Planta fotovoltaica de 350 Wh para mantener el funcionamiento de los equipos electronicos
dc.contributor.advisor | García Bello, Fredy Rolando | |
dc.contributor.author | Ramirez Rodriguez, Juan Camilo | |
dc.date.accessioned | 2024-12-03T15:46:45Z | |
dc.date.available | 2024-12-03T15:46:45Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | Este proyecto se centra en desarrollar una solución energética portátil para la finca Cristina, ubicada en una zona rural sin acceso confiable a la red eléctrica. Se diseñó y construyó una maleta UPS que incluye un sistema fotovoltaico capaz de generar y almacenar energía solar. El sistema se compone de un panel solar de 445W, dos baterías GEL de 12V 150Ah conectadas en serie, y un controlador de carga MPPT que optimiza la captación de energía. El diseño se enfoca en la portabilidad y durabilidad, utilizando materiales como aluminio, madera y una base de lámina de metal, además de integrar un sistema de seguridad con breakers y fusibles para proteger los componentes internos y externos. La maleta UPS fue diseñada con especial atención a la gestión térmica y la seguridad eléctrica. Un sistema de ventilación con dos ventiladores asegura que los componentes internos se mantengan a una temperatura operativa segura, evitando el sobrecalentamiento. Las conexiones de cableado interno se realizaron siguiendo estándares como las normas establecidas por la Asociación de Conexión e Interconexión Electrónica para minimizar las pérdidas de energía y asegurar una operación confiable. Aunque las simulaciones realizadas no fueron concluyentes debido a la falta de un simulador adecuado para paneles solares, las pruebas físicas con baterías más pequeñas validaron el funcionamiento de los módulos principales, como el cargador MPPT y la fuente DC-DC boost aislada. El proyecto ha proporcionado una solución eficiente y práctica para las necesidades energéticas de la finca Cristina, demostrando la viabilidad de un sistema de energía renovable portátil y autónomo. A pesar de las limitaciones encontradas en las simulaciones, la implementación física ha sido exitosa, destacando la importancia de un diseño robusto y de una correcta gestión del cableado y la ventilación para garantizar el rendimiento y la seguridad del sistema en condiciones reales. Este trabajo sienta las bases para futuras mejoras y aplicaciones en otros contextos rurales que enfrenten desafíos energéticos similares. | |
dc.description.abstractenglish | This project focuses on developing a portable energy solution for the Cristina farm, located in a rural area without reliable access to the electrical grid. A UPS case was designed and built with a photovoltaic system capable of generating and storing solar energy. The system consists of a 445W solar panel, two 12V 150Ah GEL batteries connected in series, and a MPPT charge controller that optimizes energy harvesting. The design focuses on portability and durability, using materials such as aluminum, wood and a sheet metal base, as well as integrating a safety system with breakers and fuses to protect internal and external components. The UPS case was designed with special attention to thermal management and electrical safety. A ventilation system with two fans ensures that the internal components are kept at a safe operating temperature, preventing overheating. Internal wiring connections were made following standards such as those established by the Electronic Connection and Interconnection Association to minimize power losses and ensure reliable operation. Although the simulations performed were inconclusive due to the lack of a suitable simulator for solar panels, physical tests with smaller batteries validated the performance of the main modules, such as the MPPT charger and the isolated DC-DC boost source. The project has provided an efficient and practical solution for the energy needs of the Cristina farm, demonstrating the feasibility of a portable and autonomous renewable energy system. Despite the limitations encountered in the simulations, the physical implementation has been successful, highlighting the importance of a robust design and proper wiring and ventilation management to ensure system performance and safety in real conditions. This work lays the groundwork for future improvements and applications in other rural contexts facing similar energy challenges. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero Electrónico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13551 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Ingeniería Electrónica | spa |
dc.relation.references | [1] F. Cucchiella, I. D’Adamo, M. Gastaldi, and V. Stornelli, “Solar photovoltaic panels combined with energy storage in a residential building: An economic analysis”, Sustainability (Switzerland), vol. 10, no. 9, 2018, doi: 10.3390/su10093117. | |
dc.relation.references | [2] E. Bullich-Massagué et al., “A review of energy storage technologies for large scale photovoltaic power plants”, Appl Energy, vol. 274, no. May, p. 115213, 2020, doi: 10.1016/j.apenergy.2020.115213 | |
dc.relation.references | [3] C. S. Lai, Y. Jia, L. L. Lai, Z. Xu, M. D. McCulloch, and K. P. Wong, “A comprehensive review on large-scale photovoltaic system with applications of electrical energy storage”, Renewable and Sustainable Energy Reviews, vol. 78, no. November 2016, pp. 439–451, 2017, doi: 10.1016/j.rser.2017.04.078. | |
dc.relation.references | [4] X. Zhao, G. Wan, and Y. Yang, “The turning point of solar photovoltaic industry in China : Will it come ?”, Renewable and Sustainable Energy Reviews, vol. 41, pp. 178–188, 2015, doi: 10.1016/j.rser.2014.08.045. | |
dc.relation.references | [5] T. Stetz, F. Niedermeyer, G. Scheibner, and M. Braun, “Twilight of the Grids”, ieee power & energy magazine, vol. 15, pp. 1540–7977, 2015. | |
dc.relation.references | [6] A. A. Radomes and S. Arango, “Renewable energy technology diffusion: An analysis of photovoltaic-system support schemes in Medellín, Colombia”, J Clean Prod, vol. 92, pp. 152–161, 2015, doi: 10.1016/j.jclepro.2014.12.090. | |
dc.relation.references | [7] A. Haghighat Mamaghani, S. A. Avella Escandon, B. Najafi, A. Shirazi, and F. Rinaldi, “Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia”, Renew Energy, vol. 97, pp. 293–305, 2016, doi: 10.1016/j.renene.2016.05.086. | |
dc.relation.references | [8] D. Rodríguez-Urrego and L. Rodríguez-Urrego, “Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects”, Renewable and Sustainable Energy Reviews, vol. 92, no. May 2018, pp. 160–170, 2018, doi: 10.1016/j.rser.2018.04.065. | |
dc.relation.references | [9] Á. P. Sepúlveda, “Soluciones energeticas en el posconflicto (¿En el posconflicto?)”, https://doi.org/10.16924/revinge.44.5, no. 44, pp. 36–39, May 2020, doi: 10.16924/REVINGE.44.5. | |
dc.relation.references | [10] A. F. Córdoba Pacheco, “Estudio comparativo entre controladores simplementados en un sistema de energía solar fotovoltaico”, Pontificia Universidad Javeriana, Bogotá, 2018. | |
dc.relation.references | [11] M. K. H. Rabaia et al., “Environmental impacts of solar energy systems: A review”, Science of the Total Environment, vol. 754, p. 141989, 2021, doi: 10.1016/j.scitotenv.2020.141989. | |
dc.relation.references | [12] M. A. Siddik, M. T. Islam, A. K. M. M. Zaman, and M. M. Hasan, “Current Status and Correlation of Fossil Fuels Consumption and Greenhouse Gas Emissions”, vol. 28, no. 2, 2021, [Online]. Available: https://www.researchgate.net/publication/357323190 | |
dc.relation.references | [13] A. Dunlap, “Does renewable energy exist? Fossil fuel+ technologies and the search for renewable energy”, in A Critical Approach to the Social Acceptance of Renewable Energy Infrastructures: Going Beyond Green Growth and Sustainability, Springer International Publishing, 2021, pp. 83–102. doi: 10.1007/978-3-030-73699-6_5. | |
dc.relation.references | [14] A. Shahsavari and M. Akbari, “Potential of solar energy in developing countries for reducing energy-related emissions”, Renewable and Sustainable Energy Reviews, vol. 90, no. March, pp. 275–291, 2018, doi: 10.1016/j.rser.2018.03.065. | |
dc.relation.references | [15] M. Giraldo, R. Vacca Ramírez, and A. Urrego Quintanilla, “Las Energías Alternativas ¿Una Oportunidad Para Colombia?”, Punto de vista, vol. 9, no. 13, 2018, doi: 10.15765/pdv.v9i13.1117. | |
dc.relation.references | [16] J. P. Viteri, F. Henao, J. Cherni, and I. Dyner, “Optimizing the insertion of renewable energy in the off-grid regions of Colombia”, J Clean Prod, vol. 235, pp. 535–548, 2019, doi: 10.1016/j.jclepro.2019.06.327. | |
dc.relation.references | [17] P. Singh, S. Singh, G. Kumar, and P. Baweja, Energy: Crises, Challenges and Solutions. 2022. | |
dc.relation.references | [18] K. Torres-Castro, C. Torres-Quirós, and G. Richmond-Navarro, “Microgeneración de energía eólica en un entorno boscoso en Costa Rica”, Revista Tecnología en Marcha, Jun. 2021, doi: 10.18845/tm.v34i3.5063. | |
dc.relation.references | [19] O. F. Clavijo-Bernal, “Represando el alto Magdalena: conflicto ambiental por la construcción y operación de la central hidroeléctrica El Quimbo”, Gestión y Ambiente, vol. 24, no. Supl2, pp. 75–90, Nov. 2021, doi: 10.15446/ga.v24nsupl2.94349. | |
dc.relation.references | [20] D. L. Parra Ortiz, M. A. Botero Londoño, and J. M. Botero Londoño, “Biomasa residual pecuaria: revisión sobre la digestión anaerobia como método de producción de energía y otros subproductos”, Revista UIS Ingenierías, vol. 18, no. 2, pp. 139–146, Feb. 2019, doi: 10.18273/revuin.v18n2-2019013. | |
dc.relation.references | [21] E. I. Leandro Valencia-Bautista, J. Miguel Farfán-Bone III, I. V Alejandro Arboleda-Cheres, R. I. Joel Angulo-Guerrero, C. I. Joa Verá-Lozano, and T. V. Joel Orobio-Arboleda, “Una revisión del suministro de energía renovable y las tecnologías de eficiencia energética”, vol. 7, pp. 2012–2046, 2022, doi: 10.23857/pc.v7i4.3934. | |
dc.relation.references | [22] European Commission, “Hourly radiation - European Commission.” Accessed: Oct. 29, 2024. [Online]. Available: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis/pvgis-tools/hourly-radiation_en | |
dc.relation.references | [23] R. A. Serway, J. W. Jewett, and T. Víctor Campos Olguín Traductor profesional Revisión Técnica Misael Flores Rosas, “Séptima edición.” | |
dc.relation.references | [24] M. H. Rashid Circuitos and D. Y. Aplicaciones, “Electrónica de potencia rashid electrónica de potencia.” [Online]. Available: www.pearsoneducacion.net | |
dc.relation.references | [25] N. Mohan, T. M. Undeland, and W. P. Robbins, “Electrónica de potencia. Convertidores, aplicaciones y diseño.” [Online]. Available: www.FreeLibros.me | |
dc.relation.references | [26] “ie326_estabilizadores_work_inversores_corriente_4.jpg (600×376).” Accessed: Oct. 30, 2024. [Online]. Available: https://www.editores-srl.com.ar/sites/default/files/ie326_estabilizadores_work_inversores_corriente_4.jpg | |
dc.relation.references | [27] C. Ministerio de Minas y Energía, Reglamento Técnico de Instalaciones Eléctricas (RETIE). 2005. | |
dc.relation.references | [28] IPC International, IPC Standards for Printed Circuit Boards. 1991. | |
dc.relation.references | [29] “Global Solar Atlas.” Accessed: Oct. 30, 2024. [Online]. Available: https://globalsolaratlas.info/detail?c=4.7287,-74.460526,11&s=4.728268,-74.460978&m=site&pv=small,180,5,1 | |
dc.relation.references | [30] L. Balogh, “Fundamentals of MOSFET and IGBT Gate Driver Circuits Application Report Fundamentals of MOSFET and IGBT Gate Driver Circuits”, 2017. [Online]. Available: www.ti.com | |
dc.relation.references | [31] P. Han, “Buck-Boost NVDC Battery Charger for Notebook Application Design Using BQ25720”, 2021. [Online]. Available: www.ti.com | |
dc.relation.references | [32] W. H. Lei and T. K. Man, “AND8143/D A General Approach for Optimizing Dynamic Response for Buck Converter.” [Online]. Available: http://onsemi.com | |
dc.relation.references | [33] J. Hagedorn, “Basic Calculations of a 4-Switch Buck-Boost Power Stage Application Report Basic Calculations of a 4 Switch Buck-Boost Power Stage”, 2018. [Online]. Available: www.ti.com | |
dc.relation.references | [34] B. Hauke, “Basic Calculation of a Buck Converter’s Power Stage”, 2011. [Online]. Available: www.ti.com | |
dc.relation.references | [35] texas instruments, “ADC CONTROLLER SM72445 Programmable Maximum Power Point Tracking Controller With Adjustable PWM Frequency Check for Samples: SM72445 1FEATURES”, 2012, Accessed: Sep. 07, 2024. [Online]. Available: www.ti.com | |
dc.relation.references | [36] “DGD21904 High-side and low-side gate driver in SO-14”, 2024. [Online]. Available: www.diodes.com | |
dc.relation.references | [37] “CRMICRO CRST060N10N Datasheet.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.lcsc.com/datasheet/lcsc_datasheet_2304140030_CRMICRO-CRST060N10N_C455306.pdf | |
dc.relation.references | [38] M. Diallo and H. P. Drivers, “Bootstrap Circuitry Selection for Half-Bridge Configurations”, 2023, Accessed: Sep. 07, 2024. [Online]. Available: www.ti.com | |
dc.relation.references | [39] “High-temperature 60 V, 3 A Schottky barrier rectifier 4 March 2013 Product data sheet”, 2013. | |
dc.relation.references | [40] texas instruments, “AN-2241 SM72445 Evaluation Board”, 2012, Accessed: Sep. 07, 2024. [Online]. Available: www.ti.com | |
dc.relation.references | [41] texas instruments, “LM2596 SIMPLE SWITCHER ® Power Converter 150-kHz 3-A Step-Down Voltage Regulator”, 2023, Accessed: Sep. 07, 2024. [Online]. Available: www.ti.com | |
dc.relation.references | [42] Taiwan Semiconductor, “SSL32-SSL34 Taiwan Semiconductor 3A, 20V-40V Surface Mount Schottky Barrier Rectifier”. | |
dc.relation.references | [43] onsemi, “SG3525A - Pulse Width Modulator Control Circuit”, Accessed: Sep. 07, 2024. [Online]. Available: www.onsemi.com | |
dc.relation.references | [44] micro corp, “micro corp. EG8010 Datasheets ASIC for single-phase SPWM control EG8010 Datasheets (Single Phase Sinusoid Inverter ASIC) micro corp. EG8010 Datasheets ASIC for single-phase SPWM control”, 2014, Accessed: Sep. 07, 2024. [Online]. Available: www.EGmicro.com | |
dc.relation.references | [45] Scientific village, “Scientific Village | Buy EGS002B Pure Sine Wave Inverter Driver Module Board EG8010 IR2110.” Accessed: Sep. 07, 2024. [Online]. Available: https://qariya.net/en/product/sine-wave-inverter-driver-module/ | |
dc.relation.references | [46] “Electrical ratings”, 2019. | |
dc.relation.references | [47] F. De Ingeniería and R. Ferrero, “Instituto universitario aeronáutico ‘Convertidor dc/ac de Alta Potencia’”. | |
dc.relation.references | [48] emergente, “Panel solar monocristalino de 445W ZnShineSolar | Emergente Energía SostenibleEmergente Energía Sostenible.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.emergente.com.co/blog/producto/panel-solar-monocristalino-de-445w-znshinesolar/ | |
dc.relation.references | [49] Auto Solar, “Conectores RETIE MC4 | Al mejor precio Colombia.” Accessed: Sep. 07, 2024. [Online]. Available: https://autosolar.co/accesorios-de-paneles-solares/conector-retie-mc4?srsltid=AfmBOoqUTy6zhdj_3Ar3BxAhKmEDmGAIp_p15IJrJiQ6wTKJZQgnozM1 | |
dc.relation.references | [50] ECOZAQUE, “PORTAFUSIBLE TIPO 10×38 1000V MDPV-30 – EcoZaque Ingeniería S.A.S.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.ecozaque.com/producto/portafusible-tipo-10x38-1000v-mdpv-30-marca-moreday/ | |
dc.relation.references | [51] Auto Solar, “Fusible 25A 1000VDC 10x38 FEEO | Material Eléctrico en AutoSolar.” Accessed: Sep. 07, 2024. [Online]. Available: https://autosolar.co/fusible/fusible-dc-25a-10x38-1000vdc-moreday | |
dc.relation.references | [52] Cables Colombia, “Cable Fotovoltaico | Cables Colombia.” Accessed: Sep. 07, 2024. [Online]. Available: https://cablescolombia.com/producto/cable-fotovoltaico-10mm2 | |
dc.relation.references | [53] Auto Solar, “Batería GEL 12V 150Ah Tensite | al Mejor Precio Colombia.” Accessed: Sep. 07, 2024. [Online]. Available: https://autosolar.co/baterias-gel-12v/bateria-gel-12v-150ah-tensite?srsltid=AfmBOorw_XL-B6Ckbx7k8sHgg36n5ST8D_W-KQAa9p2lYVxcZ2LLpZGm | |
dc.relation.references | [54] techcode, “Techcode Semicon TD1837 Datasheet.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.lcsc.com/datasheet/lcsc_datasheet_2105241454_Techcode-Semicon-TD1837_C2832213.pdf | |
dc.relation.references | [55] “PCB Manufacturing & Assembly Capabilities - JLCPCB.” Accessed: Sep. 07, 2024. [Online]. Available: https://jlcpcb.com/capabilities/pcb-capabilities | |
dc.relation.references | [56] Amazon, “Lon0167 - Punta de soldadura 900M-T-B.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.amazon.com/-/es/Lon0167-soldadura-L%C3%B6tspitze-L_%C3%B6_tkolben-Silberfarbe/dp/B09FP2JLFH | |
dc.relation.references | [57] mercado libre, “Punta Cautin Hakko 900m-t-i.” Accessed: Sep. 07, 2024. [Online]. Available: https://articulo.mercadolibre.com.co/MCO-595321680-punta-cautin-hakko-900m-t-i-_JM | |
dc.relation.references | [58] Amazon, “IIVVERR Replaceable Soldering Tip 900M-T-3C Solder Station Iron.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.amazon.com/-/es/IIVVERR-soldadura-reemplazable-900M-T-3C-Estaci%C3%B3n/dp/B07NJ92VH1 | |
dc.relation.references | [59] Reballing Store, “Punta para Cautín 900M-T-2.4D.” Accessed: Sep. 07, 2024. [Online]. Available: https://reballing.store/puntas/1245-punta-para-cautin-900m-t-24d.html | |
dc.relation.references | [60] Amazon, “uxcell Soldering Tip 900M-T-K Replaceable Solder Iron.” Accessed: Sep. 07, 2024. [Online]. Available: https://www.amazon.com/-/es/uxcell-Punta-soldadura-900M-T-K-reemplazable/dp/B0058BK5II | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http:/purl.org/coar/access_right/c_abf2/ | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Energía solar | |
dc.subject | Planta fotovoltaica portátil | |
dc.subject | Energía renovable | |
dc.subject | Cargador MPPT | |
dc.subject | Fuente DC-DC boost | |
dc.subject | Inversor S-PWM | |
dc.subject | Zonas rurales | |
dc.subject | Autonomía energética | |
dc.subject.ddc | 621.381 | |
dc.subject.keywords | Solar energy | |
dc.subject.keywords | Portable photovoltaic plant | |
dc.subject.keywords | Renewable energy | |
dc.subject.keywords | MPPT charger | |
dc.subject.keywords | DC-DC boost converter | |
dc.subject.keywords | S-PWM inverter | |
dc.subject.keywords | Rural areas | |
dc.subject.keywords | Energy autonomy | |
dc.title | Planta fotovoltaica de 350 Wh para mantener el funcionamiento de los equipos electronicos | |
dc.title.translated | 350 Wh photovoltaic plant to maintain the operation of electronic equipment | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 9.41 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de grado.pdf
- Tamaño:
- 442.91 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 2.11 MB
- Formato:
- Adobe Portable Document Format
- Descripción: