Neural network prediction model of risk for infection with carbapenem resistant Enterobacteriaceae among ICU patients in Colombia

dc.contributor.advisorPorras Ramírez, Alexandra
dc.contributor.authorBarrera Godoy, Rodrigo
dc.date.accessioned2024-09-05T20:50:01Z
dc.date.available2024-09-05T20:50:01Z
dc.date.issued2023-08
dc.description.abstractAntibiotic resistance, particularly the emergence of carbapenem-resistant Enterobacteriaceae (CRE), poses a significant threat to global public health. This study aimed to develop a predictive model to estimate the clinical risk of CRE infection in patients admitted to an intensive care unit (ICU). A matched case-control study was conducted at a hospital in Bogotá, Colombia, involving 128 patients with CRE infections and 256 controls. The findings showed cardiovascular diseases and diabetes were the most common comorbidities among both groups. Univariate analysis revealed that patients in the case group were more likely to have undergone invasive procedures and medical devices such as central venous catheter insertion, urinary and foley catheter, also had a higher median number of hospitalization days. Moreover, patients with CRE infections had higher APACHE II scores. Previous infections caused by Enterobacteriaceae, hospital-acquired infections, and previous antibiotic treatments were significantly associated with CRE infections. The predictive model was developed using artificial neural networks (ANNs) and incorporated the identified risk factors. The model's performance was evaluated based on sensitivity, specificity, and accuracy, and different ANN configurations were compared. The model showed promise in accurately predicting the clinical risk of CRE infection in ICU patients. This study contributes to the understanding of risk factors associated with CRE infections in ICU settings and provides a practical tool for infection prevention and control strategies. The use of predictive models based on neural networks in public health can revolutionize disease surveillance, resource allocation, and personalized healthcare interventions, ultimately enhancing population health outcomes.
dc.description.abstractenglishAntibiotic resistance, particularly the emergence of carbapenem-resistant Enterobacteriaceae (CRE), poses a significant threat to global public health. This study aimed to develop a predictive model to estimate the clinical risk of CRE infection in patients admitted to an intensive care unit (ICU). A matched case-control study was conducted at a hospital in Bogotá, Colombia, involving 128 patients with CRE infections and 256 controls. The findings showed cardiovascular diseases and diabetes were the most common comorbidities among both groups. Univariate analysis revealed that patients in the case group were more likely to have undergone invasive procedures and medical devices such as central venous catheter insertion, urinary and foley catheter, also had a higher median number of hospitalization days. Moreover, patients with CRE infections had higher APACHE II scores. Previous infections caused by Enterobacteriaceae, hospital-acquired infections, and previous antibiotic treatments were significantly associated with CRE infections. The predictive model was developed using artificial neural networks (ANNs) and incorporated the identified risk factors. The model's performance was evaluated based on sensitivity, specificity, and accuracy, and different ANN configurations were compared. The model showed promise in accurately predicting the clinical risk of CRE infection in ICU patients. This study contributes to the understanding of risk factors associated with CRE infections in ICU settings and provides a practical tool for infection prevention and control strategies. The use of predictive models based on neural networks in public health can revolutionize disease surveillance, resource allocation, and personalized healthcare interventions, ultimately enhancing population health outcomes.
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Epidemiologíaspa
dc.description.sponsorshipClínica Los Nogalesspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12955
dc.language.isoeng
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Epidemiologíaspa
dc.relation.referencesÁngel M. La resistencia microbiana en el contexto actual y la importancia delconocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas. 2017;16(3):402-419. Http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2017000300011
dc.relation.referencesVentola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277-283.
dc.relation.referencesTalebi Bezmin Abadi A, Rizvanov AA, Haertlé T, Blatt NL. World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience. 2019;9(4):778-788. doi:https://doi.org/10.1007/s12668-019-00658-4
dc.relation.referencesIredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ. Published online February 8, 2016:h6420. doi:https://doi.org/10.1136/bmj.h6420
dc.relation.referencesMezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 2012;7(7):887-902. doi:10.2217/fmb.12.61
dc.relation.referencesShaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101. doi:10.1016/j.sjbs.2014.08.002
dc.relation.referencesSuay-García B, Pérez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics (Basel). 2019;8(3):122. Published 2019 Aug 19. doi:10.3390/antibiotics8030122
dc.relation.referencesÇaǧlayan Ç, Barnes SL, Pineles LL, Harris AD, Klein EY. A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms. Front Public Health. 2022;10:853757. Published 2022 Mar 17. doi:10.3389/fpubh.2022.853757
dc.relation.referencesGurieva T, Dautzenberg MJD, Gniadkowski M, Derde LPG, Bonten MJM, Bootsma MCJ. The Transmissibility of Antibiotic-Resistant Enterobacteriaceae in Intensive Care Units. Clin Infect Dis. 2018;66(4):489-493. doi:10.1093/cid/cix825
dc.relation.referencesRojo V, Vázquez P, Reyes S, Puente Fuertes L, Cervero M. Factores de riesgo y evolución clínica de las infecciones causadas por Klebsiella pneumoniae productora de carbapenemasas en un hospital universitario de España. Estudio de casos y controles [Risk factors and clinical evolution of carbapenemase-producing Klebsiella pneumoniae infections in a university hospital in Spain. Case-control study]. Rev Esp Quimioter. 2018;31(5):427-434.
dc.relation.referencesCodjoe FS, Donkor ES. Carbapenem Resistance: A Review. Med Sci (Basel). 2017;6(1):1. Published 2017 Dec 21. doi:10.3390/medsci6010001
dc.relation.referencesKwak YG, Choi SH, Choo EJ, et al. Risk factors for the acquisition of carbapenemresistant Klebsiella pneumoniae among hospitalized patients. Microb Drug Resist. 2005;11(2):165-169. doi:10.1089/mdr.2005.11.165
dc.relation.referencesFalagas ME, Rafailidis PI, Kofteridis D, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60(5):1124-1130. doi:10.1093/jac/dkm356
dc.relation.referencesZeng D, Cao Z, Neill DB. Artificial intelligence–enabled public health surveillance— from local detection to global epidemic monitoring and control. Artificial Intelligence in Medicine. 2021;437-453. doi:10.1016/B978-0-12-821259-2.00022-3
dc.relation.referencesGiordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing Artificial Intelligence for Clinical Decision-Making. Front Digit Health. 2021;3:645232. Published 2021 Jun 25. doi:10.3389/fdgth.2021.645232
dc.relation.referencesKotb S, Lyman M, Ismail G, et al. Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcareassociated Infections Surveillance Data, 2011-2017. Antimicrob Resist Infect Control. 2020;9(1):2. Published 2020 Jan 3. doi:10.1186/s13756-019-0639-7
dc.relation.referencesWang Q, Zhang Y, Yao X, et al. Risk factors and clinical outcomes for carbapenemresistant Enterobacteriaceae nosocomial infections. Eur J Clin Microbiol Infect Dis. 2016;35(10):1679-1689. doi:10.1007/s10096-016-2710-0
dc.relation.referencesVardakas KZ, Matthaiou DK, Falagas ME, Antypa E, Koteli A, Antoniadou E. Characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in the intensive care unit. J Infect. 2015;70(6):592-599. doi:10.1016/j.jinf.2014.11.003
dc.relation.referencesCallejón Fernández M, Madueño Alonso A, Abreu Rodríguez R, et al. Risk factors for colonization by carbapenemase-producing bacteria in Spanish long-term care facilities: a multicentre point-prevalence study. Antimicrob Resist Infect Control. 2022;11(1):163. Published 2022 Dec 20. doi:10.1186/s13756-022-01200-0
dc.relation.referencesPérez-Galera S, Bravo-Ferrer JM, Paniagua M, et al. Risk factors for infections caused by carbapenem-resistant Enterobacterales: an international matched case-controlcontrol study (EURECA). eClinicalMedicine. 2023;57:101871. doi:https://doi.org/10.1016/j.eclinm.2023.101871
dc.relation.referencesKritsotakis EI, Tsioutis C, Roumbelaki M, Christidou A, Gikas A. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-{beta}-lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double casecontrol study. J Antimicrob Chemother. 2011;66(6):1383-1391. doi:10.1093/jac/dkr116
dc.relation.referencesHuang W, Qiao F, Zhang Y, et al. In-hospital Medical Costs of Infections Caused by Carbapenem-resistant Klebsiella pneumoniae. Clin Infect Dis. 2018;67(suppl_2):S225-S230. doi:10.1093/cid/ciy642
dc.relation.referencesBedos JP, Daikos G, Dodgson AR, et al. Early identification and optimal management of carbapenem-resistant Gram-negative infection. J Hosp Infect. 2021;108:158-167. doi:10.1016/j.jhin.2020.12.001
dc.relation.referencesHong WD, Chen XR, Jin SQ, Huang QK, Zhu QH, Pan JY. Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis. Clinics (Sao Paulo). 2013;68(1):27-31. doi:10.6061/clinics/2013(01)rc01
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectCarbapenem-resistant Enterobacteriaceae
dc.subjectRisk prediction model
dc.subjectIntensive care unit
dc.subjectRisk factors
dc.subjectArtificial neural networks
dc.subject.keywordsEnterobacterias resistentes a carbapenemes
dc.subject.keywordsModelo de predicción de riesgos
dc.subject.keywordsUnidad de cuidados intensivos
dc.subject.keywordsFactores de riesgo
dc.subject.keywordsRedes neuronales artificiales
dc.subject.nlmWA 105
dc.titleNeural network prediction model of risk for infection with carbapenem resistant Enterobacteriaceae among ICU patients in Colombiaspa
dc.title.translatedModelo de predicción de red neuronal del riesgo de infección por enterobacterias resistentes a carbapenémicos en pacientes de UCI en Colombia
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
521.27 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo
Bloque de licencias
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorización.pdf
Tamaño:
396.94 KB
Formato:
Adobe Portable Document Format
Descripción: