Aplicación de inteligencia artificial en el diagnóstico y monitoreo de enfermedades respiratorias asociadas al asbesto: una revisión de alcance
dc.contributor.advisor | Cetina Castillo, Lidy Yadira | |
dc.contributor.advisor | Giraldo Luna, Clara Margarita | |
dc.contributor.author | Gómez Ayarza, Víctor Aurelio | |
dc.contributor.orcid | Gómez Ayarza, Víctor Aurelio [0009-0000-8947-7208] | |
dc.date.accessioned | 2025-02-12T18:22:14Z | |
dc.date.available | 2025-02-12T18:22:14Z | |
dc.date.issued | 2025-01 | |
dc.description.abstract | Objetivo Analizar la aplicación de inteligencia artificial (IA) en el diagnóstico y monitoreo de enfermedades respiratorias relacionadas al asbesto (ERRA), evaluando modelos de aprendizaje automático (ML) para mejorar la precisión diagnóstica y la toma de decisiones clínicas en poblaciones expuestas. Metodología Se realizó una revisión de alcance con la metodología JBI y el protocolo PRISMA-ScR. La búsqueda en bases de datos científicas incluyó estudios entre 2019 y 2024 sobre IA aplicada al diagnóstico y monitoreo de ERRA. De 1095 estudios, se seleccionaron 40 relevantes tras aplicar filtros de inclusión, evaluando tecnologías, métricas y poblaciones. Resultados Los modelos de IA, incluyendo redes neuronales convolucionales (CNN, por sus siglas en inglés) y máquinas de soporte vectorial (SVM, por sus siglas en inglés), alcanzaron precisiones diagnósticas superiores al 90% en enfermedades como asbestosis y mesotelioma pleural. Herramientas como MesoNet y biomarcadores genéticos permitieron diagnósticos no invasivos y una mejor estratificación de riesgo en pacientes expuestos al asbesto. Conclusiones La IA ha demostrado su capacidad para optimizar el diagnóstico y monitoreo de ERRA. Sin embargo, persisten desafíos en la calidad de datos, generalización de modelos y equidad en el acceso. Para maximizar su impacto, es crucial el desarrollo de infraestructuras de datos accesibles, estándares de validación y colaboraciones interdisciplinarias que faciliten su integración en la práctica clínica. | |
dc.description.abstractenglish | Objective To analyze the application of artificial intelligence (AI) in the diagnosis and monitoring of asbestos-related respiratory diseases (ARRD), evaluating machine learning (ML) models to improve diagnostic accuracy and clinical decision-making in exposed populations. Methodology A scoping review was conducted using the JBI methodology and PRISMA-ScR protocol. The search in scientific databases included studies from 2019 to 2024 on AI applied to the diagnosis and monitoring of ARRD. Out of 1095 studies, 40 relevant ones were selected after applying inclusion filters, evaluating technologies, metrics, and populations. Results AI models, including convolutional neural networks (CNN) and support vector machines (SVM), achieved diagnostic accuracies above 90% for diseases such as asbestosis and pleural mesothelioma. Tools like MesoNet and genetic biomarkers enabled non-invasive diagnoses and improved risk stratification in asbestos-exposed patients. Conclusions AI has demonstrated its ability to optimize the diagnosis and monitoring of ARRD. However, challenges remain regarding data quality, model generalization, and equitable access. To maximize its impact, it is crucial to develop accessible data infrastructures, validation standards, and interdisciplinary collaborations to facilitate its integration into clinical practice. | |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Especialista en Higiene Industrial | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13938 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Especialización en Higiene Industrial | spa |
dc.relation.references | 1. Lipman K, de Gooijer CJ, Boellaard TN, van der Heijden F, Beets-Tan RGH, Bodalal Z, et al. Artificial intelligence-based diagnosis of asbestosis: analysis of a database with applicants for asbestosis state aid. Eur Radiol. 2023;33(5):3557–65. https://doi.org/10.1007/s00330-022-09304-2 | |
dc.relation.references | 2. Lima LA de, Abe JM, Martinez AAG, Sakamoto LS, de Lima LP. Application of architecture using AI in the training of a set of pixels of the image at aid decision-making diagnostic cancer. Procedia Comput Sci [Internet]. 2021; 192:1740–9. https://doi.org/10.1016/j.procs.2021.08.179 | |
dc.relation.references | 3. Alam TM, Shaukat K, Hameed IA, Khan WA, Sarwar MU, Iqbal F, et al. A novel framework for prognostic factors identification of malignant mesothelioma through association rule mining. Biomed Signal Process Control [Internet]. 2021; 68:102726. https://doi.org/10.1016/j.bspc.2021.102726 | |
dc.relation.references | 4. Chicco D, Rovelli C. Computational prediction of diagnosis and feature selection on mesothelioma patient health records. PLoS One. 2019;14(1). https://doi.org/10.1371/journal.pone.0208737 | |
dc.relation.references | 5. Koul A, Bawa RK, Kumar Y. Artificial Intelligence Techniques to Predict the Airway Disorders Illness: A Systematic Review. Archives of Computational Methods in Engineering. 2023 Mar 1;30(2):831–64. https://doi.org/10.1007/s11831-022-09818-4 | |
dc.relation.references | 6. Min Kim H, Ko T, Young Choi I, Myong JP. Asbestosis diagnosis algorithm combining the lung segmentation method and deep learning model in computed tomography image. Int J Med Inform [Internet]. 2022; 158:104667. https://doi.org/10.1016/j.ijmedinf.2021. | |
dc.relation.references | 7. Zadsafar F, Tabrizchi H, Parvizpour S, Razmara J, Lotfi S. A model for mesothelioma cancer diagnosis based on feature selection using Harris hawk optimization algorithm. Computer Methods and Programs in Biomedicine Update [Internet]. 2022; 2:100078. http://dx.doi.org/10.1016/j.cmpbup.2022.100078 | |
dc.relation.references | 8. Galateau Salle F, Le Stang N, Tirode F, Courtiol P, Nicholson AG, Tsao MS, et al. Comprehensive Molecular and Pathologic Evaluation of Transitional Mesothelioma Assisted by Deep Learning Approach: A Multi-Institutional Study of the International Mesothelioma Panel from the MESOPATH Reference Center. Journal of Thoracic Oncology [Internet]. 2020;15(6):1037–53. https://doi.org/10.1016/j.jtho.2020.01.025 | |
dc.relation.references | 9. Di Gilio A, Catino A, Lombardi A, Palmisani J, Facchini L, Mongelli T, et al. Breath Analysis for Early Detection of Malignant Pleural Mesothelioma: Volatile Organic Compounds (VOCs) Determination and Possible Biochemical Pathways. Cancers (Basel). 2020;12(5). https://doi.org/10.3390/cancers12051262 | |
dc.relation.references | 10. Yang F, Tang ZR, Chen J, Tang M, Wang S, Qi W, et al. Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning. BMC Med Imaging. 2021 Dec 1;21(1). https://doi.org/10.1186/s12880-021-00723-z | |
dc.relation.references | 11. Agarwal S, Yadav AS, Dinesh V, Vatsav KSS, Prakash KSS, Jaiswal S. By artificial intelligence algorithms and machine learning models to diagnosis cancer. Mater Today Proc [Internet]. 2023;80:2969–75. http://dx.doi.org/10.1016/j.matpr.2021.07.088 | |
dc.relation.references | 12. Adams SJ, Stone E, Baldwin DR, Vliegenthart R, Lee P, Fintelmann FJ. Lung cancer screening. The Lancet [Internet]. 2023;401(10374):390–408. https://doi.org/10.1016/s0140-6736(22)01694-4 | |
dc.relation.references | 13. Huang Y, Si Y, Hu B, Zhang Y, Wu S, Wu D, et al. Transformer-based factorized encoder for classification of pneumoconiosis on 3D CT images. Comput Biol Med [Internet]. 2022; 150:106137. https://doi.org/10.1016/j.compbiomed.2022.106137 | |
dc.relation.references | 14. Yin Y, Cui Q, Zhao J, Wu Q, Sun Q, Wang H qiang, et al. Integrated Bioinformatics and Machine Learning Analysis Identify ACADL as a Potent Biomarker of Reactive Mesothelial Cells. Am J Pathol [Internet]. 2024;194(7):1294–305. https://doi.org/10.1016/j.ajpath.2024.03.013 | |
dc.relation.references | 15. Alam MS, Wang D, Sowmya A. DLA-Net: dual lesion attention network for classification of pneumoconiosis using chest X-ray images. Sci Rep. 2024 Dec 1;14(1). https://doi.org/10.1038/s41598-024-61024-3 | |
dc.relation.references | 16. Eastwood M, Marc ST, Gao X, Sailem H, Offman J, Karteris E, et al. Malignant Mesothelioma subtyping via sampling driven multiple instance prediction on tissue image and cell morphology data. Artif Intell Med [Internet]. 2023; 143:102628. https://doi.org/10.1016/j.artmed.2023.102628 | |
dc.relation.references | 17. Thakral G, Gambhir S. Early Detection of Lung Cancer with Low-Dose CT Scan Using Artificial Intelligence: A Comprehensive Survey. SN Comput Sci. 2024 Jun 1;5(5). http://dx.doi.org/10.1007/s42979-024-02811-7 | |
dc.relation.references | 18. Shenouda M, Gudmundsson E, Li F, Straus CM, Kindler HL, Dudek AZ, et al. Convolutional Neural Networks for Segmentation of Pleural Mesothelioma: Analysis of Probability Map Thresholds (CALGB 30901, Alliance). Journal of Imaging Informatics in Medicine [Internet]. 2024 Sep 12 [cited 2024 Nov 19]. https://doi.org/10.1007/s10278-024-01092-z | |
dc.relation.references | 19. Moirangthem A, Lepcha OS, Panigrahi R, Brahma B, Bhoi AK. Early Malignant Mesothelioma Detection Using Ensemble of Naive Bayes Under Decorate Ensemble Framework. Journal of The Institution of Engineers (India): Series B. 2024 Apr 1;105(2):251–64. http://dx.doi.org/10.1007/s40031-023-00988-8 | |
dc.relation.references | 20. Hakkarainen AJ, Randen-Brady R, Wolff H, Mäyränpää MI, Sajantila A. Deep Learning Neural Network-Guided Detection of Asbestos Bodies in Bronchoalveolar Lavage Samples. Acta Cytol. 2023. https://doi.org/10.1159/000534149 | |
dc.relation.references | 21. Courtiol P, Maussion C, Moarii M, Pronier E, Pilcer S, Sefta M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med. 2019 Oct 1;25(10):1519–25. https://doi.org/10.1038/s41591-019-0583-3 | |
dc.relation.references | 22. Zauderer MG, Martin A, Egger J, Rizvi H, Offin M, Rimner A, et al. The use of a next-generation sequencing-derived machine-learning risk-prediction model (OncoCast-MPM) for malignant pleural mesothelioma: a retrospective study. Lancet Digit Health [Internet]. 2021;3(9): e565–76. https://doi.org/10.1016/s2589-7500(21)00104-7 | |
dc.relation.references | 23. Li N, Yang CX, Zhou SC, Song SY, Jin YY, Wang D, et al. Combination of Plasma-Based Metabolomics and Machine Learning Algorithm Provides a Novel Diagnostic Strategy for Malignant Mesothelioma. DIAGNOSTICS. 2021;11(7). https://doi.org/10.3390/diagnostics11071281 | |
dc.relation.references | 24. Xie XJ, Liu SY, Chen JY, Zhao Y, Jiang J, Wu L, et al. Development of unenhanced CT-based imaging signature for BAP1 mutation status prediction in malignant pleural mesothelioma: Consideration of 2D and 3D segmentation. Lung Cancer [Internet]. 2021; 157:30–9. https://doi.org/10.1016/j.lungcan.2021.04.023 | |
dc.relation.references | 25. W GLKB, Boellaard TN, J de GC, Bogveradze N, Hong EK, Landolfi F, et al. Artificial Intelligence-based Quantification of Pleural Plaque Volume and Association With Lung Function in Asbestos-exposed Patients. J Thorac Imaging. 2024. https://doi.org/10.1097/rti.0000000000000759 | |
dc.relation.references | 26. Benlala I, D DSB, Dournes G, Menant M, Gramond C, Thaon I, et al. Deep Learning for the Automatic Quantification of Pleural Plaques in Asbestos-Exposed Subjects. Int J Environ Res Public Health. 2022. https://doi.org/10.3390/ijerph19031417 | |
dc.relation.references | 27. Li Y, Cai B, Wang B, Lv Y, He W, Xie X, et al. Differentiating malignant pleural mesothelioma and metastatic pleural disease based on a machine learning model with primary CT signs: A multicentre study. Heliyon [Internet]. 2022;8(11): e11383. https://doi.org/10.1016/j.heliyon.2022.e11383 | |
dc.relation.references | 28. Peters MDJ, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Synth. 2020 Oct 1;18(10):2119–26. https://doi.org/10.11124/jbies-20-00167 | |
dc.relation.references | 29. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med [Internet]. 2018 Oct 2 [cited 2025 Jan 22];169(7):467–73. https://doi.org/10.7326/m18-0850 | |
dc.relation.references | 30. Zhang Q, Wang H, Yoon SW, Won D, Srihari K. Lung Nodule Diagnosis on 3D Computed Tomography Images Using Deep Convolutional Neural Networks. Procedia Manuf [Internet]. 2019; 39:363–70. http://dx.doi.org/10.1016/j.promfg.2020.01.375 | |
dc.relation.references | 31. Sousa AM, Castelo-Fernandez C, Osaku D, Bagatin E, Reis F, Falcao AX. An Approach for Asbestos-related Pleural Plaque Detection. Annu Int Conf IEEE Eng Med Biol Soc. 2020. https://doi.org/10.1109/embc44109.2020.9176605 | |
dc.relation.references | 32. Huang ML, Chou YC. Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network. Comput Methods Programs Biomed [Internet]. 2019; 180:105016. https://doi.org/10.1016/j.cmpb.2019.105016 | |
dc.relation.references | 33. Alam TM, Shaukat K, Mahboob H, Sarwar MU, Iqbal F, Nasir A, et al. A Machine Learning Approach for Identification of Malignant Mesothelioma Etiological Factors in an Imbalanced Dataset. COMPUTER JOURNAL. 2022;65(7):1740–51. https://doi.org/10.1093/comjnl/bxab015 | |
dc.relation.references | 34. Gupta S, Gupta MK. Computational Model for Prediction of Malignant Mesothelioma Diagnosis. COMPUTER JOURNAL. 2023;66(1):86–100. http://dx.doi.org/10.1093/comjnl/bxab146 | |
dc.relation.references | 35. Eastwood M, Sailem H, Marc ST, Gao X, Offman J, Karteris E, et al. MesoGraph: Automatic profiling of mesothelioma subtypes from histological images. Cell Rep Med [Internet]. 2023;4(10):101226. https://doi.org/10.1016/j.xcrm.2023.101226 | |
dc.relation.references | 36. Devnath L, Luo S, Summons P, Wang D. Automated detection of pneumoconiosis with multilevel deep features learned from chest X-Ray radiographs. Comput Biol Med [Internet]. 2021; 129:104125. https://doi.org/10.1016/j.compbiomed.2020.104125 | |
dc.relation.references | 37. Jurmeister P, Leitheiser M, Wolkenstein P, Klauschen F, Capper D, Brcic L. DNA methylation-based machine learning classification distinguishes pleural mesothelioma from chronic pleuritis, pleural carcinosis, and pleomorphic lung carcinomas. Lung Cancer [Internet]. 2022; 170:105–13. https://doi.org/10.1016/j.lungcan.2022.06.008 | |
dc.relation.references | 38. Cohen MW, Ghidotti A, Regazzoni D. Bi-level Analysis of Computed Tomography Images of Malignant Pleural Mesothelioma: Deep Learning-Based Classification and Subsequent Three-Dimensional Reconstruction. J Comput Inf Sci Eng. 2024;24(6). https://doi.org/10.1115/1.4064410 | |
dc.relation.references | 39. Yang HY. Prediction of pneumoconiosis by serum and urinary biomarkers in workers exposed to asbestos-contaminated minerals. PLoS One. 2019;14(4). https://doi.org/10.1371/journal.pone.0214808 | |
dc.relation.references | 40. Zhang L, Rong R, Li Q, Yang DM, Yao B, Luo D, et al. A deep learning-based model for screening and staging pneumoconiosis. Sci Rep. 2021 Dec 1;11(1). https://doi.org/10.1038/s41598-020-77924-z | |
dc.relation.references | 41. Alam MdS, Wang D, Sowmya A. AMFP-net: Adaptive multi-scale feature pyramid network for diagnosis of pneumoconiosis from chest X-ray images. Artif Intell Med [Internet]. 2024; 154:102917. https://doi.org/10.1016/j.artmed.2024.102917 | |
dc.relation.references | 42. Zhang Y, Qian F, Teng J, Wang H, Yu H, Chen Q, et al. China lung cancer screening (CLUS) version 2.0 with new techniques implemented: Artificial intelligence, circulating molecular biomarkers and autofluorescence bronchoscopy. Lung Cancer [Internet]. 2023; 181:107262. https://doi.org/10.1016/j.lungcan.2023.107262 | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Inteligencia artificial | |
dc.subject | Aprendizaje automático | |
dc.subject | Asbestosis | |
dc.subject | Mesotelioma maligno | |
dc.subject | Neoplasia pulmonar | |
dc.subject | Redes neurales de la computación | |
dc.subject | Biomarcadores de tumor | |
dc.subject | Radiografía torácica | |
dc.subject | Tomografía computarizada por rayos X | |
dc.subject | Minería de datos | |
dc.subject.keywords | Artificial intelligence | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Asbestosis | |
dc.subject.keywords | Malignant mesothelioma | |
dc.subject.keywords | Lung neoplasm | |
dc.subject.keywords | Convolutional neural network | |
dc.subject.keywords | Tumor biomarkers | |
dc.subject.keywords | Thoracic radiography | |
dc.subject.keywords | X-ray computed tomography | |
dc.subject.keywords | Data mining | |
dc.subject.nlm | WA450 | |
dc.title | Aplicación de inteligencia artificial en el diagnóstico y monitoreo de enfermedades respiratorias asociadas al asbesto: una revisión de alcance | |
dc.title.translated | Application of Artificial Intelligence in the diagnosis and monitoring of asbestos-related respiratory diseases: A scoping review | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Especialización | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 492.54 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 4 de 4
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 280.37 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 213.14 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 2.pdf
- Tamaño:
- 7.98 MB
- Formato:
- Adobe Portable Document Format
- Descripción: