Perfil mutacional asociado a recurrencia de la enfermedad y sobrevida en pacientes sometidos a tiroidectomía por cáncer pailar de tiroides en la Fundación Santa Fe de Bogotá
dc.contributor.advisor | Beltrán López, Angela Patricia | |
dc.contributor.advisor | Rodríguez Urrego, Paula Andrea | |
dc.contributor.author | González Rodríguez , Sebastián | |
dc.date.accessioned | 2024-08-06T21:25:40Z | |
dc.date.available | 2024-08-06T21:25:40Z | |
dc.date.issued | 2024-01 | |
dc.description.abstract | Introducción: En Colombia el cáncer de tiroides se encuentra entre los de carcinomas de mayor incidencia, sin embargo, nuestra población carece de estudios sobre su perfil molecular. Este estudio tiene como objetivo caracterizar datos clínicos, histopatológicos y moleculares en una cohorte colombiana con carcinoma papilar de tiroides (CPT). Métodos: Se realizó una revisión retrospectiva de la historia clínica, las características clínico-patológicas, el tratamiento y el seguimiento a 5 años de todos los pacientes. El ADN y el ARN se extrajeron del tejido incluido en parafina fijado con formalina (FFPE) utilizando el kit Quick-DNA & RNA FFPE MiniPrep (Zymo Research). La construcción de librerías se realizó con el kit Solid Tumor Solutions Plus (SOPHiA GENETICS) y la secuenciación de siguiente generación (NGS) en MiSeq (Illumina). El análisis genómico de mutaciones tumorales utilizó la plataforma SOPHiA DDMTM. Se realizó un análisis descriptivo de frecuencias, medias y asociaciones mediante Fisher. Resultados: Se secuenciaron 231 pacientes. La edad media al diagnóstico fue de 46 años (±12,35), con mayor frecuencia de mujeres (81,82%; n=189). Dos casos fueron reclasificados como Neoplasia Folicular de Tiroides No Invasiva (NIFT-P), uno de ellos con mutación RAS. El subtipo histológico predominante fue el CPT clásico (57,64%), seguido de célula alta (28,82%). De los 229 carcinomas, se identificaron mutaciones en 183 casos, incluidos BRAF, RAS, RET, TERT y TP53. Las CNV notables fueron PDGFRA, CDK4 y KIT. Se obtuvieron 2 fusiones en RET y NTRK3 en dos casos de subtipo clásico. La recurrencia a 5 años de esta población fue del 6.98% (n=16) y la mortalidad de 0.44% (n=1). El análisis estadístico de los casos de recurrencia comparado con los que no presentaron recurrencia encontró una asociación significativa con las variables de medición de tiroglobulina a los 48 y 60 meses de seguimiento. Conclusiones: Este es el primer estudio en Colombia (TIROSEC) que integra perfiles moleculares e histopatológicos que enriquecen nuestra comprensión y conocimiento local sobre el PTC. La identificación de mutaciones diana como las fusiones BRAF, RET y NTRK tiene el potencial de guiar terapias dirigidas para la recurrencia de tumores y predecir el comportamiento agresivo. Aunque no encontramos asociaciones estadísticamente significativas histopatológicas o moleculares con la recurrencia o la mortalidad en esta cohorte consideramos que otros estudios de investigación con una mayor población a estudio y mayor tiempo de seguimiento se deberían analizar para encontrar asociaciones pronósticas y predictivas. | |
dc.description.abstractenglish | Introduction: In Colombia, thyroid cancer is among the most common carcinomas; however, our population lacks studies on its molecular profile. This study aims to characterize clinical, histopathological, and molecular data in a Colombian cohort with papillary thyroid carcinoma (PTC). Methods: A retrospective review of the clinical history, clinicopathological characteristics, treatment and 5-year follow-up of all patients was performed. DNA and RNA were extracted from formalin-fixed paraffin-embedded (FFPE) tissue using the Quick-DNA & RNA FFPE MiniPrep kit (Zymo Research). Library construction was performed using the Solid Tumor Solutions Plus kit (SOPHiA GENETICS) and next-generation sequencing (NGS) on MiSeq (Illumina). Genomic analysis of tumor mutations used the SOPHiA DDMTM platform. A descriptive analysis of frequencies, means and associations was carried out using Fisher. Results: 231 patients were sequenced. The mean age at diagnosis was 46 years (±12.35), with a greater frequency of women (81.82%; n=189). Two cases were reclassified as Non-Invasive Thyroid Follicular Neoplasia (NIFT-P), one of them with a RAS mutation. The predominant histological subtype was classic PTC (57.64%), followed by high cell (28.82%). Of the 229 carcinomas, mutations were identified in 183 cases, including BRAF, RAS, RET, TERT, and TP53. The notable ones for CNV were PDGFRA, CDK4, and KIT. 2 fusions in RET and NTRK3 were obtained in two cases of classic subtype. The 5-year recurrence in this population was 6.98% (n=16) and mortality was 0.44% (n=1). The statistical analysis of cases of recurrence compared to those that did not present recurrence found a significant association with the variables measuring thyroglobulin at 48 and 60 months of follow-up. Conclusions: This is the first study in Colombia (TIROSEC) that integrates molecular and histopathological profiles that enrich our understanding and local knowledge about PTC. Identification of target mutations such as BRAF, RET, and NTRK fusions has the potential to guide targeted therapies for tumor recurrence and predict aggressive behavior. Although we did not find statistically significant histopathological or molecular associations with recurrence or mortality in this cohort, we consider that other research studies with a larger study population and longer follow-up time should be analyzed to find prognostic and predictive associations. | |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Básicas Biomédicas | spa |
dc.description.sponsorship | Fundación Santa Fe de Bogotá | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12843 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Maestría en Ciencias Básicas Biomédicas | spa |
dc.relation.references | Adam, M. A., Thomas, S., Hyslop, T., Scheri, R. P., Roman, S. A., & Sosa, J. A. (2016). Exploring the Relationship Between Patient Age and Cancer-Specific Survival in Papillary Thyroid Cancer: Rethinking Current Staging Systems. 34(36), 4415-4420.doi:10.1200/jco.2016.68.9372 | |
dc.relation.references | Affinito, O., Orlandella, F. M., Luciano, N., Salvatore, M., Salvatore, G., & Franzese, M. (2022). Evolution of intra-tumoral heterogeneity across different pathological stages in papillary thyroid carcinoma. Cancer Cell Int, 22(1), 263. doi:10.1186/s12935-022-02680-1 | |
dc.relation.references | Appetecchia, M., Lauretta, R., Barnabei, A., Pieruzzi, L., Terrenato, I., Cavedon, E., . . . Elisei, R. (2019). Epidemiology of Simultaneous Medullary and Papillary Thyroid Carcinomas (MTC/PTC): An Italian Multicenter Study. Cancers (Basel), 11(10). doi:10.3390/cancers11101516v | |
dc.relation.references | Arnau, J., & Bono, R. (2008). Estudios longitudinales. Modelos de diseño y análisis. Escritos de Psicología - Psychological Writings, 2(1), 32-41. | |
dc.relation.references | Arroyo, N., Bell, K. J. L., Hsiao, V., Fernandes-Taylor, S., Alagoz, O., Zhang, Y., . . . Francis, D. O. (2022). Prevalence of Subclinical Papillary Thyroid Cancer by Age: Meta-analysis of Autopsy Studies. J Clin Endocrinol Metab, 107(10), 2945-2952. doi:10.1210/clinem/dgac468 | |
dc.relation.references | Bai, Y., Kakudo, K., & Jung, C. K. (2020). Updates in the Pathologic Classification of Thyroid Neoplasms: A Review of the World Health Organization Classification. Endocrinol Metab (Seoul), 35(4), 696-715. doi:10.3803/EnM.2020.807 | |
dc.relation.references | Baker, S. J., Poulikakos, P. I., Irie, H. Y., Parekh, S., & Reddy, E. P. (2022). CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer, 13, 21-45. doi:10.18632/genesandcancer.221 | |
dc.relation.references | Baralle, D., & Baralle, M. (2005). Splicing in action: assessing disease causing sequence changes. J Med Genet, 42(10), 737-748. doi:10.1136/jmg.2004.029538 | |
dc.relation.references | Bates, M. F., Lamas, M. R., Randle, R. W., Long, K. L., Pitt, S. C., Schneider, D. F., & Sippel, R. S. (2018). Back so soon? Is early recurrence of papillary thyroid cancer really just persistent disease? Surgery, 163(1), 118-123. doi:10.1016/j.surg.2017.05.02862 | |
dc.relation.references | Berciano-Guerrero, M. (2022). Use of multikinase inhibitors/lenvatinib concomitant with locoregional therapies for the treatment of radioiodine-refractory differentiated thyroid cancer. Cancer Med, 11 Suppl 1(Suppl 1), 40-46. doi:10.1002/cam4.5108 | |
dc.relation.references | Bruce, P., Bruce, A., & Gedeck, P. (2022). Estadística práctica para ciencia de datos con R y Python: Marcombo. | |
dc.relation.references | Bruin, J. (2006). newtest: command to compute new test. Statistical Consulting Group. https://stats.oarc.ucla.edu/stata/ado/analysis/. | |
dc.relation.references | Cameselle-Teijeiro, J. M., & Sobrinho-Simões, M. (2018). Nueva clasificación de la OMS de los tumores tiroideos: una categorización pragmática de las neoplasias de la glándula tiroides. Endocrinología, Diabetes y Nutrición, 65(3), 133-135. doi:10.1016/j.endinu.2017.11.012 | |
dc.relation.references | Castro-Jiménez, M., & López-Daza, D. F. (2015). [Stability of mortality from thyroid cancer in a developing country]. Rev Salud Publica (Bogota), 17(1), 1-11. | |
dc.relation.references | Chakravarty, D., Gao, J., Phillips, S. M., Kundra, R., Zhang, H., Wang, J., . . . Schultz, N. (2017). OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol, 2017. doi:10.1200/po.17.00011 | |
dc.relation.references | Chakravarty, D., Santos, E., Ryder, M., Knauf, J. A., Liao, X. H., West, B. L., . . . Fagin, J. A. (2011). Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest, 121(12), 4700-4711. doi:10.1172/jci46382 | |
dc.relation.references | Chien, M.-N., Yang, P.-S., Lee, J.-J., Wang, T.-Y., Hsu, Y.-C., & Cheng, S.-P. (2017). Recurrence-associated genes in papillary thyroid cancer: An analysis of data from The Cancer Genome Atlas. Surgery, 161(6), 1642-1650. doi:https://doi.org/10.1016/j.surg.2016.12.039 | |
dc.relation.references | Chmielik, E., Rusinek, D., Oczko-Wojciechowska, M., Jarzab, M., Krajewska, J., Czarniecka, A., & Jarzab, B. (2018). Heterogeneity of Thyroid Cancer. Pathobiology, 85(1-2), 117-129. doi:10.1159/000486422 | |
dc.relation.references | Cruz-Rodríguez, E., Baldoquín-Rodríguez, W., Molina-Águila, N., Galindo-Santana, B. M., Romero-Placeres, M., González-Gross, T. M., . . . Guadalupe-Guzmán, M. (2022). Asymptomatic SARS-CoV-2 Infection in Havana, Cuba, March-June 2020: Epidemiological Implications. MEDICC Rev, 24(1), 21-27. doi:10.37757/mr2022.V24.N1.4 | |
dc.relation.references | Cuomo, F., Giani, C., & Cobellis, G. (2022). The Role of the Kinase Inhibitors in Thyroid Cancers. Pharmaceutics, 14(5). doi:10.3390/pharmaceutics14051040 Du, Y., Zhang, S., Zhang, G., Hu, J., Zhao, L., Xiong, Y., . . . Xu, Y. (2023). Mutational profiling of Chinese patients with thyroid cancer. Front Endocrinol (Lausanne), 14, 1156999. doi:10.3389/fendo.2023.1156999 | |
dc.relation.references | Durante, C., Haddy, N., Baudin, E., Leboulleux, S., Hartl, D., Travagli, J. P., . . . Schlumberger, M. (2006). Long-Term Outcome of 444 Patients with Distant Metastases from Papillary and Follicular Thyroid Carcinoma: Benefits and Limits of Radioiodine Therapy. The Journal of Clinical Endocrinology & Metabolism, 91(8), 2892-2899. doi:10.1210/jc.2005-2838 %J The Journal of Clinical Endocrinology & Metabolism | |
dc.relation.references | Fagin, J. A., & Mitsiades, N. (2008). Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract Res Clin Endocrinol Metab, 22(6), 955-969. doi:10.1016/j.beem.2008.09.017 | |
dc.relation.references | Fagin, J. A., & Wells, S. A., Jr. (2016). Biologic and Clinical Perspectives on Thyroid Cancer. N Engl J Med, 375(11), 1054-1067. doi:10.1056/NEJMra1501993 | |
dc.relation.references | Fazeli, S., Paal, E., Maxwell, J. H., Burman, K. D., Nylen, E. S., & Khosla, S. G. (2019). Salutary Response to Targeted Therapy in Anaplastic Thyroid Cancer. 7, 2324709619890942. doi:10.1177/232470961989094263 | |
dc.relation.references | Fenton, C. L., Lukes, Y., Nicholson, D., Dinauer, C. A., Francis, G. L., & Tuttle, R. M. (2000). The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab, 85(3), 1170-1175. doi:10.1210/jcem.85.3.6472 | |
dc.relation.references | Gallego, R. S. (2003). Introducción al análisis de datos experimentales: tratamiento de datos en bioensayos: Universitat Jaume I. Servei de Comunicació i Publicacions. Genutis, L. K., Tomsic, J., Bundschuh, R. A., Brock, P. L., Williams, M. D., Roychowdhury, S., . . . de la Chapelle, A. (2019). Microsatellite Instability Occurs in a Subset of Follicular Thyroid Cancers. Thyroid, 29(4), 523-529. doi:10.1089/thy.2018.0655 | |
dc.relation.references | Grogan, R. H., Kaplan, S. P., Cao, H., Weiss, R. E., Degroot, L. J., Simon, C. A., . . . Schechter, R. B. (2013). A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up. Surgery, 154(6), 1436-1446; discussion 1446-1437. doi:10.1016/j.surg.2013.07.008 | |
dc.relation.references | Guo, K., & Wang, Z. (2014). Risk factors influencing the recurrence of papillary thyroid carcinoma: a systematic review and meta-analysis. Int J Clin Exp Pathol, 7(9), 5393-5403. | |
dc.relation.references | Guzmán, G. E., Casas, L. Á., Orrego Celestino, J. D., Escobar, J., Rodríguez, L., & Martínez, V. (2017). Mutación BRAF V600E en pacientes con cáncer de tiroides. Fundación Clínica Valle del Lili: una serie de casos. Revista Colombiana de Endocrinología, Diabetes & Metabolismo, 3(3), 45-49. doi:10.53853/encr.3.3.42 | |
dc.relation.references | Ha, E. J., Chung, S. R., Na, D. G., Ahn, H. S., Chung, J., Lee, J. Y., . . . Choi, M. (2021). 2021 Korean Thyroid Imaging Reporting and Data System and Imaging-Based Management of Thyroid Nodules: Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol, 22(12), 2094-2123. doi:10.3348/kjr.2021.0713 | |
dc.relation.references | Haroon Al Rasheed, M. R., & Xu, B. (2019). Molecular Alterations in Thyroid Carcinoma. Surg Pathol Clin, 12(4), 921-930. doi:10.1016/j.path.2019.08.002 | |
dc.relation.references | Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E., . . . Wartofsky, L. (2016). 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid, 26(1), 1-133. doi:10.1089/thy.2015.0020 | |
dc.relation.references | Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), 90-95. doi:10.1109/MCSE.2007.55 Integrated genomic characterization of papillary thyroid carcinoma. (2014). Cell, 159(3), 676-690. doi:10.1016/j.cell.2014.09.050 | |
dc.relation.references | Jang, Y. E., Jang, I., Kim, S., Cho, S., Kim, D., Kim, K., . . . Lee, S. (2019). ChimerDB 4.0: an updated and expanded database of fusion genes. Nucleic Acids Res, 48(D1), D817-D824. doi:10.1093/nar/gkz1013 %J Nucleic Acids Research | |
dc.relation.references | Jin, S., Borkhuu, O., Bao, W., & Yang, Y. T. (2016). Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J Clin Med Res, 8(4), 284-296. doi:10.14740/jocmr2480w | |
dc.relation.references | Jung, C. K., Bychkov, A., & Kakudo, K. (2022). Update from the 2022 World Health Organization Classification of Thyroid Tumors: A Standardized Diagnostic Approach. Endocrinol Metab (Seoul), 37(5), 703-718. doi:10.3803/EnM.2022.1553 | |
dc.relation.references | Kim, H. J., Sohn, S. Y., Jang, H. W., Kim, S. W., & Chung, J. H. (2013). Multifocality, but not bilaterality, is a predictor of disease recurrence/persistence of papillary thyroid carcinoma. World J Surg, 37(2), 376-384. doi:10.1007/s00268-012-1835-2 | |
dc.relation.references | Kim, N., Kim, P., Nam, S., Shin, S., & Lee, S. (2006). ChimerDB--a knowledgebase for fusion sequences. Nucleic Acids Res, 34(Database issue), D21-24. doi:10.1093/nar/gkj01964 | |
dc.relation.references | Kim, P., Yoon, S., Kim, N., Lee, S., Ko, M., Lee, H., . . . Lee, S. (2010). ChimerDB 2.0--a knowledgebase for fusion genes updated. Nucleic Acids Res, 38(Database issue), D81-85. doi:10.1093/nar/gkp982 | |
dc.relation.references | Kitahara, C. M., & Sosa, J. A. (2016). The changing incidence of thyroid cancer. Nat Rev Endocrinol, 12(11), 646-653. doi:10.1038/nrendo.2016.110 | |
dc.relation.references | König, P., Beier, S., Mascher, M., Stein, N., Lange, M., & Scholz, U. (2022). DivBrowse-interactive visualization and exploratory data analysis of variant call matrices. Gigascience, 12. doi:10.1093/gigascience/giad025 | |
dc.relation.references | La Vecchia, C., Malvezzi, M., Bosetti, C., Garavello, W., Bertuccio, P., Levi, F., & Negri, E. (2015). Thyroid cancer mortality and incidence: a global overview. Int J Cancer, 136(9), 2187-2195. doi:10.1002/ijc.29251 | |
dc.relation.references | Li, C., Lee, K. C., Schneider, E. B., & Zeiger, M. A. (2012). BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab, 97(12), 4559-4570. doi:10.1210/jc.2012-2104 | |
dc.relation.references | Li, G.-M. (2008). Mechanisms and functions of DNA mismatch repair. Cell Research, 18(1), 85-98. doi:10.1038/cr.2007.115 | |
dc.relation.references | Li, K., Luo, H., Huang, L., Luo, H., & Zhu, X. (2020). Microsatellite instability: a review of what the oncologist should know. Cancer Cell International, 20(1), 16. doi:10.1186/s12935-019-1091-8 | |
dc.relation.references | Li, Y., Tian, J., Jiang, K., Wang, Z., Gao, S., Wei, K., . . . Li, Q. (2023). Risk factors and predictive model for recurrence in papillary thyroid carcinoma: a single-center retrospective cohort study based on 955 cases. Front Endocrinol (Lausanne), 14, 1268282. doi:10.3389/fendo.2023.1268282 | |
dc.relation.references | Lim, H., Devesa, S. S., Sosa, J. A., Check, D., & Kitahara, C. M. (2017). Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013. Jama, 317(13), 1338-1348. doi:10.1001/jama.2017.2719 | |
dc.relation.references | Liu, X., & Harada, S. (2013). DNA Isolation from Mammalian Samples. 102(1), 2.14.11-12.14.13. doi:https://doi.org/10.1002/0471142727.mb0214s102 | |
dc.relation.references | LiVolsi, V. A. (2011). Papillary thyroid carcinoma: an update. Mod Pathol, 24 Suppl 2, S1-9. doi:10.1038/modpathol.2010.129 | |
dc.relation.references | Mazzaferri, E. L., & Kloos, R. T. (2002). Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J Clin Endocrinol Metab, 87(4), 1490-1498. doi:10.1210/jcem.87.4.8338 | |
dc.relation.references | Morjaria, S. (2020). Driver mutations in oncogenesis. International Journal of Molecular and Immuno Oncology, 6. doi:10.25259/IJMIO_26_2020 | |
dc.relation.references | Murugan, A. K., Munirajan, A. K., & Alzahrani, A. S. (2018). Long noncoding RNAs: emerging players in thyroid cancer pathogenesis %J Endocrine-Related Cancer. 25(2), R59-R82. doi:10.1530/erc-17-0188 | |
dc.relation.references | Pacini, F., Castagna, M. G., Brilli, L., & Pentheroudakis, G. (2012). Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 23 Suppl 7, vii110-119. doi:10.1093/annonc/mds230 | |
dc.relation.references | Pancer, J., Mitmaker, E., Ajise, O., Tabah, R., & How, J. (2019). A thyroid gland with over 30 foci of papillary thyroid carcinoma with activating BRAF V600E mutation. Endocrinol Diabetes Metab Case Rep, 2019. doi:10.1530/edm-19-0006 | |
dc.relation.references | Park, Y. M., & Lee, B.-J. (2021). Machine learning-based prediction model using clinico-pathologic factors for papillary thyroid carcinoma recurrence. Scientific Reports, 11(1), 4948. doi:10.1038/s41598-021-84504-2 | |
dc.relation.references | Petrackova, A., Vasinek, M., Sedlarikova, L., Dyskova, T., Schneiderova, P., Novosad, T., . . . Kriegova, E. (2019). Standardization of Sequencing Coverage Depth in NGS: Recommendation for Detection of Clonal and Subclonal Mutations in Cancer Diagnostics. Front Oncol, 9, 851. doi:10.3389/fonc.2019.0085165 | |
dc.relation.references | Qi, T., Rong, X., Feng, Q., Sun, H., Cao, H., Yang, Y., . . . Du, Q. (2021). Somatic Mutation Profiling of Papillary Thyroid Carcinomas by Whole-exome Sequencing and Its Relationship with Clinical Characteristics. Int J Med Sci, 18(12), 2532-2544. doi:10.7150/ijms.50916 | |
dc.relation.references | Rico-Morlán, F. J. L., Hernández-Cuéllar, A., Martínez-Macías, R., Barra-Martínez, R., & Santiago-Vázquez, R. Y. (2009). Niveles séricos de tiroglobulina como marcador de malignidad en pacientes con nódulo tiroideo. Gaceta Mexicana de Oncología. | |
dc.relation.references | Roseland, M. E., Dewaraja, Y. K., & Wong, K. K. (2022). Advanced imaging and theranostics in thyroid cancer. Curr Opin Endocrinol Diabetes Obes, 29(5), 456-465. doi:10.1097/med.0000000000000740 | |
dc.relation.references | Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74(12), 5463-5467. doi:10.1073/pnas.74.12.5463 | |
dc.relation.references | Schwarz, U. I., Gulilat, M., & Kim, R. B. (2019). The Role of Next-Generation Sequencing in Pharmacogenetics and Pharmacogenomics. Cold Spring Harb Perspect Med, 9(2). doi:10.1101/cshperspect.a033027 | |
dc.relation.references | Seib, C. D., & Sosa, J. A. (2019). Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol Metab Clin North Am, 48(1), 23-35. doi:10.1016/j.ecl.2018.10.002 | |
dc.relation.references | Sierra, M. S., Soerjomataram, I., & Forman, D. (2016). Thyroid cancer burden in Central and South America. Cancer Epidemiol, 44 Suppl 1, S150-s157. doi:10.1016/j.canep.2016.07.017 | |
dc.relation.references | Sipos, J. A., Aloi, J., Gianoukakis, A., Lee, S. L., Klopper, J. P., Kung, J. T., . . . Goldner, W. S. (2023). Thyroglobulin Cutoff Values for Detecting Excellent Response to Therapy in Patients With Differentiated Thyroid Cancer. J Endocr Soc, 7(9), 1. | |
dc.relation.references | Sipos, J. A., & Haugen, B. R. (2021). 19 - Papillary Thyroid Cancer. In G. W. Randolph (Ed.), Surgery of the Thyroid and Parathyroid Glands (Third Edition) (pp. 186-193.e185): Elsevier. | |
dc.relation.references | Sipos, J. A., & Mazzaferri, E. L. (2010). Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol), 22(6), 395-404. doi:10.1016/j.clon.2010.05.004 | |
dc.relation.references | Starlinger, J., Pallarz, S., Ševa, J., Rieke, D., Sers, C., Keilholz, U., & Leser, U. (2018). Variant information systems for precision oncology. BMC Med Inform Decis Mak, 18(1), 107. doi:10.1186/s12911-018-0665-z | |
dc.relation.references | Sugitani, I., Ito, Y., Miyauchi, A., Imai, T., & Suzuki, S. (2019). Active Surveillance Versus Immediate Surgery: Questionnaire Survey on the Current Treatment Strategy for Adult Patients with Low-Risk Papillary Thyroid Microcarcinoma in Japan. Thyroid, 29(11), 1563-1571. doi:10.1089/thy.2019.0211 | |
dc.relation.references | Sun, J.-H., Li, Y.-R., Chang, K.-H., Liou, M.-J., Lin, S.-F., Tsai, S.-S., . . . Chen, S.-T. (2022). Evaluation of recurrence risk in patients with papillary thyroid cancer through tumor-node-metastasis staging: A single-center observational study in Taiwan. Biomedical Journal, 45(6), 923-930. doi:https://doi.org/10.1016/j.bj.2021.11.009 | |
dc.relation.references | Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209- 249. doi:10.3322/caac.21660 | |
dc.relation.references | Szumilas, M. (2010). Explaining odds ratios. J Can Acad Child Adolesc Psychiatry, 19(3), 227-229. | |
dc.relation.references | Takano, T. (2017). Natural history of thyroid cancer [Review]. Endocr J, 64(3), 237-244. doi:10.1507/endocrj.EJ17-0026 | |
dc.relation.references | Thajudeen, A., Srinivasan, S., Govindarajan, G., & Shanmugam, A. (2022). A comparative study of efficacy of coconut oil, lemon water and dishwashing liquid as surrogates to xylene. Environ Anal Health Toxicol, 37(3), e2022026-2022020. doi:10.5620/eaht.2022026 | |
dc.relation.references | Vella, V., & Malaguarnera, R. (2018). The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int J Mol Sci, 19(12). doi:10.3390/ijms19123814 | |
dc.relation.references | Vigneri, R., Malandrino, P., & Vigneri, P. (2015). The changing epidemiology of thyroid cancer: why is incidence increasing? Curr Opin Oncol, 27(1), 1-7. doi:10.1097/cco.0000000000000148 | |
dc.relation.references | Voelkerding, K. V., Dames, S. A., & Durtschi, J. D. (2009). Next-generation sequencing: from basic research to diagnostics. Clin Chem, 55(4), 641-658. doi:10.1373/clinchem.2008.112789 | |
dc.relation.references | Vuong, H. G., Altibi, A. M. A., Abdelhamid, A. H., Ngoc, P. U. D., Quan, V. D., Tantawi, M. Y., . . . Kondo, T. (2017). The changing characteristics and molecular profiles of papillary thyroid carcinoma over time: a systematic review. Oncotarget, 8(6), 10637-10649. doi:10.18632/oncotarget.12885 | |
dc.relation.references | Vuong, H. G., Le, H. T., Le, T. T. B., Le, T., Hassell, L., & Kakudo, K. (2022). Clinicopathological significance of major fusion oncogenes in papillary thyroid carcinoma: An individual patient data meta-analysis. Pathol Res Pract, 240, 154180. doi:10.1016/j.prp.2022.154180 | |
dc.relation.references | Waskom, M. (2021). seaborn: statistical data visualization. J. Open Source Softw., 6(60), 3021. doi:10.21105/joss.03021 | |
dc.relation.references | Wolf, K., O'Neil, D., Schroeer, S., & Fang, N. (2016). Next-Generation Sequencing Library Preparation from FFPE Tissue Samples. 113(1), 7.24.21-27.24.14. doi:https://doi.org/10.1002/0471142727.mb0724s113 | |
dc.relation.references | Xing, M. (2013). Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer, 13(3), 184-199. doi:10.1038/nrc3431 | |
dc.relation.references | Xing, M., Alzahrani, A. S., Carson, K. A., Shong, Y. K., Kim, T. Y., Viola, D., . . . Sýkorová, V. (2015). Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol, 33(1), 42-50. doi:10.1200/jco.2014.56.8253 | |
dc.relation.references | Xing, M., Alzahrani, A. S., Carson, K. A., Shong, Y. K., Kim, T. Y., Viola, D., . . . Sýkorová, V. (2015). Association Between BRAF V600E Mutation and Recurrence of Papillary Thyroid Cancer. 33(1), 42-50. doi:10.1200/jco.2014.56.8253 | |
dc.relation.references | Xing, Z., Qiu, Y., Li, Z., Zhang, L., Fei, Y., Zhu, J., & Su, A. (2021). Predictors of thyroglobulin in the lymph nodes recurrence of papillary thyroid carcinoma undergoing total thyroidectomy. BMC Surgery, 21(1), 53. doi:10.1186/s12893-021-01063-z | |
dc.relation.references | Yohe, S., & Thyagarajan, B. (2017). Review of Clinical Next-Generation Sequencing. Arch Pathol Lab Med, 141(11), 1544-1557. doi:10.5858/arpa.2016-0501-RA | |
dc.relation.references | Ywata de Carvalho, A., Kohler, H. F., Gomes, C. C., Vartanian, J. G., & Kowalski, L. P. (2021). Predictive factors for recurrence of papillary thyroid carcinoma: analysis of 4,085 patients. Acta Otorhinolaryngol Ital, 41(3), 236-242. doi:10.14639/0392-100x-n1412 | |
dc.relation.references | Zhai, M., Zhang, D., Long, J., Gong, Y., Ye, F., Liu, S., & Li, Y. (2021). The global burden of thyroid cancer and its attributable risk factor in 195 countries and territories: A systematic analysis for the Global Burden of Disease Study. Cancer Med, 10(13), 4542-4554. doi:10.1002/cam4.3970 | |
dc.relation.references | Zhang, X., Ze, Y., Sang, J., Shi, X., Bi, Y., Shen, S., . . . Zhu, D. (2022). Risk factors and diagnostic prediction models for papillary thyroid carcinoma. Front Endocrinol (Lausanne), 13, 938008. doi:10.3389/fendo.2022.938008 | |
dc.relation.references | Zhou, J., & Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods, 12(10), 931-934. doi:10.1038/nmeth.354767 | |
dc.relation.references | Zolotov, S. (2016). Genetic Testing in Differentiated Thyroid Carcinoma: Indications and Clinical Implications. Rambam Maimonides Med J, 7(1). doi:10.5041/rmmj.10236 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Patología del cáncer papilar de tiroides | |
dc.subject | Datos de secuenciación de nueva generación | |
dc.subject | Variantes de nucleótido simple | |
dc.subject | Mutaciones de inserción y/o deleción | |
dc.subject | Alteración en el número de copias | |
dc.subject | Reordenamientos | |
dc.subject | Recurrencia del cáncer | |
dc.subject.keywords | Papillary thyroid cancer pathology | |
dc.subject.keywords | Next-generation molecular sequence data | |
dc.subject.keywords | Single nucleic variant | |
dc.subject.keywords | Insertion-deletion mutation | |
dc.subject.keywords | Copy number of variants | |
dc.subject.keywords | Rearrangements | |
dc.subject.keywords | Cancer recurrence | |
dc.subject.nlm | W 50 | |
dc.title | Perfil mutacional asociado a recurrencia de la enfermedad y sobrevida en pacientes sometidos a tiroidectomía por cáncer pailar de tiroides en la Fundación Santa Fe de Bogotá | |
dc.title.translated | Mutational profile associated with disease recurrence and survival in patients undergoing thyroidectomy for paillary thyroid cancer at the Fundación Santa Fe de Bogotá | |
dc.type.coar | https://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Maestría | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.92 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 4 de 4
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorización.pdf
- Tamaño:
- 167.96 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Acta de aprobación.pdf
- Tamaño:
- 125.61 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Acta de grado.pdf
- Tamaño:
- 155.62 KB
- Formato:
- Adobe Portable Document Format
- Descripción: