Revisión bibliográfica de terapia CAR T: enfoque en los diferentes sistemas de entrega novedosos
dc.contributor.advisor | Velandia Paris, María Angélica | |
dc.contributor.author | Reina Quiñones, Valentina | |
dc.contributor.author | Rivera Otalora, María Valentina | |
dc.date.accessioned | 2024-11-20T20:01:11Z | |
dc.date.available | 2024-11-20T20:01:11Z | |
dc.date.issued | 2024-10 | |
dc.description.abstract | La terapia adaptativa de células T (CAR-T) ha revolucionado el tratamiento de la inmunoterapia contra el cáncer la cual consiste en modificar genéticamente las células T del paciente con los receptores quiméricos CAR para obtener un reconocimiento específico frente a células cancerígenas, sin embargo, esta terapia presenta obstáculos relacionados con la toxicidad, el microambiente tumoral, persistencia terapéutica, biocompatibilidad e infiltración. Esta revisión bibliográfica basada en el método PRISMA tiene como objetivo evaluar los diferentes sistemas de entrega novedosos de las terapias CAR-T en función de su relevancia terapéutica en contraste con el sistema de entrega convencional, para evaluar los diferentes sistemas de entrega novedosos, principalmente los exosomas, sistemas inorgánicos, NP poliméricas y lipídicas; si bien cada sistema presenta características únicas, la investigación actual apunta hacia la combinación de estas tecnologías para crear sistemas de entrega híbridos, que maximicen los beneficios. Esta sinergia biofarmacéutica podría revolucionar la terapia CAR-T, ampliando su eficacia, seguridad y accesibilidad. No obstante, persisten desafíos que requieren investigación continua. El desarrollo de nuevas estrategias, como la combinación con otros tratamientos y la optimización de los sistemas de entrega mediante biotecnología. | |
dc.description.abstractenglish | Adaptive T-cell therapy (CAR-T) has revolutionized the treatment of cancer immunotherapy. cancer immunotherapy, which consists of genetically modifying the patient's T-cells with chimeric CAR receptors to obtain specific CAR chimeric receptors to obtain specific recognition against cancer cells. However, this therapy presents obstacles related to toxicity, the tumor microenvironment, persistence and tumor microenvironment, therapeutic persistence, biocompatibility and infiltration. This literature This literature review based on the PRISMA method aims to evaluate the different novel delivery systems of novel delivery systems of CAR-T therapies in terms of their therapeutic relevance in contrast to the conventional delivery system, to evaluate the the conventional delivery system, to evaluate the different novel delivery systems, mainly exosomes, inorganic systems, polymeric and lipidic NPs; while each system has unique characteristics, current research is unique characteristics, current research points towards the combination of these technologies to create hybrid technologies to create hybrid delivery systems that maximize benefits. This biopharmaceutical This biopharmaceutical synergy could revolutionize CAR-T therapy, expanding its efficacy, safety and accessibility. accessibility. However, challenges remain that require continued research. The development of new new strategies, such as combination with other treatments and optimization of delivery systems through biotechnology. delivery systems through biotechnology. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13280 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | Cáncer Available online: https://www.who.int/es/news-room/fact-sheets/detail/cancer (accessed on 18 September 2024). | |
dc.relation.references | Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J Clin 2023, 73, 17–48, doi:10.3322/caac.21763. | |
dc.relation.references | Cómo Se Usa La Inmunoterapia Para Tratar El Cáncer; Available online: https://www.cancer.org/es/cancer/como-sobrellevar-el-cancer/tipos-de-tratamiento/inmunoterapia/como-se-usa-la-inmunoterapia.html (accessed on 18 September 2024). | |
dc.relation.references | Atsavapranee, E.S.; Billingsley, M.M.; Mitchell, M.J. Delivery Technologies for T Cell Gene Editing: Applications in Cancer Immunotherapy. EBioMedicine 2021, 67. | |
dc.relation.references | Terapia de Células CAR-T y Sus Efectos Secundarios Available online: https://www.cancer.org/es/cancer/como-sobrellevar-el-cancer/tipos-de-tratamiento/inmunoterapia/terapia- de-celulas-t.html (accessed on 18 September 2024). | |
dc.relation.references | Shan, X.; Gong, X.; Li, J.; Wen, J.; Li, Y.; Zhang, Z. Current Approaches of Nanomedicines in the Market and Various Stage of Clinical Translation. Acta Pharm Sin B 2022, 12, 3028–3048. | |
dc.relation.references | Xie, X.; Zhang, J.; Wang, Y.; Shi, W.; Tang, R.; Tang, Q.; Sun, S.; Wu, R.; Xu, S.; Wang, M.; et al. Nanomaterials Augmented Bioeffects of Ultrasound in Cancer Immunotherapy. Mater Today Bio 2024, 24. | |
dc.relation.references | Xiao, Q.; Li, X.; Li, Y.; Wu, Z.; Xu, C.; Chen, Z.; He, W. Biological Drug and Drug Delivery-Mediated Immunotherapy. Acta Pharm Sin B 2021, 11, 941–960. | |
dc.relation.references | Drug Delivery Systems Available online: https://www.nibib.nih.gov/science-education/science-topics/drug- delivery-systems-getting-drugs-their-targets-controlled-manner (accessed on 18 September 2024). | |
dc.relation.references | PubMed: guía básica tesauros MESH Available online: https://biblioguias.ucm.es/med-pubmed/tesauro (accessed on 9 june 2023) | |
dc.relation.references | Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. The BMJ 2021, 372. | |
dc.relation.references | Cauchon, N.S.; Oghamian, S.; Hassanpour, S.; Abernathy, M. Innovation in Chemistry, Manufacturing, and Controls—A Regulatory Perspective From Industry. J Pharm Sci 2019, 108, 2207–2237. | |
dc.relation.references | Zhang, Y.; Li, Y.; Cao, W.; Wang, F.; Xie, X.; Li, Y.; Wang, X.; Guo, R.; Jiang, Z.; Guo, R. Single-Cell Analysis of Target Antigens of CAR-T Reveals a Potential Landscape of “On-Target, Off-Tumor Toxicity.” Front Immunol 2021, 12, doi:10.3389/FIMMU.2021.799206/FULL. | |
dc.relation.references | Sánchez-Escamilla, M.; Yáñez San Segundo, L.; Urbano-Ispizua, Á.; Perales, M.Á. CAR T Cells: The Future Is Already Present. Med Clin (Barc) 2019, 152, 281–286, doi:10.1016/j.medcli.2018.08.015. | |
dc.relation.references | Tipos de Trasplantes de Células Madre y Médula Ósea Available online: https://www.cancer.org/es/cancer/como-sobrellevar-el-cancer/tipos-de-tratamiento/trasplante-de-celulas- madre/tipos-de-trasplantes.html (accessed on 18 September 2024). | |
dc.relation.references | Terapia de Células CAR-T y Sus Efectos Secundarios Available online: https://www.cancer.org/es/cancer/como-sobrellevar-el-cancer/tipos-de-tratamiento/inmunoterapia/terapia- de-celulas-t.html# (accessed on 18 September 2024). | |
dc.relation.references | Korell, F.; Berger, T.R.; Maus, M. V. Understanding CAR T Cell-Tumor Interactions: Paving the Way for Successful Clinical Outcomes. Med 2022, 3, 538–564. | |
dc.relation.references | Alnefaie, A.; Albogami, S.; Asiri, Y.; Ahmad, T.; Alotaibi, S.S.; Al-Sanea, M.M.; Althobaiti, H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022, 10. | |
dc.relation.references | Benmebarek, M.R.; Karches, C.H.; Cadilha, B.L.; Lesch, S.; Endres, S.; Kobold, S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int J Mol Sci 2019, 20. | |
dc.relation.references | Chen, X.; Xu, Z.; Li, T.; Thakur, A.; Wen, Y.; Zhang, K.; Liu, Y.; Liang, Q.; Liu, W.; Qin, J.J.; et al. Nanomaterial- Encapsulated STING Agonists for Immune Modulation in Cancer Therapy. Biomark Res 2024, 12. | |
dc.relation.references | Zhu, Y.H.; Zheng, J.H.; Jia, Q.Y.; Duan, Z.H.; Yao, H.F.; Yang, J.; Sun, Y.W.; Jiang, S.H.; Liu, D.J.; Huo, Y.M. Immunosuppression, Immune Escape, and Immunotherapy in Pancreatic Cancer: Focused on the Tumor Microenvironment. Cellular Oncology 2023, 46, 17–48. | |
dc.relation.references | Fernandes, Q.; Therachiyil, L.; Khan, A.Q.; Bedhiafi, T.; Korashy, H.M.; Bhat, A.A.; Uddin, S. Shrinking the Battlefield in Cancer Therapy: Nanotechnology against Cancer Stem Cells. European Journal of Pharmaceutical Sciences 2023, 191, doi:10.1016/j.ejps.2023.106586. | |
dc.relation.references | Efectos Secundarios de La Quimioterapia Available online: https://www.cancer.org/es/cancer/como- sobrellevar-el-cancer/tipos-de tratamiento/quimioterapia/efectos-secundarios-de-la-quimioterapia.html (accessed on 18 September 2024). | |
dc.relation.references | Gu, X.; Zhang, Y.; Zhou, W.; Wang, F.; Yan, F.; Gao, H.; Wang, W. Infusion and Delivery Strategies to Maximize the Efficacy of CAR-T Cell Immunotherapy for Cancers. Exp Hematol Oncol 2024, 13, 70, doi:10.1186/s40164- 024-00542-2. | |
dc.relation.references | :: .:: CIMA ::. FICHA TECNICA YESCARTA 0,4 - 2 x 10e8 CELULAS DISPERSION PARA PERFUSION Available online: https://cima.aemps.es/cima/dochtml/ft/1181299001/FT_1181299001.html (accessed on 4 November 2024). | |
dc.relation.references | Drug Delivery Systems Available online: https://www.nibib.nih.gov/science-education/science-topics/drug- delivery-systems-getting-drugs-their-targets-controlled-manner (accessed on 4 November 2024). | |
dc.relation.references | Roddie, C.; O’Reilly, M.; Dias Alves Pinto, J.; Vispute, K.; Lowdell, M. Manufacturing Chimeric Antigen Receptor T Cells: Issues and Challenges. Cytotherapy 2019, 21, 327–340, doi:10.1016/j.jcyt.2018.11.009. | |
dc.relation.references | Hu, D.; Zhang, W.; Tang, J.; Zhou, Z.; Liu, X.; Shen, Y. Improving Safety of Cancer Immunotherapy via Delivery Technology. Biomaterials 2021, 265. | |
dc.relation.references | Pinto, I.S.; Cordeiro, R.A.; Faneca, H. Polymer- and Lipid-Based Gene Delivery Technology for CAR T Cell Therapy. Journal of Controlled Release 2023, 353, 196–215. | |
dc.relation.references | Rahimi, A.; Esmaeili, Y.; Dana, N.; Dabiri, A.; Rahimmanesh, I.; Jandaghian, S.; Vaseghi, G.; Shariati, L.; Zarrabi, A.; Haghjooy Javanmard, S.; et al. A Comprehensive Review on Novel Targeted Therapy Methods and Nanotechnology-Based Gene Delivery Systems in Melanoma. European Journal of Pharmaceutical Sciences 2023, 187, doi:10.1016/j.ejps.2023.106476. | |
dc.relation.references | Estapé Senti, M.; García del Valle, L.; Schiffelers, R.M. MRNA Delivery Systems for Cancer Immunotherapy: Lipid Nanoparticles and Beyond. Adv Drug Deliv Rev 2024, 206. | |
dc.relation.references | Pondman, K.; Le Gac, S.; Kishore, U. Nanoparticle-Induced Immune Response: Health Risk versus Treatment Opportunity? Immunobiology 2023, 228, doi:10.1016/j.imbio.2022.152317. | |
dc.relation.references | Alhamhoom, Y.; Kakinani, G.; Rahamathulla, M.; Ali M. Osmani, R.; Hani, U.; Yoonus Thajudeen, K.; Kiran Raj, G.; Gowda, D. V. Recent Advances in the Liposomal Nanovesicles Based Immunotherapy in the Treatment of Cancer: A Review. Saudi Pharmaceutical Journal 2023, 31, 279–294. | |
dc.relation.references | Billingsley, M.M.; Singh, N.; Ravikumar, P.; Zhang, R.; June, C.H.; Mitchell, M.J. Ionizable Lipid Nanoparticle- Mediated MRNA Delivery for Human CAR T Cell Engineering. Nano Lett 2020, 20, 1578–1589, doi:10.1021/acs.nanolett.9b04246. | |
dc.relation.references | Zhang, X.; Jin, X.; Sun, R.; Zhang, M.; Lu, W.; Zhao, M. Gene Knockout in Cellular Immunotherapy: Application and Limitations. Cancer Lett 2022, 540. | |
dc.relation.references | Rhym, L.H.; Anderson, D.G. Nanoscale Delivery Platforms for RNA Therapeutics: Challenges and the Current State of the Art. Med 2022, 3, 167–187. | |
dc.relation.references | Huang, G.; Tang, Z.; Yin, T.; Ma, A.; Gong, H.; Zhang, Y.; Pan, H.; Cai, L. Bioactive-Material-Programmed CAR- T Cell Living Drug for Augmented Immunotherapy against Tumors. Cell Rep Phys Sci 2024, 5. | |
dc.relation.references | Xie, Z.; Shen, J.; Sun, H.; Li, J.; Wang, X. Polymer-Based Hydrogels with Local Drug Release for Cancer Immunotherapy. Biomedicine and Pharmacotherapy 2021, 137. | |
dc.relation.references | Jung, I.; Shin, S.; Baek, M.C.; Yea, K. Modification of Immune Cell-Derived Exosomes for Enhanced Cancer Immunotherapy: Current Advances and Therapeutic Applications. Exp Mol Med 2024, 56, 19–31. | |
dc.relation.references | Yan, W.; Jiang, S. Immune Cell-Derived Exosomes in the Cancer-Immunity Cycle. Trends Cancer 2020, 6, 506– 517. | |
dc.relation.references | Yang, Q.; Li, S.; Ou, H.; Zhang, Y.; Zhu, G.; Li, S.; Lei, L. Exosome-Based Delivery Strategies for Tumor Therapy: An Update on Modification, Loading, and Clinical Application. J Nanobiotechnology 2024, 22. | |
dc.relation.references | De La Peña, H.; Madrigal, J.A.; Rusakiewicz, S.; Bencsik, M.; Cave, G.W.V.; Selman, A.; Rees, R.C.; Travers, P.J.; Dodi, I.A. Artificial Exosomes as Tools for Basic and Clinical Immunology. J Immunol Methods 2009, 344, 121– 132, doi:10.1016/j.jim.2009.03.011. | |
dc.relation.references | Chen, J.; Tan, Q.; Yang, Z.; Jin, Y. Engineered Extracellular Vesicles: Potentials in Cancer Combination Therapy. J Nanobiotechnology 2022, 20. | |
dc.relation.references | Lei, W.; Yang, C.; Wu, Y.; Ru, G.; He, X.; Tong, X.; Wang, S. Nanocarriers Surface Engineered with Cell Membranes for Cancer Targeted Chemotherapy. J Nanobiotechnology 2022, 20. | |
dc.relation.references | Chen, H.Y.; Deng, J.; Wang, Y.; Wu, C.Q.; Li, X.; Dai, H.W. Hybrid Cell Membrane-Coated Nanoparticles: A Multifunctional Biomimetic Platform for Cancer Diagnosis and Therapy. Acta Biomater 2020, 112, 1–13. | |
dc.relation.references | Sahu, B.P.; Baishya, R.; Hatiboruah, J.L.; Laloo, D.; Biswas, N. A Comprehensive Review on Different Approaches for Tumor Targeting Using Nanocarriers and Recent Developments with Special Focus on Multifunctional Approaches. J Pharm Investig 2022, 52, 539–585. | |
dc.relation.references | Sun, N.; Zhao, L.; Zhu, J.; Li, Y.; Song, N.; Xing, Y.; Qiao, W.; Huang, H.; Zhao, J. 131i-Labeled Polyethylenimine-Entrapped Gold Nanoparticles for Targeted Tumor Spect/Ct Imaging and Radionuclide Therapy. Int J Nanomedicine 2019, 14, 4367–4381, doi:10.2147/IJN.S203259. | |
dc.relation.references | Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduct Target Ther 2018, 3. | |
dc.relation.references | Kang, W.; Liu, Y.; Wang, W. Light-Responsive Nanomedicine for Cancer Immunotherapy. Acta Pharm Sin B 2023, 13, 2346–2368. | |
dc.relation.references | Schneider-Futschik, E.K.; Reyes-Ortega, F. Pharmaceutics Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. 2021, doi:10.3390/pharmaceutics. | |
dc.relation.references | Nakamura, T.; Miyabe, H.; Hyodo, M.; Sato, Y.; Hayakawa, Y.; Harashima, H. Liposomes Loaded with a STING Pathway Ligand, Cyclic Di-GMP, Enhance Cancer Immunotherapy against Metastatic Melanoma. Journal of Controlled Release 2015, 216, 149–157, doi:10.1016/j.jconrel.2015.08.026. | |
dc.relation.references | Shin, H.E.; Han, J.-H.; Shin, S.; Bae, G.-H.; Son, B.; Kim, T.-H.; Park, H.H.; Park, C.G.; Park, W. M1-Polarized Macrophage-Derived Cellular Nanovesicle-Coated Lipid Nanoparticles for Enhanced Cancer Treatment through Hybridization of Gene Therapy and Cancer Immunotherapy. Acta Pharm Sin B 2024, doi:10.1016/j.apsb.2024.03.004. | |
dc.relation.references | Tarlatamab Para El Cáncer de Pulmón de Células Pequeñas Available online: https://www.cancer.gov/espanol/noticias/temas-y-relatos-blog/2024/tarlatamab-cancer-pulmon-de-celulas- pequenas (accessed on 18 September 2024). | |
dc.relation.references | Zhao, Y.; Wang, Q.J.; Yang, S.; Kochenderfer, J.N.; Zheng, Z.; Zhong, X.; Sadelain, M.; Eshhar, Z.; Rosenberg, S.A.; Morgan, R.A. A Herceptin-Based Chimeric Antigen Receptor with Modified Signaling Domains Leads to Enhanced Survival of Transduced T Lymphocytes and Antitumor Activity. J Immunol 2009, 183, 5563–5574, doi:10.4049/JIMMUNOL.0900447. | |
dc.relation.references | Kane, G.I.; Lusi, C.F.; Brassil, M.L.; Atukorale, P.U. Engineering Approaches for Innate Immune-Mediated Tumor Microenvironment Remodeling. Immuno-Oncology and Technology 2024, 21. | |
dc.relation.references | Gong, Y.; Klein Wolterink, R.G.J.; Wang, J.; Bos, G.M.J.; Germeraad, W.T.V. Chimeric Antigen Receptor Natural Killer (CAR-NK) Cell Design and Engineering for Cancer Therapy. J Hematol Oncol 2021, 14. | |
dc.relation.references | Liu, S.; Wei, W.; Wang, J.; Chen, T. Theranostic Applications of Selenium Nanomedicines against Lung Cancer. Journal of Nanobiotechnology 2023 21:1 2023, 21, 1–35, doi:10.1186/S12951-023-01825-2. | |
dc.relation.references | Hossian, A.K.M.N.; Hackett, C.S.; Brentjens, R.J.; Rafiq, S. Multipurposing CARs: Same Engine, Different Vehicles. Molecular Therapy 2022, 30, 1381–1395. | |
dc.relation.references | Vitanza, N.A.; Johnson, A.J.; Wilson, A.L.; Brown, C.; Yokoyama, J.K.; Künkele, A.; Chang, C.A.; Rawlings- Rhea, S.; Huang, W.; Seidel, K.; et al. Locoregional Infusion of HER2-Specific CAR T Cells in Children and Young Adults with Recurrent or Refractory CNS Tumors: An Interim Analysis. Nat Med 2021, 27, 1544–1552, doi:10.1038/s41591-021-01404-8. | |
dc.relation.references | DiNofia, A.M.; Grupp, S.A. Will Allogeneic CAR T Cells for CD19+ Malignancies Take Autologous CAR T Cells ‘off the Shelf’? Nat Rev Clin Oncol 2021, 18, 195–196. | |
dc.relation.references | CAR-T Cell - Inmunoterapia Prometedora Contra El Cáncer - CONSULTORSALUD Available online: https://consultorsalud.com/car-t-cell-inmunoterapia-contra-el-cancer/ (accessed on 18 September 2024). | |
dc.relation.references | Sun, W.; Jiang, Z.; Jiang, W.; Yang, R. Universal Chimeric Antigen Receptor T Cell Therapy — The Future of Cell Therapy: A Review Providing Clinical Evidence. Cancer Treat Res Commun 2022, 33. | |
dc.relation.references | Grupp, S.A.; Maude, S.L.; Rives, S.; Baruchel, A.; Boyer, M.W.; Bittencourt, H.; Bader, P.; Büchner, J.; Laetsch, T.W.; Stefanski, H.; et al. Updated Analysis of the Efficacy and Safety of Tisagenlecleucel in Pediatric and Young Adult Patients with Relapsed/Refractory (r/r) Acute Lymphoblastic Leukemia. Blood 2018, 132, 895, doi:10.1182/BLOOD-2018-99-112599. | |
dc.relation.references | Huang, Y.; Fan, H.; Ti, H. Tumor Microenvironment Reprogramming by Nanomedicine to Enhance the Effect of Tumor Immunotherapy. Asian J Pharm Sci 2024, 100902, doi:10.1016/j.ajps.2024.100902. | |
dc.relation.references | Pacheco, C.; Baião, A.; Ding, T.; Cui, W.; Sarmento, B. Recent Advances in Long-Acting Drug Delivery Systems for Anticancer Drug. Adv Drug Deliv Rev 2023, 194. | |
dc.relation.references | Khawar, M.B.; Afzal, A.; Abbasi, M.H.; Sheikh, N.; Sun, H. Nano-Immunoengineering of CAR-T Cell Therapy against Tumor Microenvironment: The Way Forward in Combating Cancer. OpenNano 2023, 10, doi:10.1016/j.onano.2023.100124. | |
dc.relation.references | Wu, X.; Matosevic, S. Gene-Edited and CAR-NK Cells: Opportunities and Challenges with Engineering of NK Cells for Immunotherapy. Mol Ther Oncolytics 2022, 27, 224–238. | |
dc.relation.references | Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016, 116, 5338–5431. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source.url | https://docs.google.com/spreadsheets/d/12UpwN3yP4ywxRtZ97XsScjI5vKbcMuKenr- 0QceO8qI/edit?usp=sharing | |
dc.subject | CAR-T | |
dc.subject | Sistemas de entrega | |
dc.subject | Inmunoterapia | |
dc.subject | Cáncer | |
dc.subject | Efectos adversos | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | CAR-T | |
dc.subject.keywords | Delivery systems | |
dc.subject.keywords | Immunotherapy | |
dc.subject.keywords | Cancer | |
dc.subject.keywords | Adverse effects | |
dc.title | Revisión bibliográfica de terapia CAR T: enfoque en los diferentes sistemas de entrega novedosos | |
dc.title.translated | Literature review of CAR T therapy: focus on Different novel delivery systems | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 790.7 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Acta de aprobacion.pdf
- Tamaño:
- 988.55 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 2.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción: