Neural network prediction model of risk for infection with carbapenem resistant Enterobacteriaceae among ICU patients in Colombia
dc.contributor.advisor | Porras Ramírez, Alexandra | |
dc.contributor.author | Barrera Godoy, Rodrigo | |
dc.date.accessioned | 2024-09-05T20:50:01Z | |
dc.date.available | 2024-09-05T20:50:01Z | |
dc.date.issued | 2023-08 | |
dc.description.abstract | Antibiotic resistance, particularly the emergence of carbapenem-resistant Enterobacteriaceae (CRE), poses a significant threat to global public health. This study aimed to develop a predictive model to estimate the clinical risk of CRE infection in patients admitted to an intensive care unit (ICU). A matched case-control study was conducted at a hospital in Bogotá, Colombia, involving 128 patients with CRE infections and 256 controls. The findings showed cardiovascular diseases and diabetes were the most common comorbidities among both groups. Univariate analysis revealed that patients in the case group were more likely to have undergone invasive procedures and medical devices such as central venous catheter insertion, urinary and foley catheter, also had a higher median number of hospitalization days. Moreover, patients with CRE infections had higher APACHE II scores. Previous infections caused by Enterobacteriaceae, hospital-acquired infections, and previous antibiotic treatments were significantly associated with CRE infections. The predictive model was developed using artificial neural networks (ANNs) and incorporated the identified risk factors. The model's performance was evaluated based on sensitivity, specificity, and accuracy, and different ANN configurations were compared. The model showed promise in accurately predicting the clinical risk of CRE infection in ICU patients. This study contributes to the understanding of risk factors associated with CRE infections in ICU settings and provides a practical tool for infection prevention and control strategies. The use of predictive models based on neural networks in public health can revolutionize disease surveillance, resource allocation, and personalized healthcare interventions, ultimately enhancing population health outcomes. | |
dc.description.abstractenglish | Antibiotic resistance, particularly the emergence of carbapenem-resistant Enterobacteriaceae (CRE), poses a significant threat to global public health. This study aimed to develop a predictive model to estimate the clinical risk of CRE infection in patients admitted to an intensive care unit (ICU). A matched case-control study was conducted at a hospital in Bogotá, Colombia, involving 128 patients with CRE infections and 256 controls. The findings showed cardiovascular diseases and diabetes were the most common comorbidities among both groups. Univariate analysis revealed that patients in the case group were more likely to have undergone invasive procedures and medical devices such as central venous catheter insertion, urinary and foley catheter, also had a higher median number of hospitalization days. Moreover, patients with CRE infections had higher APACHE II scores. Previous infections caused by Enterobacteriaceae, hospital-acquired infections, and previous antibiotic treatments were significantly associated with CRE infections. The predictive model was developed using artificial neural networks (ANNs) and incorporated the identified risk factors. The model's performance was evaluated based on sensitivity, specificity, and accuracy, and different ANN configurations were compared. The model showed promise in accurately predicting the clinical risk of CRE infection in ICU patients. This study contributes to the understanding of risk factors associated with CRE infections in ICU settings and provides a practical tool for infection prevention and control strategies. The use of predictive models based on neural networks in public health can revolutionize disease surveillance, resource allocation, and personalized healthcare interventions, ultimately enhancing population health outcomes. | |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Epidemiología | spa |
dc.description.sponsorship | Clínica Los Nogales | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12955 | |
dc.language.iso | eng | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Epidemiología | spa |
dc.relation.references | Ángel M. La resistencia microbiana en el contexto actual y la importancia delconocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas. 2017;16(3):402-419. Http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2017000300011 | |
dc.relation.references | Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277-283. | |
dc.relation.references | Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, Blatt NL. World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience. 2019;9(4):778-788. doi:https://doi.org/10.1007/s12668-019-00658-4 | |
dc.relation.references | Iredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ. Published online February 8, 2016:h6420. doi:https://doi.org/10.1136/bmj.h6420 | |
dc.relation.references | Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 2012;7(7):887-902. doi:10.2217/fmb.12.61 | |
dc.relation.references | Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015;22(1):90-101. doi:10.1016/j.sjbs.2014.08.002 | |
dc.relation.references | Suay-García B, Pérez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics (Basel). 2019;8(3):122. Published 2019 Aug 19. doi:10.3390/antibiotics8030122 | |
dc.relation.references | Çaǧlayan Ç, Barnes SL, Pineles LL, Harris AD, Klein EY. A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms. Front Public Health. 2022;10:853757. Published 2022 Mar 17. doi:10.3389/fpubh.2022.853757 | |
dc.relation.references | Gurieva T, Dautzenberg MJD, Gniadkowski M, Derde LPG, Bonten MJM, Bootsma MCJ. The Transmissibility of Antibiotic-Resistant Enterobacteriaceae in Intensive Care Units. Clin Infect Dis. 2018;66(4):489-493. doi:10.1093/cid/cix825 | |
dc.relation.references | Rojo V, Vázquez P, Reyes S, Puente Fuertes L, Cervero M. Factores de riesgo y evolución clínica de las infecciones causadas por Klebsiella pneumoniae productora de carbapenemasas en un hospital universitario de España. Estudio de casos y controles [Risk factors and clinical evolution of carbapenemase-producing Klebsiella pneumoniae infections in a university hospital in Spain. Case-control study]. Rev Esp Quimioter. 2018;31(5):427-434. | |
dc.relation.references | Codjoe FS, Donkor ES. Carbapenem Resistance: A Review. Med Sci (Basel). 2017;6(1):1. Published 2017 Dec 21. doi:10.3390/medsci6010001 | |
dc.relation.references | Kwak YG, Choi SH, Choo EJ, et al. Risk factors for the acquisition of carbapenemresistant Klebsiella pneumoniae among hospitalized patients. Microb Drug Resist. 2005;11(2):165-169. doi:10.1089/mdr.2005.11.165 | |
dc.relation.references | Falagas ME, Rafailidis PI, Kofteridis D, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60(5):1124-1130. doi:10.1093/jac/dkm356 | |
dc.relation.references | Zeng D, Cao Z, Neill DB. Artificial intelligence–enabled public health surveillance— from local detection to global epidemic monitoring and control. Artificial Intelligence in Medicine. 2021;437-453. doi:10.1016/B978-0-12-821259-2.00022-3 | |
dc.relation.references | Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing Artificial Intelligence for Clinical Decision-Making. Front Digit Health. 2021;3:645232. Published 2021 Jun 25. doi:10.3389/fdgth.2021.645232 | |
dc.relation.references | Kotb S, Lyman M, Ismail G, et al. Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcareassociated Infections Surveillance Data, 2011-2017. Antimicrob Resist Infect Control. 2020;9(1):2. Published 2020 Jan 3. doi:10.1186/s13756-019-0639-7 | |
dc.relation.references | Wang Q, Zhang Y, Yao X, et al. Risk factors and clinical outcomes for carbapenemresistant Enterobacteriaceae nosocomial infections. Eur J Clin Microbiol Infect Dis. 2016;35(10):1679-1689. doi:10.1007/s10096-016-2710-0 | |
dc.relation.references | Vardakas KZ, Matthaiou DK, Falagas ME, Antypa E, Koteli A, Antoniadou E. Characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in the intensive care unit. J Infect. 2015;70(6):592-599. doi:10.1016/j.jinf.2014.11.003 | |
dc.relation.references | Callejón Fernández M, Madueño Alonso A, Abreu Rodríguez R, et al. Risk factors for colonization by carbapenemase-producing bacteria in Spanish long-term care facilities: a multicentre point-prevalence study. Antimicrob Resist Infect Control. 2022;11(1):163. Published 2022 Dec 20. doi:10.1186/s13756-022-01200-0 | |
dc.relation.references | Pérez-Galera S, Bravo-Ferrer JM, Paniagua M, et al. Risk factors for infections caused by carbapenem-resistant Enterobacterales: an international matched case-controlcontrol study (EURECA). eClinicalMedicine. 2023;57:101871. doi:https://doi.org/10.1016/j.eclinm.2023.101871 | |
dc.relation.references | Kritsotakis EI, Tsioutis C, Roumbelaki M, Christidou A, Gikas A. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-{beta}-lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double casecontrol study. J Antimicrob Chemother. 2011;66(6):1383-1391. doi:10.1093/jac/dkr116 | |
dc.relation.references | Huang W, Qiao F, Zhang Y, et al. In-hospital Medical Costs of Infections Caused by Carbapenem-resistant Klebsiella pneumoniae. Clin Infect Dis. 2018;67(suppl_2):S225-S230. doi:10.1093/cid/ciy642 | |
dc.relation.references | Bedos JP, Daikos G, Dodgson AR, et al. Early identification and optimal management of carbapenem-resistant Gram-negative infection. J Hosp Infect. 2021;108:158-167. doi:10.1016/j.jhin.2020.12.001 | |
dc.relation.references | Hong WD, Chen XR, Jin SQ, Huang QK, Zhu QH, Pan JY. Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis. Clinics (Sao Paulo). 2013;68(1):27-31. doi:10.6061/clinics/2013(01)rc01 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | * |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.subject | Carbapenem-resistant Enterobacteriaceae | |
dc.subject | Risk prediction model | |
dc.subject | Intensive care unit | |
dc.subject | Risk factors | |
dc.subject | Artificial neural networks | |
dc.subject.keywords | Enterobacterias resistentes a carbapenemes | |
dc.subject.keywords | Modelo de predicción de riesgos | |
dc.subject.keywords | Unidad de cuidados intensivos | |
dc.subject.keywords | Factores de riesgo | |
dc.subject.keywords | Redes neuronales artificiales | |
dc.subject.nlm | WA 105 | |
dc.title | Neural network prediction model of risk for infection with carbapenem resistant Enterobacteriaceae among ICU patients in Colombia | spa |
dc.title.translated | Modelo de predicción de red neuronal del riesgo de infección por enterobacterias resistentes a carbapenémicos en pacientes de UCI en Colombia | |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 521.27 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Artículo