Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts

dc.contributor.authorDiego-Mas, Jose Antonio
dc.contributor.authorPoveda-Bautista, Rocío
dc.contributor.authorGarzón Leal, Diana Carolina
dc.contributor.orcidGarzón Leal, Diana Carolina [0000-0002-9428-423X]
dc.date.accessioned2020-07-15T22:02:06Z
dc.date.available2020-07-15T22:02:06Z
dc.date.issued2017
dc.description.abstractenglishRGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes.eng
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.1016/j.apergo.2017.01.012
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.issn1872-9126
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlhttps://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/3509
dc.language.isoeng
dc.publisherElsevierspa
dc.publisher.journalApplied ergonomicsspa
dc.relation.ispartofseriesApplied ergonomics, 1872-9126, Vol. 65, 2017, p. 530-540spa
dc.relation.urihttps://www.sciencedirect.com/science/article/abs/pii/S0003687017300200?via%3Dihub
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsAcceso abierto
dc.rights.creativecommons2017-11
dc.rights.localAcceso abiertospa
dc.subject.decsGrupos profesionalesspa
dc.subject.decsErgonomíaspa
dc.subject.decsLugar de trabajospa
dc.subject.keywordsRGB-D sensorsspa
dc.subject.keywordsWorkstation layoutspa
dc.subject.keywordsGenetic algorithmsspa
dc.titleUsing RGB-D sensors and evolutionary algorithms for the optimization of workstation layoutsspa
dc.title.translatedUsing RGB-D sensors and evolutionary algorithms for the optimization of workstation layoutsspa
dc.type.coarhttps://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo de revista

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
José Antonio, Diego-Mas Rocío, Poveda-Bautista. Diana Garzón-Leal_2017.pdf
Tamaño:
1.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones