Desafíos y oportunidades del uso del acero en la construcción de viviendas

dc.contributor.advisorNonato Acevedo, Euler Mendivelson
dc.contributor.authorDíaz Angarita, Nicolás
dc.contributor.authorRodríguez Montealegre, Álvaro
dc.contributor.authorOtero Correa, Eladio Alexander
dc.date.accessioned2024-07-09T21:26:59Z
dc.date.available2024-07-09T21:26:59Z
dc.date.issued2024-06
dc.description.abstractEl estudio examinó la relación entre el uso del acero en la construcción de viviendas y sus implicaciones ambientales, económicas y tecnológicas. Se llevó a cabo una revisión sistemática de la literatura, identificando 20 artículos pertinentes que abordaban aspectos específicos de interés, como la sostenibilidad y la eficiencia constructiva. La metodología incluyó una búsqueda exhaustiva en bases de datos, seguida de un análisis minucioso de los documentos seleccionados. Los resultados revelaron que el acero desempeña un papel crucial en la industria de la construcción, especialmente en métodos prefabricados y modulares. Se destacó su capacidad para reducir emisiones de carbono y residuos, así como su contribución a la eficiencia energética. Además, se observó una tendencia hacia la integración de tecnologías emergentes, como la inteligencia artificial y la impresión 3D, para mejorar los procesos constructivos. Las principales conclusiones indicaron que el acero es fundamental para la resistencia estructural, la sostenibilidad ambiental y la eficiencia en la construcción de viviendas, promoviendo una visión integral de la relación entre el acero y la industria de la construcción.
dc.description.abstractenglishThe study examined the relationship between the use of steel in housing construction and its environmental, economic, and technological implications. A systematic literature review was conducted, identifying 20 relevant articles addressing specific aspects of interest such as sustainability and construction efficiency. The methodology included an exhaustive search in databases, followed by a thorough analysis of the selected documents. The results revealed that steel plays a crucial role in the construction industry, especially in prefabricated and modular methods. Its ability to reduce carbon emissions and waste, as well as its contribution to energy efficiency, was highlighted. Furthermore, a trend towards the integration of emerging technologies such as artificial intelligence and 3D printing to improve construction processes was observed. The main conclusions indicated that steel is fundamental for structural strength, environmental sustainability, and efficiency in housing construction, promoting a comprehensive understanding of the relationship between steel and the construction industry.
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en Negocios Internacionalesspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12605
dc.language.isoes
dc.publisher.facultyFacultad de Ciencias Económicas y Administrativasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programEspecialización en Negocios Internacionalesspa
dc.relation.referencesAl-Radhi, Y., Roy, K., Liang, H., Ghosh, K., Clifton, G. C., & Lim, J. B. P. (2023). Thermal performance of different construction materials used in New Zealand dwellings comparatively to international practice – A systematic literature review. Journal of Building Engineering, 72. https://doi.org/10.1016/j.jobe.2023.106346
dc.relation.referencesArcher, R., Choi, H., Vasconez, R., Najm, H., & Gong, J. (2023). Adaptive coastal construction: designing amphibious homes to resist hurricane winds and storm surges. JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 9(2), 273–290. https://doi.org/10.1007/s40722-022-00267-6
dc.relation.referencesArif, M., & Egbu, C. (2010). Making a case for offsite construction in China. Engineering, Construction and Architectural Management, 17(6), 536–548. https://doi.org/10.1108/09699981011090170
dc.relation.referencesChadegani, A. A., Salehi, H., Yunus, M. M., Farhadi, H., Fooladi, M., Farhadi, M., & Ebrahim, N. A. (2013). A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Social Science, 9(5). https://doi.org/10.5539/ass.v9n5p18
dc.relation.referencesCoordenada Urbana. (2024, February). Repositorio documental.
dc.relation.referencesEgwim, C. N., Alaka, H., Demir, E., Balogun, H., Olu-Ajayi, R., Sulaimon, I., Wusu, G., Yusuf, W., & Muideen, A. A. (2023). Artificial Intelligence in the Construction Industry: A Systematic Review of the Entire Construction Value Chain Lifecycle. Energies, 17(1), 182. https://doi.org/10.3390/en17010182
dc.relation.referencesFakıoğlu Gedik, B. (2023). An analysis of comparative studies on embodied carbon and embodied energy assessment of tall building structures. MEGARON / Yıldız Technical University, Faculty of Architecture E-Journal, 387–400. https://doi.org/10.14744/megaron.2023.88972
dc.relation.referencesFarahzadi, L., & Kioumarsi, M. (2023). Application of machine learning initiatives and intelligent perspectives for CO2 emissions reduction in construction. Journal of Cleaner Production, 384, 135504. https://doi.org/10.1016/j.jclepro.2022.135504
dc.relation.referencesGerilla, G. P., Teknomo, K., & Hokao, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. BUILDING AND ENVIRONMENT, 42(7), 2778–2784. https://doi.org/10.1016/j.buildenv.2006.07.021
dc.relation.referencesJohansson, N., & Svensson, S. (2024). Structural design and construction using energy analytical modelling for sustainability: a review. International Journal of Advanced Technology and Engineering Exploration, 11(110). https://doi.org/10.19101/IJATEE.2023.10102084
dc.relation.referencesKazez, R. (2009). LOS ESTUDIOS DE CASOS Y EL PROBLEMA DE LA SELECCION DE LA MUESTRA CASE STUDY AND THE PROBLEM OF SAMPLE SELECTION APORTATIONS OF DATA MATRICES SYSTEM. SUBJETIVIDAD Y PROCESOS COGNITIVOS.
dc.relation.referencesLawson, R. M., Ogden, R. G., Pedreschi, R., Grubb, P. J., & Popo-Ola, S. O. (2005). Developments in pre-fabricated systems in light steel and modular construction. Structural Engineer, 83(6), 28–35.
dc.relation.referencesLópez-Fernández, M. C., Serrano-Bedia, A. M., & Pérez-Pérez, M. (2016). Entrepreneurship and Family Firm Research: A Bibliometric Analysis of An Emerging Field. Journal of Small Business Management, 54(2), 622–639. https://doi.org/10.1111/jsbm.12161
dc.relation.referencesMongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213–228. https://doi.org/10.1007/s11192-015-1765-5
dc.relation.referencesOfori-Kuragu, J. K., Osei-Kyei, R., & Wanigarathna, N. (2022). Offsite Construction Methods—What We Learned from the UK Housing Sector. Infrastructures, 7(12). https://doi.org/10.3390/infrastructures7120164
dc.relation.referencesOmrany, H., Ghaffarianhoseini, A., Chang, R., Ghaffarianhoseini, A., & Pour Rahimian, F. (2023). Applications of Building information modelling in the early design stage of high-rise buildings. Automation in Construction, 152, 104934. https://doi.org/https://doi.org/10.1016/j.autcon.2023.104934
dc.relation.referencesProduction and Technology of Iron and Steel in Japan during 2022. (2023). ISIJ International, 63(6), 951–969. https://doi.org/10.2355/isijinternational.63.951
dc.relation.referencesReichenbach, S., & Kromoser, B. (2021). State of practice of automation in precast concrete production. Journal of Building Engineering, 43, 102527. https://doi.org/https://doi.org/10.1016/j.jobe.2021.102527
dc.relation.referencesRybak-Niedziółka, K., Starzyk, A., Łacek, P., Mazur, Ł., Myszka, I., Stefańska, A., Kurcjusz, M., Nowysz, A., & Langie, K. (2023). Use of Waste Building Materials in Architecture and Urban Planning—A Review of Selected Examples. Sustainability, 15(6), 5047. https://doi.org/10.3390/su15065047
dc.relation.referencesSah, T. P., Lacey, A. W., Hao, H., & Chen, W. (2024). Prefabricated concrete sandwich and other lightweight wall panels for sustainable building construction: State-of-the-art review. Journal of Building Engineering, 89, 109391. https://doi.org/https://doi.org/10.1016/j.jobe.2024.109391
dc.relation.referencesSánchez-Garrido, A. J., Navarro, I. J., García, J., & Yepes, V. (2023). A systematic literature review on modern methods of construction in building: An integrated approach using machine learning. Journal of Building Engineering, 73, 106725. https://doi.org/https://doi.org/10.1016/j.jobe.2023.106725
dc.relation.referencesShufrin, I., Pasternak, E., & Dyskin, A. (2023). Environmentally Friendly Smart Construction—Review of Recent Developments and Opportunities. Applied Sciences, 13(23), 12891. https://doi.org/10.3390/app132312891
dc.relation.referencesThomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464
dc.relation.referencesVan Eck, N. J., & Waltman, L. (2023). VOSviewer Manual version 1 .6.20.
dc.relation.referencesVitale, P., Spagnuolo, A., Lubritto, C., & Arena, U. (2018). Environmental performances of residential buildings with a structure in cold formed steel or reinforced concrete. JOURNAL OF CLEANER PRODUCTION, 189, 839–852. https://doi.org/10.1016/j.jclepro.2018.04.088
dc.relation.referencesWu, Z., Luo, L., Li, H., Wang, Y., Bi, G., & Antwi-Afari, M. F. (2021). An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability. International Journal of Environmental Research and Public Health, 18(21), 11493. https://doi.org/10.3390/ijerph182111493
dc.relation.referencesZhang, X. C., Xu, J., Zhang, X. Q., & Li, Y. S. (2021). Life cycle carbon emission reduction potential of a new steel-bamboo composite frame structure for residential houses. JOURNAL OF BUILDING ENGINEERING, 39. https://doi.org/10.1016/j.jobe.2021.102295
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_14cb
dc.rights.localAcceso cerradospa
dc.subjectAcero
dc.subjectVivienda
dc.subjectConstrucción de viviendas
dc.subject.ddc382
dc.subject.keywordsSteel
dc.subject.keywordsHousing
dc.subject.keywordsHousing constrution
dc.titleDesafíos y oportunidades del uso del acero en la construcción de viviendas
dc.title.translatedChallenges and opportunities of using steel in housing construction
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.docx.pdf
Tamaño:
993.44 KB
Formato:
Adobe Portable Document Format