Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts
dc.contributor.author | Diego-Mas, Jose Antonio | |
dc.contributor.author | Poveda-Bautista, Rocío | |
dc.contributor.author | Garzón Leal, Diana Carolina | |
dc.contributor.orcid | Garzón Leal, Diana Carolina [0000-0002-9428-423X] | |
dc.date.accessioned | 2020-07-15T22:02:06Z | |
dc.date.available | 2020-07-15T22:02:06Z | |
dc.date.issued | 2017 | |
dc.description.abstractenglish | RGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes. | eng |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | https://doi.org/10.1016/j.apergo.2017.01.012 | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.issn | 1872-9126 | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/3509 | |
dc.language.iso | eng | |
dc.publisher | Elsevier | spa |
dc.publisher.journal | Applied ergonomics | spa |
dc.relation.ispartofseries | Applied ergonomics, 1872-9126, Vol. 65, 2017, p. 530-540 | spa |
dc.relation.uri | https://www.sciencedirect.com/science/article/abs/pii/S0003687017300200?via%3Dihub | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | Acceso abierto | |
dc.rights.creativecommons | 2017-11 | |
dc.rights.local | Acceso abierto | spa |
dc.subject.decs | Grupos profesionales | spa |
dc.subject.decs | Ergonomía | spa |
dc.subject.decs | Lugar de trabajo | spa |
dc.subject.keywords | RGB-D sensors | spa |
dc.subject.keywords | Workstation layout | spa |
dc.subject.keywords | Genetic algorithms | spa |
dc.title | Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts | spa |
dc.title.translated | Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts | spa |
dc.type.coar | https://purl.org/coar/resource_type/c_6501 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.type.local | Artículo de revista |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- José Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf
- Tamaño:
- 1.74 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: