-inorganic hybrid gold nanoparticles,” IET Nanobiotechnol, vol. 13, no. 2, pp. 226–229, 2019, doi: 10.1049/iet-nbt.2018.5139.
dc.relation.referencesThermoScientific, “Scanning Electron Microscopy Working Principle Nearly everything you need to know about SEM.”
dc.relation.referencesMalvern Panalytical, “Malvern Panalytical,” Dispersión de luz electroforética (ELS). Accessed: Sep. 17, 2024. [Online]. Available: https://www.malvernpanalytical.com/es/products/technology/light-scattering/electrophoretic-light-scattering
dc.relation.referencesK. Khadayat, B. P. Marasini, H. Gautam, S. Ghaju, and N. Parajuli, “Evaluation of the alpha-amylase inhibitory activity of Nepalese medicinal plants used in the treatment of diabetes mellitus,” Clinical Phytoscience, vol. 6, no. 1, Dec. 2020, doi: 10.1186/s40816-020-00179-8.
dc.relation.referencesN. Kaur, V. Kumar, S. K. Nayak, P. Wadhwa, P. Kaur, and S. K. Sahu, “Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review,” Chem Biol Drug Des, vol. 98, no. 4, pp. 539–560, Oct. 2021, doi: 10.1111/CBDD.13909.
dc.relation.referencesY. Feng, H. Nan, H. Zhou, P. Xi, and B. Li, “Mechanism of inhibition of α-glucosidase activity by bavachalcone,” Food Science and Technology (Brazil), vol. 42, 2022, doi: 10.1590/fst.123421.
dc.relation.referencesD. K. McCulloch and R. B. Tattersall, “‘Pharmacological Fibre’—Alpha-glucosidase Inhibition in the Management of Diabetes,” Diabetic Medicine, vol. 1, no. 3, pp. 189–190, Sep. 1984, doi: 10.1111/J.1464-5491.1984.TB01951.X.
dc.relation.references“Unlocking potential diabetes therapeutics: Insights into alpha-glucosidase inhibition.” Accessed: Oct. 20, 2024. [Online]. Available: https://eurekamag.com/research/094/131/094131711.php?srsltid=AfmBOopaQ7xpcYcOyL3NeYYTDGdlDFMZ0jNJqt2pkIO-S0_FfGTTibTE
dc.relation.referencesS. Chanon et al., “Glucose uptake measurement and response to insulin stimulation in in vitro cultured human primary myotubes,” Journal of Visualized Experiments, vol. 2017, no. 124, Jun. 2017, doi: 10.3791/55743.
dc.relation.references“Comparison of Glucose Uptake Assay Methods.” Accessed: Oct. 20, 2024. [Online]. Available: https://worldwide.promega.com/resources/pubhub/comparison-of-glucose-uptake-assay-methods/
dc.relation.references“Glucose Uptake-GloTM Assay | Glucose Uptake Assay Kit.” Accessed: Oct. 20, 2024. [Online]. Available: https://worldwide.promega.com/products/energy-metabolism/metabolite-detection-assays/glucose-uptake_glo-assay/?catNum=J1341
dc.relation.referencesK. Sharabi, C. D. J. Tavares, A. K. Rines, and P. Puigserver, “Molecular pathophysiology of hepatic glucose production,” Dec. 01, 2015, Elsevier Ltd. doi: 10.1016/j.mam.2015.09.003.
dc.relation.referencesB. R. Kim, H. Y. Kim, I. Choi, J. B. Kim, C. H. Jin, and A. R. Han, “DPP-IV inhibitory potentials of flavonol glycosides isolated from the seeds of lens culinaris: In vitro and molecular docking analyses,” Molecules, vol. 23, no. 8, Aug. 2018, doi: 10.3390/molecules23081998.
dc.relation.referencesZ. Chen, L. Shao, M. Jiang, X. Ba, B. Ma, and T. Zhou, “Interpretation of HbA1c lies at the intersection of analytical methodology, clinical biochemistry and hematology (Review),” Exp Ther Med, vol. 24, no. 6, Oct. 2022, doi: 10.3892/etm.2022.11643.
dc.relation.referencesZ. Zhang and F.-J. Cui, “Non-enzymatic glycosylation reaction contributes to a rise of blood glucose in alloxan-induced diabetic rats.” Accessed: Sep. 16, 2024. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e70a81a554443779d26d05cf0bd7862812d6b5e5
dc.relation.referencesP. Rorsman and F. M. Ashcroft, “PANCREATIC-CELL ELECTRICAL ACTIVITY AND INSULIN SECRETION: OF MICE AND MEN,” Physiol Rev, vol. 98, pp. 117–214, 2018, doi: 10.1152/physrev.00008.2017.-The.
dc.relation.referencesA. Coronell-Tovar et al., “Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs,” Aug. 01, 2024, John Wiley and Sons Inc. doi: 10.1002/1873-3468.14901.
dc.relation.referencesA. Pinzón et al., “Nanopartículas de metal como antidiabéticos indirectos: ¿Una nueva solución? Metal nanoparticles as indirect antidiabetics: a new solution?,” Diabetes Internacional y endocrinología, vol. XIV, 2022, doi: 10.5281/zenodo.7706579.
dc.relation.referencesS. Paul et al., “Silver nanoparticles in diabetes mellitus: therapeutic potential and mechanistic insights,” Bull Natl Res Cent, vol. 48, no. 1, Mar. 2024, doi: 10.1186/s42269-024-01182-6.
dc.relation.referencesG. Alomari, S. Hamdan, and B. Al-Trad, “Gold nanoparticles as a promising treatment for diabetes and its complications: Current and future potentials,” Brazilian Journal of Pharmaceutical Sciences, vol. 57, 2021, doi: 10.1590/s2175-97902020000419040.
dc.relation.referencesS. A. Siddiqui et al., “Biological efficacy of zinc oxide nanoparticles against diabetes: A preliminary study conducted in mice,” Biosci Rep, vol. 40, no. 4, Apr. 2020, doi: 10.1042/BSR20193972.
dc.relation.referencesIntertek, “Energy Dispersive X-Ray Analysis (EDX).” Accessed: Sep. 19, 2024. [Online]. Available: https://www.intertek.com/analytical-laboratories/microscopy/edx/#:~:text=The%20technique%20can%20be%20qualitative,little%20or%20no%20sample%20preparation.
dc.relation.referencesB. A. Kumar, N. Ahmed, and S. Jamal, “Biosynthesis and Characterization of Silver Nanoparticles (AgNPs) with Jacalin, a Lectin from Jackfruit Seeds and its Antiproliferative Effects on HeLa Cancer Cells,” vol. 13, no. 3, p. 106, 2024, doi: 10.33263/LIANBS133.106.
dc.relation.referencesY. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 61, no. 13–14, pp. 2861–2866, Oct. 2005, doi: 10.1016/j.saa.2004.10.035.
dc.relation.referencesG. Vijayakumar et al., “Phytosynthesis of Copper Nanoparticles Using Extracts of Spices and Their Antibacterial Properties,” Processes 2021, Vol. 9, Page 1341, vol. 9, no. 8, p. 1341, Jul. 2021, doi: 10.3390/PR9081341.
dc.relation.referencesF. Batool, M. S. Iqbal, S. U. D. Khan, J. Khan, B. Ahmed, and M. I. Qadir, “Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-01374-4.
dc.relation.referencesR. A. Rojas Labastida, J. V. Pacheco Julián, G. Amaya Parra, and S. Jiménez Valera, “Nanopartículas de óxido de zinc y óxido de plata para uso de protección solar de piel,” REVISTA DE CIENCIAS TECNOLÓGICAS, vol. 7, no. 2, p. e283, Apr. 2024, doi: 10.37636/recit.v7n2e283.
dc.relation.referencesA. T. Jalil et al., “CuO/ZrO2 Nanocomposites: Facile Synthesis, Characterization and Photocatalytic Degradation of Tetracycline Antibiotic,” Journal of Nanostructures, vol. 11, no. 2, pp. 333–346, Sep. 2021, doi: 10.22052/JNS.2021.02.014.
dc.relation.referencesC. Camilo Ramirez Fosca, “Síntesis del Sistema Nanoestructurado de Ag-Cu con Propiedades Microbicidas Synthesis of Ag-Cu Nanostructured System with Microbicidal Properties.”
dc.relation.referencesT. Tamiri, “EXPLOSIVES | Analysis,” Encyclopedia of Forensic Sciences, pp. 729–745, Jan. 2000, doi: 10.1006/RWFS.2000.0505.
dc.relation.referencesD. Patel, D. Panchal, K. Patel, M. Dalwadi, and U. Upadhyay, “‘A Review on UV Visible Spectroscopy,’” 2022, [Online]. Available: www.ijcrt.org
dc.relation.referencesATA Scientific Instruments, “Comparing SEM & TEM – Understanding the Pros and Cons.”
dc.relation.referencesManoj Rajankunte Mahadeshwara, “Transmission electron microscopy.” Accessed: Sep. 21, 2024. [Online]. Available: https://www.tribonet.org/wiki/transmission-electron-microscopy/#Advantages_and_Disadvantages
dc.relation.referencesThermoFisher, “Transmission Electron Microscopy vs Scanning Electron Microscopy.” Accessed: Sep. 21, 2024. [Online]. Available: https://www.thermofisher.com/co/en/home/materials-science/learning-center/applications/sem-tem-difference.html#:~:text=The%20magnifications%20that%20TEMs%20offer,to%201%E2%80%932%20million%20times.
dc.relation.referencesO. P. Choudhary and P. ka, “Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components,” Int J Curr Microbiol Appl Sci, vol. 6, no. 5, pp. 1877–1882, May 2017, doi: 10.20546/ijcmas.2017.605.207.
dc.relation.referencesA. Barhoum and M. Luisa García-Betancourt, “Physicochemical characterization of nanomaterials: size, morphology, optical, magnetic, and electrical properties,” Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends, pp. 279–304, Jan. 2018, doi: 10.1016/B978-0-323-51254-1.00010-5.
dc.relation.referencesZ. Jia, J. Li, L. Gao, D. Yang, and A. Kanaev, “Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing,” Mar. 01, 2023, MDPI. doi: 10.3390/colloids7010015.
dc.relation.referencesAZO nano, “Dynamic Light Scattering (DLS) - Understanding the Basics.” Accessed: Sep. 21, 2024. [Online]. Available: https://www.azonano.com/article.aspx?ArticleID=3662
dc.relation.referencesJ. Stetefeld, S. A. McKenna, and T. R. Patel, “Dynamic light scattering: a practical guide and applications in biomedical sciences,” Dec. 01, 2016, Springer Verlag. doi: 10.1007/s12551-016-0218-6.
dc.relation.referencesA. C. Quevedo et al., “UV-Vis Spectroscopic Characterization of Nanomaterials in Aqueous Media,” J Vis Exp, no. 176, p. e61764, Oct. 2021, doi: 10.3791/61764.
dc.relation.references“All You Need To Know About UV-Vis Spectrophotometer.” Accessed: Oct. 18, 2024. [Online]. Available: https://www.mrclab.com/all-you-need-to-know-about-uv-vis-spectrophotometer
dc.relation.referencesFuture Positive, “The Advantages and Disadvantages of XRD.” Accessed: Sep. 21, 2024. [Online]. Available: https://www.thefuturepositive.com/blog/advantages-disadvantages-xrd/
dc.relation.referenceseurofins, “X-Ray Diffraction (XRD) Home » Our Techniques » Spectroscopy » XRD.” Accessed: Sep. 21, 2024. [Online]. Available: https://www.eag.com/techniques/spectroscopy/x-ray-diffraction-xrd/
dc.relation.referencesT. M. G. Selva, J. S. G. Selva, and R. B. Prata, “Sensing Materials: Diamond-Based Materials,” Encyclopedia of Sensors and Biosensors: Volume 1-4, First Edition, vol. 1–4, pp. 45–72, Jan. 2023, doi: 10.1016/B978-0-12-822548-6.00081-9.
dc.relation.referencesWYATT technology, “Electrophoretic Light Scattering (ELS).” Accessed: Sep. 22, 2024. [Online]. Available: https://www.wyatt.com/solutions/techniques/electrophoretic-light-scattering-els.html
dc.relation.referencesM. J. Haider and M. S. Mehdi, “Study of morphology and Zeta Potential analyzer for the Silver Nanoparticles,” Int J Sci Eng Res, vol. 5, no. 7, 2014, [Online]. Available: http://www.ijser.org
dc.relation.referencesMalvern, “ZetaPotential-Introduction-in-30min-Malvern,” 2015.
dc.relation.referencesA. Miranda, T. Akpobolokemi, E. Chung, G. Ren, and B. T. Raimi-Abraham, “pH Alteration in Plant-Mediated Green Synthesis and Its Resultant Impact on Antimicrobial Properties of Silver Nanoparticles (AgNPs),” Antibiotics, vol. 11, no. 11, Nov. 2022, doi: 10.3390/antibiotics11111592.
dc.relation.referencesfda and cder, “PRECOSE ® (acarbose tablets).” [Online]. Available: https://www.fda.gov/drugsatfda
dc.relation.referencesG. Oboh, O. B. Ogunsuyi, M. D. Ogunbadejo, and S. A. Adefegha, “Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose,” J Food Drug Anal, vol. 24, no. 3, pp. 627–634, Jul. 2016, doi: 10.1016/J.JFDA.2016.03.003.
dc.relation.referencesLindsey A. McIver, Charles V. Preuss, and Jayson Tripp, Acarbose. StatPearls, 2024. Accessed: Sep. 23, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK493214/
dc.relation.referencesG. Mertes, “Safety and efficacy of acarbose in the treatment of Type 2 diabetes: data from a 5-year surveillance study,” Diabetes Res Clin Pract, vol. 52, no. 3, pp. 193–204, Jun. 2001, doi: 10.1016/S0168-8227(01)00221-2.
dc.relation.referencesUpToDate Free, “Acarbose: Drug information.” Accessed: Sep. 23, 2024. [Online]. Available: https://medilib.ir/uptodate/show/9219
dc.relation.referencesA. K. D. bin Ahmad Kamar, L. Ju Yin, C. Tze Liang, G. Tjin Fung, and V. R. Avupati, “Rhodanine scaffold: A review of antidiabetic potential and structure–activity relationships (SAR),” Med Drug Discov, vol. 15, p. 100131, Sep. 2022, doi: 10.1016/J.MEDIDD.2022.100131.
dc.relation.referencesA. S. Dabhi, N. R. Bhatt, and M. J. Shah, “Voglibose: An alpha glucosidase inhibitor,” Journal of Clinical and Diagnostic Research, vol. 7, no. 12, pp. 3023–3027, Dec. 2013, doi: 10.7860/JCDR/2013/6373.3838.
dc.relation.referencesfda and cder, “GLUCOPHAGE ® (metformin hydrochloride) Tablets GLUCOPHAGE ® XR (metformin hydrochloride) Extended-Release Tablets DESCRIPTION.” [Online]. Available: https://www.fda.gov/drugsatfda
dc.relation.referencesW. Sun, C. Zeng, L. Liao, J. Chen, and Y. Wang, “Comparison of acarbose and metformin therapy in newly diagnosed type 2 diabetic patients with overweight and/or obesity,” Curr Med Res Opin, vol. 32, no. 8, pp. 1389–1396, Aug. 2016, doi: 10.1080/03007995.2016.1176013.
dc.relation.referencesJ. M. Firdhouse, “ASSESSMENT OF ααAMYLASE INHIBITORY ACTION OF SOME EDIBLE PLANT SOURCES,” vol. 4, 2016.
dc.relation.referencesM. Chaudhary, N. K. Midha, P. Sukhadiya, D. Kumar, and M. K. Garg, “Metformin-Induced Chronic Diarrhea Misdiagnosed as Irritable Bowel Syndrome for Years,” Cureus, vol. 16, no. 3, Mar. 2024, doi: 10.7759/CUREUS.56828.
dc.relation.referencesP. Garcia-Molina, F. Garcia-Molina, J. A. Teruel-Puche, J. N. Rodriguez-Lopez, F. Garcia-Canovas, and J. L. Muñoz-Muñoz, “The Relationship between the IC50 Values and the Apparent Inhibition Constant in the Study of Inhibitors of Tyrosinase Diphenolase Activity Helps Confirm the Mechanism of Inhibition,” Molecules, vol. 27, no. 10, p. 3141, May 2022, doi: 10.3390/MOLECULES27103141/S1.
dc.relation.referencesYi-Wei Wang, Si-Jia He, and Xiao Feng, “Metformina y sus posibles indicaciones.” Accessed: Sep. 23, 2024. [Online]. Available: https://www.intramed.net/content/94956
dc.rightsAttribution-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subjectDiabetes mellitus
dc.subjectNanotecnología
dc.subjectNanopartículas metálicas
dc.subjectCaracterización
dc.subjectActividad antidiabética
dc.subject.ddc615.19
dc.subject.keywordsDiabetes mellitus
dc.subject.keywordsNanotechnology
dc.subject.keywordsMetallic nanoparticles
dc.subject.keywordsCharacterization
dc.subject.keywordsAntidiabetic activity
dc.titleAnálisis de algunas técnicas de caracterización de sistemas nanotecnológicos orientados al tratamiento de la Diabetes Mellitus
dc.title.translatedAnalysis of Characterization Techniques for Nanotechnological Systems Aimed at Treating Diabetes Mellitus
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
815.82 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Acta de grado.pdf
Tamaño:
1.45 MB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
243.08 KB
Formato:
Adobe Portable Document Format
Descripción: