Caracterización molecular de la respuesta inmune innata inducida por interferón-β frente a herpes simplex virus tipo 1 en cultivos primarios de ganglio trigeminal murino
dc.contributor.advisor | Castellanos, Jaime | |
dc.contributor.advisor | Prada-Arismendy, Jeanette | |
dc.contributor.author | Low Calle, Ana María | |
dc.contributor.orcid | Castellanos, Jaime [0000-0003-1596-8383] | |
dc.date.accessioned | 2021-02-23T17:12:21Z | |
dc.date.available | 2021-02-23T17:12:21Z | |
dc.date.issued | 2021 | |
dc.description.abstract | El virus Herpes simplex tipo 1 (HSV-1) es el principal causante de infecciones virales en la mucosa oral y regiones periorales. Esta infección es seguida por la diseminación del virus a neuronas sensoriales del ganglio trigeminal donde establece una infección latente de por vida. Se ha descrito que la respuesta inmune es importante para el control de la infección por HSV-1 y para el establecimiento de infecciones en el ganglio trigeminal. Sin embargo, no se conoce totalmente el papel de la respuesta inmune innata, en especial la de los Interferones (IFNs), frente al HSV-1 en el ganglio trigeminal. Por esto, se propuso indagar el papel del IFN-β ante a la infección por HSV1 en cultivos primarios de ganglio trigeminal de ratón. Así como evidenciar la expresión de genes inducidos por IFN en estas células tras la infección por HSV-1 y tras el tratamiento con IFN. Al mismo tiempo, evaluar la activación de la cascada de señalización Jak-Stat activada por IFN-β en cultivos de GT infectados con HSV-1. Se evidenció que el IFN-β tiene un efecto antiviral frente al HSV-1 en cultivos primarios de GT murino, causando una inhibición transcripcional de los 3 tipos de genes virales del ciclo lítico del virus, disminuyendo la producción de partículas virales y evitando la muerte celular por el virus. Adicionalmente la infección con HSV-1 incrementó los transcritos de Oligoadenilato sintetasa-1a y Rnasa L. El tratamiento con IFN-β causó la sobre-expresión de los genes de la Proteína kinasa R y Oligoadenilato sintetasa-1a; indicando que la actividad antiviral del IFN-β puede estar mediada por estas moléculas. Además, la infección disminuyó significativamente los niveles constitutivos del gen de la Proteína kinasa R, que participa en la inhibición traduccional mediada por IFN. Lo cual podría indicar que en el ganglio trigeminal ocurre un mecanismo nuevo de evasión viral al IFN, que hasta el momento no había sido descrito. Asimismo, la infección por HSV-1 causó la inducción del gen del Supresor de Señalización de Citoquinas-3 relacionado con el apagamiento de la señal del IFN-β, pero esta inducción disminuyó con el pre-tratamiento con IFN-β. Finalmente se evidenció que la infección con HSV-1 inhibió parcialmente la activación de la cascada de señalización Jak-Stat inducida por IFN-β, lo cual también podría representar un nuevo mecanismo de evasión viral que ocurre en el GT durante la etapa de infección aguda. Estos mecanismos virales de regulación de la respuesta inducida por IFN, que no han sido reportados previamente en ganglio trigeminal, podrían permitirle al HSV-1 establecer infecciones agudas de forma más eficiente, al contrarrestar parcialmente la respuesta inmune innata mediada por IFN-β en el GT y favorecer la instauración de la latencia. | spa |
dc.description.abstractenglish | Herpes simplex virus type 1 (HSV-1) is the main pathogen that causes viral infections in oral mucosa and perioral regions. This is followed by viral diffusion through the sensory neurons in trigeminal ganglion, where it establishes life-long latent infections. It has been described that immune response is important to control HSV-1 infections and estalishment of latency. However, it is not well known completely, the role of innate immune response, especially the role mediated by Interferons (IFNs), against HSV-1 infections in trigeminal ganglia. For all these, we aimed to dig into the IFN-β role against HSV-1 infection in mice trigeminal ganglion primary cultures. To evaluate IFN stimulated gene expression, in these cells after HSV-1 infection or IFN-β treatment. Besides, we aim to evaluate activation of IFN-β Jak-Stat signal transduction in trigeminal ganglion cultures after HSV-1 infection. It was observed that IFN-β exerts an antiviral effect against HSV-1 in trigeminal ganglion cultures that causes transcripcional inhibition of viral lytic genes decreasing virions production and impairing cell death induced by viral infection. Additionally, HSV-1 infection increased Oligoadenylate synthetase-1a y Rnase L mRNA; and IFN-β treatment caused Oligoadenylate synthetase-1a and Protein kinase R induction, which implies that IFN-β antiviral activity may occur through these molecules. Besides infection significantly decreased constitutive levels Protein kinase R gene, that causes translational inhibition after IFN treatment. This could suggest that in trigeminal ganglia, a viral evasion mechanism exists that has not been described previously. Furthermore, HSV-1 infection caused Suppresor of Cytokine signalling-3 gene upregulation, which is related to IFN negative feedback. But this induction decreased after IFN-β pre-treatment. Finally HSV-1 infection partially inhibited IFN Jak-Stat pathway after infection. This also could be a novel viral evasion mechanism that occurs in trigeminal ganglion during acute herpes infection. These viral mechanisms of immune regulation to IFN allow the virus to establish acute infections more efficiently, by partially counteracting IFN-β innate immune response in trigeminal ganglia favoring viral latency establishment. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/5423 | |
dc.language.iso | spa | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Ahmed M, Lock M, Miller CG, Fraser NW. 2002. Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo. J Virol. 76: 717-729. | spa |
dc.relation.references | Alexander WS. 2002. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol. 2: 410-416. | spa |
dc.relation.references | Al-Khatib K, Williams BR, Silverman RH, Halford WP, Carr DJ. 2002. Absence of PKR attenuates the anti-HSV-1 activity of an adenoviral vector expressing murine IFN-beta. J Interferon Cytokine Res. 22: 861-871. | spa |
dc.relation.references | Al-khatib K, Williams BR, Silverman RH, Halford W, Carr DJ. 2003. The murine doublestranded RNA-dependent protein kinase PKR and the murine 2',5'-oligoadenylate synthetase-dependent RNase L are required for IFN-beta-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology. 313: 126135. | spa |
dc.relation.references | Al-Khatib K, Williams BR, Silverman RH, Halford W, Carr DJ. 2004. Distinctive roles for 2',5'-oligoadenylate synthetases and double-stranded RNA-dependent protein kinase R in the in vivo antiviral effect of an adenoviral vector expressing murine IFN-beta. J Immunol. 172: 5638-5647. | spa |
dc.relation.references | Al-Khatib K, Williams BR, Silverman RH, Halford W, Carr DJ. 2005. Dichotomy between survival and lytic gene expression in RNase L- and PKR-deficient mice transduced with an adenoviral vector expressing murine IFN-beta following ocular HSV-1 infection. Exp Eye Res. 80:167-173. | spa |
dc.relation.references | Amelio AL, Giordani NV, Kubat NJ, O'neil JE, Bloom DC. 2006. Deacetylation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol. 80: 2063-2068. | spa |
dc.relation.references | Arduino PG, Porter SR. 2008. Herpes Simplex Virus Type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med. 37:107-121. | spa |
dc.relation.references | Austin BA, James C, Silverman RH, Carr DJ. 2005. Critical role for the oligoadenylate synthetase/RNase L pathway in response to IFN-beta during acute ocular herpes simplex virus type 1 infection. J Immunol. 175: 1100-1106. | spa |
dc.relation.references | Baker CV, Bronner-Fraser M. 2001. Vertebrate cranial placodes I. Embryonic induction. Dev Biol. 232: 1-61. | spa |
dc.relation.references | Bartel DP. 2009. MicroRNAs: Target Recognition and Regulatory Functions. Cell 136: 215-233 | spa |
dc.relation.references | Bisbal C, Silverman RH. 2007. Diverse functions of RNase L and implications in pathology. Biochimie. 89: 789-798. | spa |
dc.relation.references | Bohemer P.E. y Lehman I.R. 1997. Herpes Simplex Virus DNA Replication. Ann. Rev. Biochem. 66: 347–384. | spa |
dc.relation.references | Bonjardim CA, Ferreira PC, Kroon EG. 2009. Interferons: signaling, antiviral and viral evasion. Immunol Lett. 122,1-11. | spa |
dc.relation.references | Carpenter D, Hsiang C, Brown DJ, Jin L, Osorio N, BenMohamed L, Jones C, Wechsler SL. 2007. Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology. 369:12-18. | spa |
dc.relation.references | Carr DJ, Al-khatib K, James CM, Silverman R. 2003. Interferon-beta suppresses herpes simplex virus type 1 replication in trigeminal ganglion cells through an RNase L- dependent pathway. J Neuroimmunol. 141: 40-46. | spa |
dc.relation.references | Castellanos J, Hurtado H. 1999. Viral Infection Studied in adult sensory neurons. The Neuron in tissue culture. International Brain Research Organization Handbook Series: Methods in the Neurosciences. 18: 289-293. | spa |
dc.relation.references | Chee AV, Roizman B. 2004. Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites. J Virol. 78: 4185-4196. | spa |
dc.relation.references | Chen SH, Kramer MF, Schaffer PA, Coen DM. 1997. A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol. 71: 5878-5884. | spa |
dc.relation.references | Chou J, Chen JJ, Gross M, Roizman B. 1995. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5- mutants of herpes simplex virus 1. Proc Natl Acad Sci U S A. 92: 10516-10520. | spa |
dc.relation.references | Coen DM, Kosz-Vnenchak M, Jacobson JG, Leib DA, Bogard CL, Schaffer PA, Tyler KL, Knipe DM. 1989. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A. 86: 4736-4740. | spa |
dc.relation.references | Croker BA, Kiu H, Nicholson SE. 2008. SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol. 19: 414-422. | spa |
dc.relation.references | Cui B, Carr DJ. 2000. A plasmid construct encoding murine interferon beta antagonizes the replication of herpes simplex virus type I in vitro and in vivo. J Neuroimmunol. 108: 92-102. | spa |
dc.relation.references | Cunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, Douglas MW. 2006. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis. 194: S11-S18. | spa |
dc.relation.references | Decman V, Kinchington PR, Harvey SA, Hendricks RL. 2005. Gamma interferon can block herpes simplex virus type 1 reactivation from latency, even in the presence of late gene expression. J Virol. 79:10339- 10347. | spa |
dc.relation.references | De Regge N, Van Opdenbosch N, Nauwynck HJ, Efstathiou S, Favoreel HW. 2010. Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS One. 5: pii: e13076. | spa |
dc.relation.references | Divito S, Cherpes TL, Hendricks RL. 2006. A triple entente: virus, neurons, and CD8+T cells maintain HSV-1 latency. Immunol Res. 36: 119-126. | spa |
dc.relation.references | Efstathiou S, Preston CM. 2005. Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res. 111: 108-119. | spa |
dc.relation.references | Fatahzadeh M, Schwartz RA. 2007. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol. 57: 737-763. | spa |
dc.relation.references | Frey KG, Ahmed CM, Dabelic R, Jager LD, Noon-Song EN, Haider SM, Johnson HM, Bigley NJ. 2009. HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS1 antagonist to block a novel mechanism of viral immune evasion. J Immunol. 183: 1253-1262. | spa |
dc.relation.references | Garber DA, Schaffer PA, Knipe DM. 1997. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol. 71: 5885-5893. | spa |
dc.relation.references | García MA, Meurs EF, Esteban M. 2007. The dsRNA protein kinase PKR: Virus and cell control. Biochimie 89: 799-811 | spa |
dc.relation.references | Garner JA. 2003. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev. 55:1497-1513. | spa |
dc.relation.references | Hagglund R, Roizman B. 2004. Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol. 78: 2169-2178. | spa |
dc.relation.references | Halford W P, Gebhardt BM, Carr DJJ. 1996. Mechanisms of herpes simplex virus type 1 reactivation. J Virol. 70: 5051–5060. | spa |
dc.relation.references | Halford WP, Veress LA, Gebhardt BM, Carr DJJ. 1997. Innate and acquired immunity to herpes simplex virus type 1. Virology. 236: 328–337. | spa |
dc.relation.references | Halford WP, Schaffer PA. 2001. ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J. Virol. 75: 3240–3249. | spa |
dc.relation.references | Haller O, Kochs G, Weber F. 2006.The interferon response circuit: induction and suppression by pathogenic viruses. Virology. 344: 119-130. | spa |
dc.relation.references | Härle P, Cull V, Agbaga MP, Silverman R, Williams BR, James C, Carr DJ. 2002b. Differential effect of murine alpha/beta interferon transgenes on antagonization of herpes simplex virus type 1 replication. J Virol. 76: 6558-67. | spa |
dc.relation.references | He B, Chou J, Brandimarti R, Mohr I, Gluzman Y, Roizman B. 1997. Suppression of the phenotype of gamma 1 34.5-herpes simplex virus 1: failure of activated RNAdependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J Virol. 71: 6049–6054. | spa |
dc.relation.references | Henderson G, Peng W, Jin L, Perng GC, Nesburn AB, Wechsler SL, Jones C. 2002. Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript. J Neurovirol. 8: 103-111. | spa |
dc.relation.references | Honess RW, Roizman B. 1974. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 14: 8-19. | spa |
dc.relation.references | Hubber MA. 2003. Herpes Simplex Virus type 1 infection. Quintessence International. 34, 453-467. | spa |
dc.relation.references | Inman M, Perng GC, Henderson G. et al. 2001. Region of herpes simplex virus type 1 latency-associated transcript sufficient for wild-type spontaneous reactivation promotes cell survival in tissue culture. J Virol. 75: 3636–3646. | spa |
dc.relation.references | Jin L, Peng W, Perng GC, et al., 2003. Identification of herpes simplex virus type 1 latency-associated transcript sequences that both inhibit apoptosis and enhance the spontaneous reactivation phenotype. J Virol. 77: 6556–6561. | spa |
dc.relation.references | Johnson K, Song B, Knipe DM. 2008. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology. 374: 487–494. | spa |
dc.relation.references | Johnson KE, Knipe DM. 2010. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation. Virology. 396: 21-29. | spa |
dc.relation.references | Katze MG, He Y, Gale M Jr. 2002. Viruses and interferon: a fight for supremacy. Nat Rev Immunol. 2: 675-687. | spa |
dc.relation.references | Kaye S, Choudhary A. 2006. Herpes simplex keratitis. Prog Retin Eye Res. 25: 355380. | spa |
dc.relation.references | Kelly BJ, Fraefel C, Cunningham AL, Diefenbach RJ. 2009. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res. 145: 173-186. | spa |
dc.relation.references | Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL. 2003. Herpes Simplex Virus Specific memnory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity. 18: 593-603. | spa |
dc.relation.references | Khanna KM, Lepisto AJ, Decman V, Hendricks RL. 2004. Immune control of herpes simplex virus during latency. Curr Opin Immunol. 16: 463-469. | spa |
dc.relation.references | Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. 2002. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 285: 1-24. | spa |
dc.relation.references | Kramer MF, Chen SH, Knipe DM, Coen DM. 1998. Accumulation of viral transcripts and DNA during establishment of latency by herpes simplex virus. J Virol. 72: 1177-1185. | spa |
dc.relation.references | Kristie TM, Pomerantz JL, Twomey TC, Parent SA, Sharp PA. 1995. The cellular C1 factor of the herpes simplex virus enhancer complex is a family of polypeptides. J Biol Chem. 270: 4387-4394. | spa |
dc.relation.references | Kristie TM, Vogel JL, Sears AE. 1999. Nuclear localization of the C1 factor (host cell factor) in sensory neurons correlates with reactivation of herpes simplex virus from latency. Proc Natl Acad Sci U S A. 96: 1229-1233. | spa |
dc.relation.references | LaMarco K, McKnight S. 1989. Purification of a set of cellular polypeptides that bind to the purine-rich cis-regulatory element of herpes simplex virus immediate early genes. Genes Dev. 3:1372–1383. | spa |
dc.relation.references | Lehman IR, Boehmer PE. 1999. Replication of herpes simplex virus DNA. J Biol Chem. 274: 28059-28062. | spa |
dc.relation.references | Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, Tyler KL, Schaffer PA. 1989. Immediate-early regulatorygene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J. Virol. 63: 759–768. | spa |
dc.relation.references | Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. 1999. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med. 189: 663-672. | spa |
dc.relation.references | Liang SL, Quirk D, Zhou A. RNase L: its biological roles and regulation. 2006. IUBMB Life. 58: 508-514. | spa |
dc.relation.references | Lynas C, Laycock KA, Cook SD, Hill TJ, Blyth WA, Maitland NJ. 1989. Detection of herpes simplex virus type 1 gene expression in latently and productively infected mouse ganglia using the polymerase chain reaction. J Gen Virol. 70: 2345-2355. | spa |
dc.relation.references | Lu R, Misra V. 2000. Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res. 28: 2446-2454. | spa |
dc.relation.references | Mador N, Goldenberg D, Cohen O, Panet A, Steiner I. 1998. Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol. 72: 5067-5075. | spa |
dc.relation.references | Marin LM, Prada-Arismendy J, Castellanos JE. 2007. Changes in oligoadenylate synthetase, protein kinase R and RNaseL mRNA in trigeminal ganglia cultures infected by herpes simplex. Brazilian oral research 21, 348. | spa |
dc.relation.references | Massa PT, Whitney LW, Wu C, Ropka SL, Jarosinski KW. 1999. A mechanism for selective induction of 2'-5' oligoadenylate synthetase, anti-viral state, but not MHC class I genes by interferon-beta in neurons. J Neurovirol. 5: 161-171. | spa |
dc.relation.references | McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol. 69: 1531-1574. | spa |
dc.relation.references | Melroe GT, DeLuca NA, Knipe DM. 2004. Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol. 78: 8411-8420. | spa |
dc.relation.references | Melroe GT, Silva L, Schaffer PA, Knipe DM. 2007. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction. Virology. 360: 305-321. | spa |
dc.relation.references | Mossman KL, Smiley JR. 2002. Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol. 76: 1995-1998. | spa |
dc.relation.references | Nicola AV, Hou J, Major EO, Straus SE. 2005. Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol. 79: 7609-7616. | spa |
dc.relation.references | Pellett PE, Roizman B. 2007. The Family Herpesviridae: A Brief Introduction. En Fields Virology, Editors: Knipe DM, Howley PM. pp.2480-2450. Lippincott, Williams, and Wilkins. Philadelphia. USA. | spa |
dc.relation.references | Peng W, Henderson G, Inman M, BenMohamed L, Perng GC, Wechsler SL, Jones C. 2005. The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal Ganglia of acutely infected mice. J Virol. 79: 61626171. | spa |
dc.relation.references | Perng GC, Jones C, Ciacci-Zanella J. et al. 2000. Virus induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science. 287: 1500–1503. | spa |
dc.relation.references | Perng GC, Jones C. 2010. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis. 2010:262415. | spa |
dc.relation.references | Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RTPCR. Nucleic Acids Res. 29:e45. | spa |
dc.relation.references | Platanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 5: 375-386. | spa |
dc.relation.references | Rey FA. 2006. Molecular gymnastics at the herpesvirus surface. EMBO Rep. 7: 10001005. | spa |
dc.relation.references | Roizman B, Knipe DM, Whitley RJ. 2007. Herpes simplex viruses. En: Fields Virology Editors: Knipe DM, Howley PM pp. 2501–2602. Lippincott, Williams, and Wilkins. Philadelphia. USA. | spa |
dc.relation.references | Rusch L, Zhou A, Silverman RH. 2000. Caspase-dependent apoptosis by 2',5'oligoadenylate activation of RNase L is enhanced by IFN-beta. J Interferon Cytokine Res. 20: 1091-1100. | spa |
dc.relation.references | Sacks WR, Schaffer PA. 1987. Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J Virol. 61: 829-839. | spa |
dc.relation.references | Sadler AJ, Williams BR. 2008. Interferon-inducible antiviral effectors. Nat Rev Immunol. 8: 559-568. | spa |
dc.relation.references | Samuel CE. 2001. Antiviral actions of interferons. Clin Microbiol Rev. 14: 778-809. | spa |
dc.relation.references | Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. 2006. Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med (Berl). 84: 901-910. | spa |
dc.relation.references | Shen W, Sa e Silva M, Jaber T, Vitvitskaia O, Li S, Henderson G, Jones C. 2009. Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol. 83: 9131-9139. | spa |
dc.relation.references | Simpson SA, Manchak MD, Hager EJ, Krummenacher C, Whitbeck JC, Levin MJ, Freed CR, Wilcox CL, Cohen GH, Eisenberg RJ, Pizer LI. 2005. Nectin-1/HveC Mediates herpes simplex virus type 1 entry into primary human sensory neurons and fibroblasts. J Neurovirol. 11: 208-218. | spa |
dc.relation.references | Sodeik B, Ebersold MW, Helenius A. 1997. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol. 136: 1007-1021. | spa |
dc.relation.references | Sokawa Y, Ando T, Ishihara Y. 1980. Induction of 2',5'-oligoadenylate synthetase and interferon in mouse trigeminal ganglia infected with herpes simplex virus. Infect Immun. 28: 719-723. | spa |
dc.relation.references | Song MM, Shuai K. 1998. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 273: 35056-35062. | spa |
dc.relation.references | Steiner I, Spivack JG, Lirette RP, Brown SM, MacLean AR, Subak-Sharpe JH, Fraser NW. 1989. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 8: 505-511. | spa |
dc.relation.references | Steiner I, Kennedy PG, Pachner AR. 2007. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. 6: 1015-1028. | spa |
dc.relation.references | Svennerholm B, Ziegler R, Lycke E. 1989. Herpes simplex virus infection of the rat sensory neuron. Effects of interferon on cultured cells. Arch Virol.104: 153-156. | spa |
dc.relation.references | Tal-Singer R, Podrzucki W, Lasner TM, Skokotas A, Leary JJ, Fraser NW, Berger SL. 1998. Use of differential display reverse transcription-PCR to reveal cellular changes during stimuli that result in herpes simplex virus type 1 reactivation from latency: upregulation of immediate-early cellular response genes TIS7, interferon, and interferon regulatory factor-1. J Virol. 72: 1252-12561. | spa |
dc.relation.references | Taylor TJ, Brockman MA, McNamee EE, Knipe DM. 2002. Herpes simplex virus. Front Biosci. 7:d752-d764. | spa |
dc.relation.references | Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. 2008. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature. 454: 780-783. | spa |
dc.relation.references | Vlotides G, Sörensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R, Auernhammer CJ. 2004. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res Commun. 320: 10071014. | spa |
dc.relation.references | Wang J, Campbell IL. 2005. Innate STAT1-dependent genomic response of neurons to the antiviral cytokine alpha interferon. J Virol. 79: 8295-8302. | spa |
dc.relation.references | Weir JP. 2001. Regulation of herpes simplex virus gene expression. Gene. 271: 117130. | spa |
dc.relation.references | Whitley RJ, Roizman B. 2001. Herpes simplex virus infections. Lancet. 357: 1513– 1518 | spa |
dc.relation.references | Yamada M, Arao Y, Hatano A, Uno F, Nii S. 1988. Effect of recombinant mouse interferon-beta on acute and latent herpes simplex infection in mice. Arch Virol. 99: 101-109. | spa |
dc.relation.references | Yang WC, Devi-Rao GV, Ghazal P, Wagner EK, Triezenberg SJ. 2002. General and specific alterations in programming of global viral gene expression during infection by VP16 activation-deficient mutants of herpes simplex virus type 1. J Virol. 76: 1275812774. | spa |
dc.relation.references | Yokota S, Yokosawa N, Kubota T, Suzutani T, Yoshida I, Miura S, Jimbow K, Fujii N. 2001. Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology. 286: 119-124. | spa |
dc.relation.references | Yokota S, Yokosawa N, Okabayashi T, Suzutani T, Miura S, Jimbow K, Fujii N. 2004. Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway. J Virol. 78: 6282-6286. | spa |
dc.relation.references | Yokota S, Yokosawa N, Okabayashi T, Suzutani T, Fujii N. 2005. Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 confers efficient viral replication. Virology. 338: 173-181. | spa |
dc.relation.references | Yoshimura A, Naka T, Kubo M. 2007. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 7: 454-465. | spa |
dc.relation.references | Zhou A, Hassel BA, Silverman RH. 1993. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell. 72: 753-765. | spa |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.creativecommons | 2011 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject.decs | Antígenos de respuesta inmune | spa |
dc.subject.decs | Herpes simple | spa |
dc.subject.decs | Ganglio del trigémino | spa |
dc.subject.nlm | W 50 | |
dc.title | Caracterización molecular de la respuesta inmune innata inducida por interferón-β frente a herpes simplex virus tipo 1 en cultivos primarios de ganglio trigeminal murino | spa |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Low_Calle_Ana_María_2011.pdf
- Tamaño:
- 1.13 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: