Maestría Estadística Aplicada y Ciencia de Datos
URI permanente para esta colección
Examinar
Examinando Maestría Estadística Aplicada y Ciencia de Datos por Materia "Aprendizaje automático"
Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
Ítem Modelo Predictivo de Machine Learning para la Detección de Enfermedad Diarreica Aguda en Pacientes con Trasplante Renal en Colombia(2023) Castañeda Silva, Liceth Viviana; Puentes Morales, Carlos; Castañeda Silva, Liceth Viviana [0009-0000-3292-7108]En este artículo, se realizó un estudio detallado para predecir la enfermedad diarreica aguda en pacientes con trasplante renal utilizando modelos de aprendizaje automático. Se examinaron cuatro modelos diferentes, entre los cuales se incluyen regresión logística, redes neuronales, máquinas de soporte vectorial (SVM) y árboles de decisión. Se utilizaron procesos de validación cruzada, con una técnica de sobre muestreo alto para corregir los desequilibrios en el conjunto de datos de la clase objetivo que fue la minoritaria. Los resultados indican que las redes neuronales y los árboles de decisión se destacan como los modelos con las mejores métricas, demostrando una alta precisión y capacidad de predicción. La regresión logística y SVM también dan resultados válidos, pero su dominio predictivo es más limitado. Estos resultados brindan indicaciones consistentes para futuras implementaciones médicas en la predicción de la enfermedad diarreica aguda en pacientes con trasplante renal, previa realización de validaciones utilizando datos nuevos y externos para comprobar la generalización del modelo.Ítem Predicción de la generación de energía eólica en la región de Biobío en Chile utilizando modelos de Machine Learning y Series Temporales(2024-06) Cadena Valencia, Paula Andrea; Muñoz Puga, Julio Alberto; Parada Suarez, William Rodrigo; Cubillos, AlfonsoChile avanza en la transición hacia energías renovables y la transformación de su matriz energética. Este estudio predice la generación diaria de energía eólica en 15 centrales de la región del Biobío usando modelos de aprendizaje automático (ETR y XGBoost), redes LSTM y series temporales (SARIMAX). Los modelos se entrenan con tres años de datos históricos, incluyendo variables meteorológicas. Se compara el rendimiento de los modelos con métricas como MAE y RMSE para determinar el más preciso. Los resultados buscan mejorar las decisiones en el mercado de energía, optimizando la gestión de recursos.Ítem Predicción del efecto inóculo a Cefazolina en Staphylococcus Aureus susceptible a Meticilina por un método de aprendizaje automático(2024-06) Martín López, Zaidy Ocnary; Quiroga Calderon, Cesar Hobany; Reyes Manrique, Lynda Jehny; Bermudez Munar, Jose Alejandro; Duitama Leal, Alejandro; Reyes Manrique, Jinnethe CristinaLa resistencia a antibióticos constituye un desafío de importancia clínica, no solo en términos de tratamiento biológico y terapéutico de las infecciones, sino también debido a su impacto en la salud pública (1). El Staphylococcus aureus, es un agente bacteriano común en el microbioma humano. Sin embargo, tambiénocasiona gran variedad de entidades infecciosas, incluyendo, bacteriemia, endocarditis, así como infecciones osteoarticulares, cutáneas, de tejidos blandos, pleuropulmonares y relacionadas con dispositivos (2). La incidencia de bacteriemia por Staphylococcus aureus (SAB) en Estados Unidos oscila entre 20 y 50 casos por cada 100.000 habitantes al año, con una tasa de mortalidad entre el 10% y el 30%, superando en número de muertes combinadas al VIH/SIDA, la tuberculosis y la hepatitis viral, lo que representa un considerable costo en términos de salud pública (3,4). La Sociedad Americana de Enfermedades Infecciosas (IDSA) recomienda los antibióticos betalactámicos como tratamiento fundamental para infecciones causadas por Staphylococcus aureus susceptible a meticilina (SASM) (5,6). La cefazolina se ha convertido en una excelente alternativa de tratamiento por sus bajos efectos adversos y su costo (6). Sin embargo, ha surgido un fenómeno de resistencia conocido como el efecto inóculo a cefazolina (CzIE), asociado a la producción de la betalactamasa (BlaZ) (7), lo que plantea la necesidad de explorar alternativas terapéuticas. El uso de técnicas de aprendizaje automático (Machine Learning - ML) se presenta como una vía prometedora para evaluar la capacidad predictiva de modelos en este contexto, lo que podría tener implicaciones significativas en la práctica médica, permitiendo el uso adecuado de la cefazolina y por ende optimizando la toma de decisiones para el tratamiento antibiótico.