Caracterización molecular de la respuesta inmune innata inducida por interferón-β frente a herpes simplex virus tipo 1 en cultivos primarios de ganglio trigeminal murino

dc.contributor.advisorCastellanos, Jaime
dc.contributor.advisorPrada-Arismendy, Jeanette
dc.contributor.authorLow Calle, Ana María
dc.contributor.orcidCastellanos, Jaime [0000-0003-1596-8383]
dc.date.accessioned2021-02-23T17:12:21Z
dc.date.available2021-02-23T17:12:21Z
dc.date.issued2021
dc.description.abstractEl virus Herpes simplex tipo 1 (HSV-1) es el principal causante de infecciones virales en la mucosa oral y regiones periorales. Esta infección es seguida por la diseminación del virus a neuronas sensoriales del ganglio trigeminal donde establece una infección latente de por vida. Se ha descrito que la respuesta inmune es importante para el control de la infección por HSV-1 y para el establecimiento de infecciones en el ganglio trigeminal. Sin embargo, no se conoce totalmente el papel de la respuesta inmune innata, en especial la de los Interferones (IFNs), frente al HSV-1 en el ganglio trigeminal. Por esto, se propuso indagar el papel del IFN-β ante a la infección por HSV1 en cultivos primarios de ganglio trigeminal de ratón. Así como evidenciar la expresión de genes inducidos por IFN en estas células tras la infección por HSV-1 y tras el tratamiento con IFN. Al mismo tiempo, evaluar la activación de la cascada de señalización Jak-Stat activada por IFN-β en cultivos de GT infectados con HSV-1. Se evidenció que el IFN-β tiene un efecto antiviral frente al HSV-1 en cultivos primarios de GT murino, causando una inhibición transcripcional de los 3 tipos de genes virales del ciclo lítico del virus, disminuyendo la producción de partículas virales y evitando la muerte celular por el virus. Adicionalmente la infección con HSV-1 incrementó los transcritos de Oligoadenilato sintetasa-1a y Rnasa L. El tratamiento con IFN-β causó la sobre-expresión de los genes de la Proteína kinasa R y Oligoadenilato sintetasa-1a; indicando que la actividad antiviral del IFN-β puede estar mediada por estas moléculas. Además, la infección disminuyó significativamente los niveles constitutivos del gen de la Proteína kinasa R, que participa en la inhibición traduccional mediada por IFN. Lo cual podría indicar que en el ganglio trigeminal ocurre un mecanismo nuevo de evasión viral al IFN, que hasta el momento no había sido descrito. Asimismo, la infección por HSV-1 causó la inducción del gen del Supresor de Señalización de Citoquinas-3 relacionado con el apagamiento de la señal del IFN-β, pero esta inducción disminuyó con el pre-tratamiento con IFN-β. Finalmente se evidenció que la infección con HSV-1 inhibió parcialmente la activación de la cascada de señalización Jak-Stat inducida por IFN-β, lo cual también podría representar un nuevo mecanismo de evasión viral que ocurre en el GT durante la etapa de infección aguda. Estos mecanismos virales de regulación de la respuesta inducida por IFN, que no han sido reportados previamente en ganglio trigeminal, podrían permitirle al HSV-1 establecer infecciones agudas de forma más eficiente, al contrarrestar parcialmente la respuesta inmune innata mediada por IFN-β en el GT y favorecer la instauración de la latencia.spa
dc.description.abstractenglishHerpes simplex virus type 1 (HSV-1) is the main pathogen that causes viral infections in oral mucosa and perioral regions. This is followed by viral diffusion through the sensory neurons in trigeminal ganglion, where it establishes life-long latent infections. It has been described that immune response is important to control HSV-1 infections and estalishment of latency. However, it is not well known completely, the role of innate immune response, especially the role mediated by Interferons (IFNs), against HSV-1 infections in trigeminal ganglia. For all these, we aimed to dig into the IFN-β role against HSV-1 infection in mice trigeminal ganglion primary cultures. To evaluate IFN stimulated gene expression, in these cells after HSV-1 infection or IFN-β treatment. Besides, we aim to evaluate activation of IFN-β Jak-Stat signal transduction in trigeminal ganglion cultures after HSV-1 infection. It was observed that IFN-β exerts an antiviral effect against HSV-1 in trigeminal ganglion cultures that causes transcripcional inhibition of viral lytic genes decreasing virions production and impairing cell death induced by viral infection. Additionally, HSV-1 infection increased Oligoadenylate synthetase-1a y Rnase L mRNA; and IFN-β treatment caused Oligoadenylate synthetase-1a and Protein kinase R induction, which implies that IFN-β antiviral activity may occur through these molecules. Besides infection significantly decreased constitutive levels Protein kinase R gene, that causes translational inhibition after IFN treatment. This could suggest that in trigeminal ganglia, a viral evasion mechanism exists that has not been described previously. Furthermore, HSV-1 infection caused Suppresor of Cytokine signalling-3 gene upregulation, which is related to IFN negative feedback. But this induction decreased after IFN-β pre-treatment. Finally HSV-1 infection partially inhibited IFN Jak-Stat pathway after infection. This also could be a novel viral evasion mechanism that occurs in trigeminal ganglion during acute herpes infection. These viral mechanisms of immune regulation to IFN allow the virus to establish acute infections more efficiently, by partially counteracting IFN-β innate immune response in trigeminal ganglia favoring viral latency establishment.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/5423
dc.language.isospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.referencesAhmed M, Lock M, Miller CG, Fraser NW. 2002. Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol. 76: 717-729.spa
dc.relation.referencesAlexander WS. 2002. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol. 2: 410-416.spa
dc.relation.referencesAl-Khatib K, Williams BR, Silverman RH, Halford WP, Carr DJ. 2002. Absence of PKR attenuates the anti-HSV-1 activity of an adenoviral vector expressing murine IFN-beta. J Interferon Cytokine Res. 22: 861-871.spa
dc.relation.referencesAl-khatib K, Williams BR, Silverman RH, Halford W, Carr DJ. 2003. The murine doublestranded RNA-dependent protein kinase PKR and the murine 2',5'-oligoadenylate synthetase-dependent RNase L are required for IFN-beta-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology. 313: 126135.spa
dc.relation.referencesAl-Khatib K, Williams BR, Silverman RH, Halford W, Carr DJ. 2004. Distinctive roles for 2',5'-oligoadenylate synthetases and double-stranded RNA-dependent protein kinase R in the in vivo antiviral effect of an adenoviral vector expressing murine IFN-beta. J Immunol. 172: 5638-5647.spa
dc.relation.referencesAl-Khatib K, Williams BR, Silverman RH, Halford W, Carr DJ. 2005. Dichotomy between survival and lytic gene expression in RNase L- and PKR-deficient mice transduced with an adenoviral vector expressing murine IFN-beta following ocular HSV-1 infection. Exp Eye Res. 80:167-173.spa
dc.relation.referencesAmelio AL, Giordani NV, Kubat NJ, O'neil JE, Bloom DC. 2006. Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol. 80: 2063-2068.spa
dc.relation.referencesArduino PG, Porter SR. 2008. Herpes Simplex Virus Type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med. 37:107-121.spa
dc.relation.referencesAustin BA, James C, Silverman RH, Carr DJ. 2005. Critical role for the oligoadenylate synthetase/RNase L pathway in response to IFN-beta during acute ocular herpes simplex virus type 1 infection. J Immunol. 175: 1100-1106.spa
dc.relation.referencesBaker CV, Bronner-Fraser M. 2001. Vertebrate cranial placodes I. Embryonic induction. Dev Biol. 232: 1-61.spa
dc.relation.referencesBartel DP. 2009. MicroRNAs: Target Recognition and Regulatory Functions. Cell 136: 215-233spa
dc.relation.referencesBisbal C, Silverman RH. 2007. Diverse functions of RNase L and implications in pathology. Biochimie. 89: 789-798.spa
dc.relation.referencesBohemer P.E. y Lehman I.R. 1997. Herpes Simplex Virus DNA Replication. Ann. Rev. Biochem. 66: 347–384.spa
dc.relation.referencesBonjardim CA, Ferreira PC, Kroon EG. 2009. Interferons: signaling, antiviral and viral evasion. Immunol Lett. 122,1-11.spa
dc.relation.referencesCarpenter D, Hsiang C, Brown DJ, Jin L, Osorio N, BenMohamed L, Jones C, Wechsler SL. 2007. Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology. 369:12-18.spa
dc.relation.referencesCarr DJ, Al-khatib K, James CM, Silverman R. 2003. Interferon-beta suppresses herpes simplex virus type 1 replication in trigeminal ganglion cells through an RNase L- dependent pathway. J Neuroimmunol. 141: 40-46.spa
dc.relation.referencesCastellanos J, Hurtado H. 1999. Viral Infection Studied in adult sensory neurons. The Neuron in tissue culture. International Brain Research Organization Handbook Series: Methods in the Neurosciences. 18: 289-293.spa
dc.relation.referencesChee AV, Roizman B. 2004. Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites. J Virol. 78: 4185-4196.spa
dc.relation.referencesChen SH, Kramer MF, Schaffer PA, Coen DM. 1997. A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol. 71: 5878-5884.spa
dc.relation.referencesChou J, Chen JJ, Gross M, Roizman B. 1995. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5- mutants of herpes simplex virus 1. Proc Natl Acad Sci U S A. 92: 10516-10520.spa
dc.relation.referencesCoen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM. 1989. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A. 86: 4736-4740.spa
dc.relation.referencesCroker BA, Kiu H, Nicholson SE. 2008. SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol. 19: 414-422.spa
dc.relation.referencesCui B, Carr DJ. 2000. A plasmid construct encoding murine interferon beta antagonizes the replication of herpes simplex virus type I in vitro and in vivo. J Neuroimmunol. 108: 92-102.spa
dc.relation.referencesCunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, Douglas MW. 2006. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis. 194: S11-S18.spa
dc.relation.referencesDecman V, Kinchington PR, Harvey SA, Hendricks RL. 2005. Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol. 79:10339- 10347.spa
dc.relation.referencesDe Regge N, Van Opdenbosch N, Nauwynck HJ, Efstathiou S, Favoreel HW. 2010. Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS One. 5: pii: e13076.spa
dc.relation.referencesDivito S, Cherpes TL, Hendricks RL. 2006. A triple entente: virus, neurons, and CD8+T cells maintain HSV-1 latency. Immunol Res. 36: 119-126.spa
dc.relation.referencesEfstathiou S, Preston CM. 2005. Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res. 111: 108-119.spa
dc.relation.referencesFatahzadeh M, Schwartz RA. 2007. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol. 57: 737-763.spa
dc.relation.referencesFrey KG, Ahmed CM, Dabelic R, Jager LD, Noon-Song EN, Haider SM, Johnson HM, Bigley NJ. 2009. HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS1 antagonist to block a novel mechanism of viral immune evasion. J Immunol. 183: 1253-1262.spa
dc.relation.referencesGarber DA, Schaffer PA, Knipe DM. 1997. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol. 71: 5885-5893.spa
dc.relation.referencesGarcía MA, Meurs EF, Esteban M. 2007. The dsRNA protein kinase PKR: Virus and cell control. Biochimie 89: 799-811spa
dc.relation.referencesGarner JA. 2003. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev. 55:1497-1513.spa
dc.relation.referencesHagglund R, Roizman B. 2004. Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol. 78: 2169-2178.spa
dc.relation.referencesHalford W P, Gebhardt BM, Carr DJJ. 1996. Mechanisms of herpes simplex virus type 1 reactivation. J Virol. 70: 5051–5060.spa
dc.relation.referencesHalford WP, Veress LA, Gebhardt BM, Carr DJJ. 1997. Innate and acquired immunity to herpes simplex virus type 1. Virology. 236: 328–337.spa
dc.relation.referencesHalford WP, Schaffer PA. 2001. ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J. Virol. 75: 3240–3249.spa
dc.relation.referencesHaller O, Kochs G, Weber F. 2006.The interferon response circuit: induction and suppression by pathogenic viruses. Virology. 344: 119-130.spa
dc.relation.referencesHärle P, Cull V, Agbaga MP, Silverman R, Williams BR, James C, Carr DJ. 2002b. Differential effect of murine alpha/beta interferon transgenes on antagonization of herpes simplex virus type 1 replication. J Virol. 76: 6558-67.spa
dc.relation.referencesHe B, Chou J, Brandimarti R, Mohr I, Gluzman Y, Roizman B. 1997. Suppression of the phenotype of gamma 1 34.5-herpes simplex virus 1: failure of activated RNAdependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J Virol. 71: 6049–6054.spa
dc.relation.referencesHenderson G, Peng W, Jin L, Perng GC, Nesburn AB, Wechsler SL, Jones C. 2002. Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript. J Neurovirol. 8: 103-111.spa
dc.relation.referencesHoness RW, Roizman B. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 14: 8-19.spa
dc.relation.referencesHubber MA. 2003. Herpes Simplex Virus type 1 infection. Quintessence International. 34, 453-467.spa
dc.relation.referencesInman M, Perng GC, Henderson G. et al. 2001. Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol. 75: 3636–3646.spa
dc.relation.referencesJin L, Peng W, Perng GC, et al., 2003. Identification of herpes simplex virus type 1 latency-associated transcript sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol. 77: 6556–6561.spa
dc.relation.referencesJohnson K, Song B, Knipe DM. 2008. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology. 374: 487–494.spa
dc.relation.referencesJohnson KE, Knipe DM. 2010. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation. Virology. 396: 21-29.spa
dc.relation.referencesKatze MG, He Y, Gale M Jr. 2002. Viruses and interferon: a fight for supremacy. Nat Rev Immunol. 2: 675-687.spa
dc.relation.referencesKaye S, Choudhary A. 2006. Herpes simplex keratitis. Prog Retin Eye Res. 25: 355380.spa
dc.relation.referencesKelly BJ, Fraefel C, Cunningham AL, Diefenbach RJ. 2009. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res. 145: 173-186.spa
dc.relation.referencesKhanna KM, Bonneau RH, Kinchington PR, Hendricks RL. 2003. Herpes Simplex Virus Specific memnory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 18: 593-603.spa
dc.relation.referencesKhanna KM, Lepisto AJ, Decman V, Hendricks RL. 2004. Immune control of herpes simplex virus during latency. Curr Opin Immunol. 16: 463-469.spa
dc.relation.referencesKisseleva T, Bhattacharya S, Braunstein J, Schindler CW. 2002. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 285: 1-24.spa
dc.relation.referencesKramer MF, Chen SH, Knipe DM, Coen DM. 1998. Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. J Virol. 72: 1177-1185.spa
dc.relation.referencesKristie TM, Pomerantz JL, Twomey TC, Parent SA, Sharp PA. 1995. The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides. J Biol Chem. 270: 4387-4394.spa
dc.relation.referencesKristie TM, Vogel JL, Sears AE. 1999. Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. Proc Natl Acad Sci U S A. 96: 1229-1233.spa
dc.relation.referencesLaMarco K, McKnight S. 1989. Purification of a set of cellular polypeptides that bind to the purine-rich cis-regulatory element of herpes simplex virus immediate early genes. Genes Dev. 3:1372–1383.spa
dc.relation.referencesLehman IR, Boehmer PE. 1999. Replication of herpes simplex virus DNA. J Biol Chem. 274: 28059-28062.spa
dc.relation.referencesLeib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, Tyler KL, Schaffer PA. 1989. Immediate-early regulatorygene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J. Virol. 63: 759–768.spa
dc.relation.referencesLeib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. 1999. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med. 189: 663-672.spa
dc.relation.referencesLiang SL, Quirk D, Zhou A. RNase L: its biological roles and regulation. 2006. IUBMB Life. 58: 508-514.spa
dc.relation.referencesLynas C, Laycock KA, Cook SD, Hill TJ, Blyth WA, Maitland NJ. 1989. Detection of herpes simplex virus type 1 gene expression in latently and productively infected mouse ganglia using the polymerase chain reaction. J Gen Virol. 70: 2345-2355.spa
dc.relation.referencesLu R, Misra V. 2000. Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res. 28: 2446-2454.spa
dc.relation.referencesMador N, Goldenberg D, Cohen O, Panet A, Steiner I. 1998. Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol. 72: 5067-5075.spa
dc.relation.referencesMarin LM, Prada-Arismendy J, Castellanos JE. 2007. Changes in oligoadenylate synthetase, protein kinase R and RNaseL mRNA in trigeminal ganglia cultures infected by herpes simplex. Brazilian oral research 21, 348.spa
dc.relation.referencesMassa PT, Whitney LW, Wu C, Ropka SL, Jarosinski KW. 1999. A mechanism for selective induction of 2'-5' oligoadenylate synthetase, anti-viral state, but not MHC class I genes by interferon-beta in neurons. J Neurovirol. 5: 161-171.spa
dc.relation.referencesMcGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. 69: 1531-1574.spa
dc.relation.referencesMelroe GT, DeLuca NA, Knipe DM. 2004. Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol. 78: 8411-8420.spa
dc.relation.referencesMelroe GT, Silva L, Schaffer PA, Knipe DM. 2007. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction. Virology. 360: 305-321.spa
dc.relation.referencesMossman KL, Smiley JR. 2002. Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol. 76: 1995-1998.spa
dc.relation.referencesNicola AV, Hou J, Major EO, Straus SE. 2005. Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol. 79: 7609-7616.spa
dc.relation.referencesPellett PE, Roizman B. 2007. The Family Herpesviridae: A Brief Introduction. En Fields Virology, Editors: Knipe DM, Howley PM. pp.2480-2450. Lippincott, Williams, and Wilkins. Philadelphia. USA.spa
dc.relation.referencesPeng W, Henderson G, Inman M, BenMohamed L, Perng GC, Wechsler SL, Jones C. 2005. The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal Ganglia of acutely infected mice. J Virol. 79: 61626171.spa
dc.relation.referencesPerng GC, Jones C, Ciacci-Zanella J. et al. 2000. Virus induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science. 287: 1500–1503.spa
dc.relation.referencesPerng GC, Jones C. 2010. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis. 2010:262415.spa
dc.relation.referencesPfaffl MW. 2001. A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Res. 29:e45.spa
dc.relation.referencesPlatanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 5: 375-386.spa
dc.relation.referencesRey FA. 2006. Molecular gymnastics at the herpesvirus surface. EMBO Rep. 7: 10001005.spa
dc.relation.referencesRoizman B, Knipe DM, Whitley RJ. 2007. Herpes simplex viruses. En: Fields Virology Editors: Knipe DM, Howley PM pp. 2501–2602. Lippincott, Williams, and Wilkins. Philadelphia. USA.spa
dc.relation.referencesRusch L, Zhou A, Silverman RH. 2000. Caspase-dependent apoptosis by 2',5'oligoadenylate activation of RNase L is enhanced by IFN-beta. J Interferon Cytokine Res. 20: 1091-1100.spa
dc.relation.referencesSacks WR, Schaffer PA. 1987. Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J Virol. 61: 829-839.spa
dc.relation.referencesSadler AJ, Williams BR. 2008. Interferon-inducible antiviral effectors. Nat Rev Immunol. 8: 559-568.spa
dc.relation.referencesSamuel CE. 2001. Antiviral actions of interferons. Clin Microbiol Rev. 14: 778-809.spa
dc.relation.referencesSchefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. 2006. Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med (Berl). 84: 901-910.spa
dc.relation.referencesShen W, Sa e Silva M, Jaber T, Vitvitskaia O, Li S, Henderson G, Jones C. 2009. Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol. 83: 9131-9139.spa
dc.relation.referencesSimpson SA, Manchak MD, Hager EJ, Krummenacher C, Whitbeck JC, Levin MJ, Freed CR, Wilcox CL, Cohen GH, Eisenberg RJ, Pizer LI. 2005. Nectin-1/HveC Mediates herpes simplex virus type 1 entry into primary human sensory neurons and fibroblasts. J Neurovirol. 11: 208-218.spa
dc.relation.referencesSodeik B, Ebersold MW, Helenius A. 1997. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol. 136: 1007-1021.spa
dc.relation.referencesSokawa Y, Ando T, Ishihara Y. 1980. Induction of 2',5'-oligoadenylate synthetase and interferon in mouse trigeminal ganglia infected with herpes simplex virus. Infect Immun. 28: 719-723.spa
dc.relation.referencesSong MM, Shuai K. 1998. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 273: 35056-35062.spa
dc.relation.referencesSteiner I, Spivack JG, Lirette RP, Brown SM, MacLean AR, Subak-Sharpe JH, Fraser NW. 1989. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 8: 505-511.spa
dc.relation.referencesSteiner I, Kennedy PG, Pachner AR. 2007. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. 6: 1015-1028.spa
dc.relation.referencesSvennerholm B, Ziegler R, Lycke E. 1989. Herpes simplex virus infection of the rat sensory neuron. Effects of interferon on cultured cells. Arch Virol.104: 153-156.spa
dc.relation.referencesTal-Singer R, Podrzucki W, Lasner TM, Skokotas A, Leary JJ, Fraser NW, Berger SL. 1998. Use of differential display reverse transcription-PCR to reveal cellular changes during stimuli that result in herpes simplex virus type 1 reactivation from latency: upregulation of immediate-early cellular response genes TIS7, interferon, and interferon regulatory factor-1. J Virol. 72: 1252-12561.spa
dc.relation.referencesTaylor TJ, Brockman MA, McNamee EE, Knipe DM. 2002. Herpes simplex virus. Front Biosci. 7:d752-d764.spa
dc.relation.referencesUmbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. 2008. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. 454: 780-783.spa
dc.relation.referencesVlotides G, Sörensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R, Auernhammer CJ. 2004. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res Commun. 320: 10071014.spa
dc.relation.referencesWang J, Campbell IL. 2005. Innate STAT1-dependent genomic response of neurons to the antiviral cytokine alpha interferon. J Virol. 79: 8295-8302.spa
dc.relation.referencesWeir JP. 2001. Regulation of herpes simplex virus gene expression. Gene. 271: 117130.spa
dc.relation.referencesWhitley RJ, Roizman B. 2001. Herpes simplex virus infections. Lancet. 357: 1513– 1518spa
dc.relation.referencesYamada M, Arao Y, Hatano A, Uno F, Nii S. 1988. Effect of recombinant mouse interferon-beta on acute and latent herpes simplex infection in mice. Arch Virol. 99: 101-109.spa
dc.relation.referencesYang WC, Devi-Rao GV, Ghazal P, Wagner EK, Triezenberg SJ. 2002. General and specific alterations in programming of global viral gene expression during infection by VP16 activation-deficient mutants of herpes simplex virus type 1. J Virol. 76: 1275812774.spa
dc.relation.referencesYokota S, Yokosawa N, Kubota T, Suzutani T, Yoshida I, Miura S, Jimbow K, Fujii N. 2001. Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology. 286: 119-124.spa
dc.relation.referencesYokota S, Yokosawa N, Okabayashi T, Suzutani T, Miura S, Jimbow K, Fujii N. 2004. Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway. J Virol. 78: 6282-6286.spa
dc.relation.referencesYokota S, Yokosawa N, Okabayashi T, Suzutani T, Fujii N. 2005. Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 confers efficient viral replication. Virology. 338: 173-181.spa
dc.relation.referencesYoshimura A, Naka T, Kubo M. 2007. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 7: 454-465.spa
dc.relation.referencesZhou A, Hassel BA, Silverman RH. 1993. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell. 72: 753-765.spa
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons2011
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject.decsAntígenos de respuesta inmunespa
dc.subject.decsHerpes simplespa
dc.subject.decsGanglio del trigéminospa
dc.subject.nlmW 50
dc.titleCaracterización molecular de la respuesta inmune innata inducida por interferón-β frente a herpes simplex virus tipo 1 en cultivos primarios de ganglio trigeminal murinospa
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Low_Calle_Ana_María_2011.pdf
Tamaño:
1.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: