Comparación del microbioma bacteriano intestinal a partir de aspirado de colon, íleon y de materia fecal de pacientes con espondiloartritis

dc.contributor.advisorMaquez Ortiz , Ricaurte Alejandro
dc.contributor.advisorRomero Sánchez, María Consuelo
dc.contributor.authorLeón Falla, Moises David
dc.date.accessioned2024-08-08T12:58:06Z
dc.date.available2024-08-08T12:58:06Z
dc.date.issued2024-07
dc.description.abstractEl estudio del microbioma del tracto gastrointestinal (TGI) de pacientes con Espondiloartritis (EspA) se ha enfocado en el análisis de muestras de materia fecal, las cuales reflejan principalmente el microbioma del lumen intestinal. El objetivo de este estudio fue describir y comparar el microbioma luminal y de la mucosa intestinal de pacientes con EspA, utilizando aspirados de lavados obtenidos de colonoscopia (ALC), una reciente alternativa para el estudio de estas regiones en el TGI. Se analizaron 59 ALC (de íleon distal y colon sigmoide) y 41 muestras de materia fecal de 32 pacientes con EspA y 7 individuos sanos utilizando un perfilamiento metataxonómico dirigido al gen 16S RNAr. El perfilamiento metatoxinomico confirmó que las muestras de ALC del TGI inferior (íleon y colon) presentaron un microbioma indiferenciado, distintivo y separado del que se halló en las muestras de materia fecal o en el inicio del TGI representado por cavidad oral (CO). Las muestras del TGI bajo y materia fecal de pacientes con EspA exhibieron un comportamiento similar al del microbioma del grupo con Enfermedad Inflamatoria Intestinal (EII), con una reducción en la riqueza y diversidad microbiana comparadas con las de los controles sanos. Curiosamente, se evidenció un incremento de taxones proinflamatorios en los pacientes con EspA como la familia Enterobacteriaceae (principalmente en el íleon), Succinivibrio spp. y Prevotella stercorea. Por otro lado, los pacientes con EspA presentaron una disminución significativa de productores de Ácidos Grasos de Cadena Corta (AGCC) Coprococcus catus y Eubacterium biforme. Los datos obtenidos respaldaron el valor de las muestras de ALC para el estudio del TGI y contribuyeron con información de “taxones disruptores” involucrados en los desórdenes asociados al TGI observados en pacientes con EspA.
dc.description.abstractenglishThe study of the Gastrointestinal tract (GIT) microbiome of Spondyloarthritis (SpA) patients has focused on the analysis of feces samples, that picture mostly the luminal microbiota. The aim of this study was to describe and compare the luminal and intestinal mucosa microbiome in SpA, using colonoscopy aspiration lavages (CAL), a recent alternative for regional studies of the GIT. We analyzed 59 CAL (from sigmoid colon and distal ileum), and 41 feces samples, from 32 SpA patients and 7 healthy individuals, using 16S rRNA gene-targeted metataxonomic profiling. Metataxonomic profiling confirmed CAL samples from the lower GIT (colon or ileum) presented a distinctive and undifferentiated bacteriome and separate from that found in fece’s samples or in the beginning of the GIT (oral cavity (OC)). Lower GIT samples and feces of SpA patients exhibited similar behavior to the microbiome of IBD group with reduced microbial richness and diversity, comparing to the healthy controls. Interestingly, it was found increase in proinflammatory taxa in SpA patients, such as Enterobacteriaceae family (mostly in the ileum), Succinivibrio spp. and Prevotella stercorea. Conversely, SpA patients presented significant decrease in the Short-Chain Fatty Acid (SCFA) producers Coprococcus catus and Eubacterium biforme. Our data support the value of CAL samples for the regional study of GI-tract and contribute with information of potential “disruptor taxa” involved in the GI-tract associated disorders observed in SpA patients.
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Básicas Biomédicasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12844
dc.language.isoes
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMaestría en Ciencias Básicas Biomédicasspa
dc.relation.referencesMielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. I. Clinical aspects. J. Rheumatol. 22, 2266–2272 (1995).
dc.relation.referencesRomero-Sánchez, C. et al. Gastrointestinal symptoms and elevated levels of anti- saccharomyces cerevisiae antibodies are associated with higher disease activity in colombian patients with spondyloarthritis. Int. J. Rheumatol. 2017, 1–8 (2017).
dc.relation.referencesMielants, H., Veys, E. M., Cuvelier, C. & Vos, D. M. Ileocolonoscopic findings in seronegative spondylarthropathies. Br. J. Rheumatol. 27, 95–105 (1988).
dc.relation.referencesSo, J. & Tam, L. S. Gut microbiome and its interaction with immune system in spondyloarthritis. Microorganisms 8, 1–14. (2020).
dc.relation.referencesFoster, A. & Jacobson, K. Changing incidence of inflammatory bowel disease: Environmental influences and lessons learnt from the South Asian population. Front. Pediatr. (2013).
dc.relation.referencesTito, R. Y. et al. Brief report: Dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 69, 114–121 (2017).
dc.relation.referencesBreban, M. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 76, 1614–1622 (2017).
dc.relation.referencesSalem, F. et al. Gut microbiome in chronic rheumatic and inflammatory bowel diseases: Similarities and differences. United Eur. Gastroenterol. J. 7, 1008–1032. (2019).
dc.relation.referencesEisenstein, M. The hunt for a healthy microbiome. Nature 577, S6–S8 (2020).
dc.relation.referencesTang, Q. et al. Current sampling methods for gut microbiota: A call for more precise devices. Front. Cell. Infect. Microbiol. (2020).
dc.relation.referencesClaesson, M. J., Clooney, A. G. & O’Toole, P. W. A clinician’s guide to microbiome analysis. Nat. Rev. Gastroenterol. Hepatol. 14, 585–595. (2017).
dc.relation.referencesVan Praet, L., Jacques, P., Van den Bosch, F. & Elewaut, D. The transition of acute to chronic bowel inflammation in spondyloarthritis.Nat. Rev. Rheumatol. 8, 288–295 (2012).
dc.relation.referencesWatt, E. et al. Extending colonic mucosal microbiome analysis-assessment of colonic lavage as a proxy for endoscopic colonic biopsies. Microbiome 4, 61 (2016).
dc.relation.referencesMarchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015 Jul 30;3:31.
dc.relation.referencesFulde M, Hornef MW. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 2014;260:21-34.
dc.relation.referencesKamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013;14:685-90.
dc.relation.referencesCanfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015;11:577-91.
dc.relation.referencesYatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-7.
dc.relation.referencesYano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264-76.
dc.relation.referencesDevlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol 2015;11:685-90.
dc.relation.referencesNeuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 2015;39:509-21.
dc.relation.referencesHaiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013;341:295-8.
dc.relation.referencesTurnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457:480–484.
dc.relation.referencesRambukkana A, Das PK, Witkamp L, et al. Antibodies to mycobacterial 65-kDa heat shock protein and other immunodominant antigens in patients with psoriasis. J Invest Dermatol 1993; 100:87–92.
dc.relation.referencesBokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D Lieber A, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8(343):343ra82.
dc.relation.referencesDominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107(26): 11971–11975.
dc.relation.referencesGorkiewicz G, Moschen A. Gut microbiome: a new player in gastrointestinal disease. Virchows Arch. 2018 Jan;472(1):159-172.
dc.relation.referencesWlodarska M, Kostic AD, Xavier RJ (2015) An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 17(5):577–591.
dc.relation.referencesMacia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenzie C, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermanns S, Teixeira MM, Moore RJ, Flavell RA, Fagarasan S, Mackay CR (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734.dietary fibre
dc.relation.referencesBach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).
dc.relation.referencesy. Egger, G. & Dixon, J. Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. Biomed Res. Int. 2014, 731685 (2014).
dc.relation.referencesZ. Kelsen, J. R. & Wu, G. D. The gut microbiota, environment and diseases of modern society. Gut Microbes 3, 374–382 (2012).
dc.relation.referencesLevy, M., Kolodziejczyk, A. A., Thaiss, C. A., & Elinav, E. (2017). Dysbiosis and the immune system. Nature Reviews Immunology, 17(4), 219–232.
dc.relation.referencesCaplan L, Kuhn KA. Gastrointestinal and hepatic disease in spondyloarthritis. Rheum Dis Clin N Am 2018;44:153–164. (7)
dc.relation.referencesSieper J, Braun J, Rudwaleit M et al. Ankylosing spondylitis: an overview. Ann Rheum Dis 2002; 61 Suppl 3:iii8-18.
dc.relation.referencesVan der Linden S, van der Heijde DM. Clinical and epidemiologic aspects of ankylosing spondylitis and spondyloarthropathies. Curr Opin Rheumatol 1996; 8: 269-274.
dc.relation.referencesLondoño J, González L, Ramírez A et al. Caracterización de las espondilo-artropatías y determinación de factores de mal pronóstico en una población de pacientes colombianos. Revista Colombiana de Reumatología 2005; 12: 195-207.
dc.relation.referencesBautista-Molano W, Landewé RB, Londoño J et al. Analysis and performance of various classification criteria sets in a Colombian cohort of patients with spondyloarthritis. Clin Rheumatol. 2016 Jul;35(7):1759-67.
dc.relation.referencesStolwijk C, Boonen A, van Tubergen A, Reveille JD. Epidemiology of spondyloarthritis. Rheum Dis Clin North Am. 2012 Aug;38(3):441-76.
dc.relation.referencesGarg N, van den Bosch F, Deodhar A. The concept of spondyloarthritis: where are we now?. Best Pract Res Clin Rheumatol. 2014 Oct;28(5):663-72.
dc.relation.referencesTerenzi R1, Monti S2, Tesei G3, Carli L4. One year in review 2017: spondyloarthritis. Clin Exp Rheumatol. 2018 Jan-Feb;36(1):1-14.
dc.relation.referencesMielants H, De Vos M, Cuvelier C, Veys EM (1996) The role of gut inflammation in the pathogenesis of spondyloarthropathies. Acta Clin Belg 51:340–349.
dc.relation.referencesLoftus CG, Loftus EV Jr, Harmsen WS et al. Update on the incidence and prevalence of Crohn's disease and ulcerative colitis in Olmsted County, Minnesota, 1940-2000. Inflamm Bowel Dis. 2007;13(3):254–61.
dc.relation.referencesCanfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015;11:577-91.
dc.relation.referencesStoll ML. Gut microbes, immunity, and spondyloarthritis. Clin Immunol. 2015 Aug;159(2):134-42.
dc.relation.referencesMielants H, Veys EM, Goemaere S, et al. Gut inflammation in the spondyloarthropathies: clinical, radiologic, biologic and genetic features in relation to the type of histology. A prospective study. J Rheumatol 1991;18:1542-1551.
dc.relation.referencesMielants H, Veys EM, Cuvelier C, et al. Gut inflammation in children with late onset pauciarticular juvenile chronic arthritis and evolution to adult spondyloarthropathy—a prospective study. J Rheumatol 1993;20:1567-1572.
dc.relation.referencesStoll ML, Punaro M, Patel AS. Fecal calprotectin in children with the enthesitis-related arthritis subtype of juvenile idiopathic arthritis. J Rheumatol 2011;38:2274-2275.
dc.relation.referencesVan Praet L, Jans L, Carron P, et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort. Ann Rheum Dis 2014;73:1186-1189.
dc.relation.referencesDe Vos M, Mielants H, Cuvelier C et al (1996) Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 110:1696–1703.
dc.relation.referencesCaffrey MF, James DC. Human lymphocyte antigen association in ankylosing spondylitis. Nature 1973;242(5393):121.
dc.relation.referencesSchlosstein L, Terasaki PI, Bluestone R, Pearson CM. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 1973;288:704e6.
dc.relation.referencesBrown MA. Genetics and the pathogenesis of ankylosing spondylitis. Curr Opin Rheumatol. 2009; 21:318–323.
dc.relation.referencesKabeerdoss J, Sandhya P, Danda D. Gut inflammation and microbiome in spondyloarthritis. Rheumatol Int. 2016 Apr;36(4):457-68.
dc.relation.referencesBowness P. Hla-B27. Annu Rev Immunol 2015; 33:29–48.
dc.relation.referencesStagg AJ, Breban M, Hammer RE, et al. Defective dendritic cell (DC) function in a HLA-B27 transgenic rat model of spondyloarthropathy (SpA). Adv Exp Med Biol 1995;378:557-9. (15).
dc.relation.referencesMarchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015 Jul 30;3:31.
dc.relation.referencesKnight R, Callewaert C, Marotz C et al. The microbiome and human biology. Annu Rev Genom Hum Genet 2017;18:65-86.
dc.relation.referencesMartinez-Medina M, Denizot J, Dreux N et al. Western diet induces dysbiosis with increased E. coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation.Gut 2014;63: 116–124.
dc.relation.referencesVan der Meulen TA, Harmsen HJM, Bootsma H et al. The microbiome–systemic diseases connection. Oral Dis. 2016 Nov;22(8):719-734.
dc.relation.referencesRosenbaum JT, Lin P, Asquith M, et al. Does the microbiome play a causal role in spondyloarthritis? Clin Rheumatol 2014; 6:763–767.
dc.relation.referencesLin P, Bach M, Asquith M, et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 2014; 9.
dc.relation.referencesSinkorova Z, Capkova J, Niederlova J, et al. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum Immunol 2008;69:845-850.
dc.relation.referencesWeinreich S, Eulderink F, Capkova J, et al. HLA-B27 as a relative risk factor in ankylosing enthesopathy in transgenic mice. Hum Immunol 1995;42:103- 15. doi:10.1016/0198-8859(94)00034-N pmid:7744613.
dc.relation.referencesReháková Z, Capková J, Stĕpánková R, et al. Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum Immunol 2000;61:555-8. doi:10.1016/S0198-8859(00)00122- 1 pmid:10825583.
dc.relation.referencesCostello ME, Ciccia F, Willner D, et al. Brief Report: Intestinal Dysbiosis in Ankylosing Spondylitis. Arthritis Rheumatol 2015;67:686-91.
dc.relation.referencesScher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 2015;67:128-39.
dc.relation.referencesActis G. The gut microbiome. Inflamm. Allergy-drug targets [Internet]. 2014;13:217–23.
dc.relation.referencesDe Preter V, Machiels K, Joossens M, Arijs I,Matthys C, Vermeire S, et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut [Internet]. 2014.
dc.relation.referencesSinkorova Z, Capkova J, Niederlova J, et al. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum Immunol 2008;69:845-850.
dc.relation.referencesPrindiville TP, Sheikh RA, Cohen SH, et al. Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg Infect Dis 2000;6:171-174.
dc.relation.referencesMartinez-Gonzalez O, Cantero-Hinojosa J, Paule-Sastre P, et al. Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br J Rheumatol 1994;33:644-647.
dc.relation.referencesRudwaleit, M. et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part I): Classification of paper patients by expert opinion including uncertainty appraisal. Ann. Rheum. Dis.68, 770–776 (2009).
dc.relation.referencesRudwaleit, M. et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): Validation and final selection. Ann. Rheum. Dis. 68, 777–783 (2009).
dc.relation.referencesBolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QUIIME2. Nat. Biotechnol. 37, 852-857. (2019).
dc.relation.referencesDeSantis, T,Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069-5072 (2006).
dc.relation.referencesParks, D, H. Tyson, G. W. Hugenholtz, P. & Beiko, R. G STAMP: Statystical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123-3124 (2014).
dc.relation.referencesKim BR, Shin J, Guevarra R, Lee JH, Kim DW, Seol KH, Lee JH, Kim HB, Isaacson R. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J Microbiol Biotechnol. 2017 Dec 28;27(12):2089-2093.
dc.relation.referencesMorgan, X. C. & Huttenhower, C. Chapter 12. Human Microbiome Analysis. PLoS Computational Biology, 8(12), e1002808. (2012).
dc.relation.referencesTropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: Connecting spatial organization to function. Cell Host Microbe 21, 433–442. (2017).
dc.relation.referencesMiyauchi, E. et al. Analysis of colonic mucosa-associated microbiota using endoscopically collected lavage. Sci. Rep.(2022).
dc.relation.referencesLi, G. et al. Diversity of duodenal and rectal microbiota in biopsy tissues and luminal contents in healthy volunteers. J. Microbiol. Biotechnol. 25, 1136–1145 (2015).
dc.relation.referencesVaga, S. et al. Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Sci. Rep. (2020).
dc.relation.referencesVasapolli, R. et al. Analysis of transcriptionally active bacteria throughout the gastrointestinal tract of healthy individuals. Gastroenterology 157, 1081-1092.e3 (2019).
dc.relation.referencesZoetendal, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68, 3401–3407 (2002).
dc.relation.referencesVillmones, H. C. et al. Species level description of the human ileal bacterial microbiota. Sci. Rep. 8, 1–9 (2018).
dc.relation.referencesMiyauchi, E. et al. Analysis of colonic mucosa-associated microbiota using endoscopically collected lavage. Sci. Rep. (2022).
dc.relation.referencesMutlu, E. A. et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 10, e1003829 (2014).
dc.relation.referencesVan Praet, L. et al. Microscopic gut inflammation in axial spondyloarthritis: A multiparametric predictive model. Ann. Rheum. Dis. 72, 414 (2013).
dc.relation.referencesKlingberg, E. et al. A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res. Ther. 21, 1–12 (2019).
dc.relation.referencesSchmitt, S. K. Reactive arthritis. Infect. Dis. Clin. N. Am. 31, 265–277. (2017).
dc.relation.referencesGarrett, W. S. et al. Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).
dc.relation.referencesMenezes-Garcia, Z. et al. Colonization by Enterobacteriaceae is crucial for acute inflammatory responses in murine small intestine via regulation of corticosterone production. Gut Microbes 11, 1531–1546 (2020).
dc.relation.referencesCassotta, A. et al. Broadly reactive human CD4+ T cells against Enterobacteriaceae are found in the naive repertoire and are clonally expanded in the memory repertoire. Eur. J. Immunol. 51, 648–661 (2021).
dc.relation.referencesFernandez-Veledo, S. & Vendrell, J. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases?. Rev. Endocr. Metab. Disord. 20, 439–447. (2019).
dc.relation.referencesAriake, K. et al. Roles of mucosal bacteria and succinic acid in colitis caused by dextran sulfate sodium in mice. J. Med. Dent. Sci. 47, 233–241 (2000).
dc.relation.referencesMorgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).
dc.relation.referencesSaraiva, A. L. et al. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of Th17 cells in the lymph nodes. FASEB J. 32, 6550–6558 (2018).
dc.relation.referencesLi, Y. et al. Succinate/NLRP3 inflammasome induces synovial fibroblast activation: Therapeutical effects of clematichinenoside AR on arthritis. Front. Immunol. 7, 532 (2016).
dc.relation.referencesIljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 113–124 (2021).
dc.relation.referencesMukherjee, A., Lordan, C., Ross, R. P. & Cotter, P. D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes (2020).
dc.relation.referencesEl Hage, R., Hernandez-Sanabria, E., Calatayud Arroyo, M., Props, R. & Van De Wiele, T. Propionate-producing consortium restores antibiotic-induced dysbiosis in a dynamic in vitro model of the human intestinal microbial ecosystem. Front Microbiol 10, 1206 (2019).
dc.relation.referencesLouis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41. (2017).
dc.relation.referencesFriscic, J. et al. Dietary derived propionate regulates pathogenic fibroblast function and ameliorates experimental arthritis and inflammatory tissue priming. Nutrients 13, 1643 (2021).
dc.relation.referencesFan, Z. et al. Propionate restores disturbed gut microbiota induced by methotrexate in Rheumatoid Arthritis: From clinic to experiments. J. King Saud. Univ. Sci. 33, 101545 (2021).
dc.relation.referencesRosser, E. C. et al. Microbiota-derived metabolites suppress arthritis by amplifying Aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab. 31, 837-851.e10 (2020).
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAspirados
dc.subjectColonoscopia
dc.subjectMateria fecal,
dc.subjectMicrobioma
dc.subjectDisbiosis
dc.subjectRNAr 16S
dc.subjectTracto gastrointestinal
dc.subjectEspondiloartritis
dc.subject.keywordsColonoscopy
dc.subject.keywordsAspiration lavages
dc.subject.keywordsfeces
dc.subject.keywordsMicrobiome
dc.subject.keywordsDysbiosis
dc.subject.keywords16S rRNA
dc.subject.keywordsGastrointestinal tract
dc.subject.keywordsSpondyloarthritis
dc.subject.nlmW 50
dc.titleComparación del microbioma bacteriano intestinal a partir de aspirado de colon, íleon y de materia fecal de pacientes con espondiloartritis
dc.title.translatedComparison of the intestinal bacterial microbiome from colon and ileum aspirate and feces from patients with spondyloarthritis
dc.type.coarhttps://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
863.58 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
218.16 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 Probatus (2).pdf
Tamaño:
238.11 KB
Formato:
Adobe Portable Document Format
Descripción: