Predicción de la generación de energía eólica en la región de Biobío en Chile utilizando modelos de Machine Learning y Series Temporales
dc.contributor.advisor | Cubillos, Alfonso | |
dc.contributor.author | Cadena Valencia, Paula Andrea | |
dc.contributor.author | Muñoz Puga, Julio Alberto | |
dc.contributor.author | Parada Suarez, William Rodrigo | |
dc.date.accessioned | 2024-09-06T18:47:37Z | |
dc.date.available | 2024-09-06T18:47:37Z | |
dc.date.issued | 2024-06 | |
dc.description.abstract | Chile avanza en la transición hacia energías renovables y la transformación de su matriz energética. Este estudio predice la generación diaria de energía eólica en 15 centrales de la región del Biobío usando modelos de aprendizaje automático (ETR y XGBoost), redes LSTM y series temporales (SARIMAX). Los modelos se entrenan con tres años de datos históricos, incluyendo variables meteorológicas. Se compara el rendimiento de los modelos con métricas como MAE y RMSE para determinar el más preciso. Los resultados buscan mejorar las decisiones en el mercado de energía, optimizando la gestión de recursos. | |
dc.description.abstractenglish | Chile is advancing in the transition to renewable energy and transforming its energy matrix. This study predicts the daily wind energy generation at 15 power plants in the Biobío region using machine learning models (ETR and XGBoost), LSTM networks, and time series models (SARIMAX). The models are trained with three years of historical data, including meteorological variables. Model performance is compared using metrics like MAE and RMSE to determine the most accurate one. The results aim to improve decision-making in the energy market, optimizing resource management. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12959 | |
dc.language.iso | es | |
dc.relation.references | Ministerio de Energía de Chile. Política energética nacional. Santiago, Gobierno de Chile, https://energia.gob.cl/sites/default/files/documentos/politica-energetica-nacional.pdf. | |
dc.relation.references | Carpena, Marco. Modelización y predicción de la energía eléctrica producida en un aerogenerador utilizando modelos estocásticos temporales a partir de series de viento. 2021, España, Valencia, chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://riunet.upv.es/bitstream/handle/10251/84261/78536109X_TFG_14968419448316659365465685192362.pdf?sequence=2. | |
dc.relation.references | Trujillo Romero, Felipe, et al. “Predicting Electricity Consumption Using Neural Networks.” IEEE LATIN AMERICA TRANSACTIONS, vol. 9, no. 7, 2011, pp. 1066-1072. | |
dc.relation.references | A. Rahman y A. S. Ahmar, "Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models," en AIP Conference Proceedings, vol. 020163, 2017. DOI: 10.1063/1.5002357. | |
dc.relation.references | F. Mehmood, M. U. Ghani, H. Ghafoor, R. Shahzadi, M. N. Asim, y W. Mahmood, "EGD-SNet: A computational search engine for predicting an end-to-end machine learning pipeline for Energy Generation & Demand Forecasting," Revista Elsevier - Applied Energy, 2022 | |
dc.relation.references | R. Wazirali, E. Yaghoubi, M. S. S. Abujazar, R. Ahmad, y A. H. Vakili, "State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques," Elsevier - Electric Power Systems Research, vol. 225, p. 109792, 2023. | |
dc.relation.references | N. Huang, C. Yuan, G. Cai, y E. Xing, "Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine," *Energies*, vol. 9, p. 989, 2016. | |
dc.relation.references | Á. M. García, "Análisis de series de tiempo," Universidad Javeriana, 2010. | |
dc.relation.references | G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, "Time Series Analysis: Forecasting and Control," 5th ed., Hoboken, NJ, USA: Wiley, 2015. | |
dc.relation.references | InvestChile Insights, "Informe Energía Proyección y oportunidades," eBook Series, 2021. | |
dc.relation.references | J. Bartlett, "Chile apuesta al hidrógeno verde," Fondo Monetario Internacional, 2022. | |
dc.relation.references | BloombergNEF, "Climatescope 2020," Bloomberg, 2020. | |
dc.relation.references | Instituto Nacional de Estadística, "Generación de Energía Eléctrica Región del Biobío, Edición Nº 54," 2023. | |
dc.relation.references | Mordor Intelligence. (2024). "Chile Wind Energy Market - Growth, Trends, COVID-19 Impact, and Forecasts (2024 - 2029). | |
dc.relation.references | Comisión Nacional de Energía, "Energías Renovables No Convencionales", 2009. [Online].Disponible:chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://energia.go b.cl/sites/default/files/documentos/ernc_mercado_electrico_chileno_baja_resolucion.pdf | |
dc.relation.references | Coordinador Eléctrico Nacional, “Reportes y Estadísticas”, Histórico Generación Horaria por Central https://www.coordinador.cl/reportes-y-estadisticas/#Estadisticas | |
dc.relation.references | NASA Langley Research Center, "POWER Data Access Viewer," [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/. [Accessed: May 30, 2024]. | |
dc.relation.references | G. James, D. Witten, T. Hastie, R. Tibshirani, y J. Taylor, An Introduction to Statistical Learning with Applications in R, 2nd ed. Nueva York: Springer, 2023. | |
dc.relation.references | A. Kassambara, Machine Learning Essentials. STHDA, 2017. | |
dc.relation.references | P. Geurts, D. Ernst, y L. Wehenkel, "Extremely Randomized Trees," Machine Learning, vol. 63, no. 1, pp. 3-42, 2006. | |
dc.relation.references | L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. | |
dc.relation.references | T. Chen y C. Guestrin, "XGBoost: A Scalable Tree Boosting System," en Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16), San Francisco, CA, USA, 2016, pp. 785-794. | |
dc.relation.references | J. Brownlee, Long Short-Term Memory Networks With Python: Develop Sequence Prediction Models with Deep Learning. 2017. [Online]. | |
dc.relation.references | A. Alharbi y D. Csala, "Advanced Energy Forecasting Using the SARIMAX Model," 2022. [Online]. | |
dc.relation.references | V. Vovk, A. Gammerman, y G. Shafer, Algorithmic Learning in a Random World. Nueva York: Springer, 2005. | |
dc.relation.references | G. Shafer y V. Vovk, A Tutorial on Conformal Prediction. J. Mach. Learn. Res., 2008. | |
dc.relation.references | A. Gammerman, V. Vovk, y H. Papadopoulos, Conformal and Probabilistic Prediction with Applications. Springer, 2016. | |
dc.relation.references | A.J. Lei, M. G'Sell, A. Rinaldo, R. J. Tibshirani, y L. Wasserman, "Distribution-Free Predictive Inference for Regression," J. Am. Stat. Assoc., vol. 113, no. 523, pp. 1094-1111, 2018. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Chile | |
dc.subject | energía renovable | |
dc.subject | Predicción | |
dc.subject | Energía eólica | |
dc.subject | Aprendizaje automático | |
dc.subject | Región Biobío | |
dc.subject | Mercado energético | |
dc.subject.keywords | Chile | |
dc.subject.keywords | renewable energy | |
dc.subject.keywords | Prediction | |
dc.subject.keywords | Wind energy | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Biobío region | |
dc.subject.keywords | Energy market | |
dc.title | Predicción de la generación de energía eólica en la región de Biobío en Chile utilizando modelos de Machine Learning y Series Temporales | |
dc.title.translated | Prediction of Wind Energy Generation in the Biobío Region of Chile Using Machine Learning and Time Series Models |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 8.67 MB
- Formato:
- Adobe Portable Document Format