Estadística
URI permanente para esta colección
Examinar
Examinando Estadística por Autor "Pacheco López, Mario José"
Mostrando 1 - 5 de 5
Resultados por página
Opciones de ordenación
Ítem Análisis de conglomerados de variables cualitativas para la caracterización de especies(2021) Laverde Chunza, Juan Sebastián; Pacheco López, Mario JoséEl presente trabajo permitió determinar la mejor medida de distancia para variables cualitativas para el agrupamiento de especies biológicas mediante agrupamiento Jerárquico Aglomerativo. El mejor método de agrupamiento Jerárquico seleccionado fue el método de Ward (Ward, 1963), que nos permite calcular la distancia entre grupos para producir dichas agrupaciones. Para realizar las agrupaciones fue necesario contar con las medidas de similaridad Sokal & Sneath, Rogers & Tanimoto, Ochiai y Jaccard las cuales se emplearon en este trabajo. Después de eso, se realizó una validación de los clusters encontrados, lo cual consistió en comparar las medidas de similaridad, empleando los índices de Dunn (Dunn, 1974) y Silhouette (Rousseeuw, 1987).Ítem Asociación del tiempo de hospitalización frente a variables sociodemográficas, clínicas y paraclínicas de pacientes pediátricos con infección por virus Epstein Barr mediante modelos de regresión(2022) Baquero Sánchez, Jorge Arturo; Pacheco López, Mario JoséRecently, some studies are researching the veracity of the American literature, on which the vast majority of medical schools in Latin America are based, with the diagnosis and evolution of diseases in cohorts from different countries. One example is the work of Moreno (2020) which characterizes and differs in certain diagnoses of the disease caused by the Epstein Barr virus, in a pediatric population of a clinic in Bogotá, Colombia, between the years 2015 and 2019. With the previous work, a possible fault in the diagnosis was identified due to these differences with the teaching parameters, which generates inefficiency in the hospitalization times of the patients. Therefore, a comparison of regression models that explain the association of the sociodemographic, clinical and paraclinical variables of the patients with the number of hospitalized days in the studied cohort was carried out. Models were made with a frequentist and Bayesian approach, supported by the selection of variables by Step AIC methods, evaluation of importance by Random Forest, or probability of inclusion for handling overfitting. Variables such as age, presence of myalgia, and thrombocytosis, among others, that explain the hospitalization time of pediatric patients with Epstein Barr virus infection in the studied cohort were identified. After discussing the results obtained, it was concluded that all the variables generated from the different proposed models would be used since, on the one hand, possible shortcomings of some models are complemented with the others and, on the other hand, they will be the basis argued of the following study with a representative sample of the local cohort.Ítem Estimación e inferencia de parámetros en un modelo de regresión normal múltiple multivariado mediante el Bootstrap y el Jackknife(2023) Torres García, Karen Manuela; Pacheco López, Mario José; Torres García, Karen Manuela [0009-0005-0616-7068]En este proyecto se describe el procedimiento Bootstrap y Jackknife para los modelos lineales múltiples multivariados y se crea una función que estima los parámetros tanto por Bootstrap como por Jackknife. Además, se construyen escenarios de simulación para evaluar el algortimo cuando los datos siguen una distribución normal multivariada. Y por último, se realiza una aplicación de la función donde se comparan las estimaciones obtenidas por mínimos cuadrados ordinales y las dos técnicas de remuestreo.Ítem Inferencia bayesiana para la esperanza de la tasa de letalidad acumulada diaria por COVID-19 a nivel mundial para el periodo de enero de 2020 a marzo de 2021(2021-12-20) Villamizar Lara, José Gabriel; Pacheco López, Mario JoséLa pandemia del COVID-19 causó estragos en los sistemas de salud a nivel mundial. Durante el periodo de estudio (Enero 2020-Marzo 2021), se confirmaron más de dos millones de defunciones y más de cien millones de contagiados debido a la enfermedad (OPS, 2021). Se buscó cuantificar la gravedad de la pandemia a nivel mundial estimando una tasa de letalidad media acumulada diaria global, haciendo uso de estadística bayesiana. Se realizó una estimación puntual por medio de la de la mediana posterior y se construyeron intervalos de credibilidad del 89%. Se usó la regla de Jeffrey como información a priori y la distribución beta reparametrizada por Ferrari & CribariNeto (2004), fue la distribución probabilidad asumida para los datos. Se encontró que la mediana posterior tuvo su máximo valor el primer día, con un valor del 42% aproximadamente, este fue decayendo de manera acelerada hasta llegar a los 300 días, donde la tasa tiene un valor estable aproximado del 2% el cual se encuentra dentro de un intervalo de credibilidad del 1% al 3%, además se comparo la tasa letalidad observada de diversos países en vías de desarrollo y ya desarrollados, con la mediana posterior, donde se vio que los países desarrollados tuvieron los valores más altos en comparación a los países en vías de desarrollo.Ítem Propuesta de un modelo de series de tiempo para el pronóstico de ingresos por prestación de servicios en la empresa de operación nacional Falcón Academia de Aviación S.A.S.(2022) Leguízamo Jordán, Giann Axel; Pacheco López, Mario JoséEn este trabajo se realizó un ejercicio de pronóstico de la serie de ingresos por prestación del servicio en la empresa de operación nacional Falcón Academia de Aviación S.A.S, y del número de usuarios mensuales en el periodo de 01/2018 a 12/2022. Se consideró inicialmente un análisis de los datos originales para examinar la existencia de un patrón de comportamiento de la serie de tiempo para seleccionar el modelo: (1-B)(1-B^12 ) X_t (⋋)=(1-0.7149B^12 )(1-0.5958B)at para los ingresos y log(⋋_t )=44.9+0.36Υ_(t-1)+5.58e-10Υ_(t-12). Motivo por el cual se tiene como objetivo utilizar el mejor modelo de predicción mensual que se ajuste a la serie original para hacer predicciones. La metodología usada fue Box – Jenkins y Poisson para series de conteo y el modelamiento de la serie de ingresos y número de usuarios, la cual se desarrolló en las siguientes etapas de exploración de la serie, para la identificación del modelo, estimación de los parámetros del modelo, verificación del modelo y finalmente usar el modelo apropiado para el pronóstico, el resultado de la estimación del mejor modelo univariante para la predicción de la serie original, es un modelo SARIMA (0,1,1) (0,1,1) [12] y Poisson.